Environmental Impact Assessment Registration Document

Moncton Industrial Park (MIP) West Phase 2 Development (PID Nos. 01023076 and 70518634) - Moncton Industrial Park, Moncton NB

Moncton Industrial Development Ltd.

EIA Registration Document - Version 0A

December 6, 2022 2111247

englobe

MIP West Phase 2 Development

Prepared by:

Alexandra Stevenson, B.Sc. Env.

Project Manager Environment

Reviewed by:

Scott Fisher, P.Eng.

Team Leader

Geotechnical, Materials, Environment

Production team

Moncton Industrial Park West, Phase 2 Development

|--|

Englobe Corp.

Project Manager	Natasha Horsman, P.Eng.
Project Review	Scott Fisher, P.Eng.
Report Preparation	Alexandra Stevenson, B.Sc. Env.

Revisions and publications log

REVISION No.	DATE	DESCRIPTION
0A	November 23, 2022	Preliminary version published for Owner review
01	December 6, 2022	Final Report for Registration

Property and Confidentiality

"This report can only be used for the purposes stated therein. Any use of the report must take into consideration the object and scope of the mandate by virtue of which the report was prepared, as well as the limitations and conditions specified therein and the state of scientific knowledge at the time the report was prepared. Englobe Corp. provides no warranty and makes no representations other than those expressly contained in the report.

This document is the work product of Englobe Corp. Any reproduction, distribution, or adaptation, partial or total, is strictly forbidden without the prior written authorization of Englobe Corp. and its Client. For greater certainty, use of any and all extracts from the report is strictly forbidden without the written authorization of Englobe Corp. and its Client, given that the report must be read and considered in its entirety.

No information contained in this report can be used by any third party without the prior written authorization of Englobe Corp. and its Client. Englobe Corp. disclaims any responsibility or liability for any unauthorized reproduction, distribution, adaptation or use of the report.

If tests have been carried out, the results of these tests are valid only for the sample described in this report.

Englobe Corp.'s subcontractors who have carried out on-site or laboratory work are duly assessed according to the purchase procedure of our quality system. For further information, please contact your project manager."

Ш

Table of Contents

Registra	ation Form	1
1	The Proponent	1
2	Project Description	2
2.1	Project Name	2
2.2	Project Overview	2
2.3	Purpose / Rationale / Need for the Undertaking	3
2.4	Project Location	3
2.5	Siting Considerations	4
2.5.1	General Site Considerations	4
2.5.2	Wetlands and Watercourses	4
2.5.3	Species at Risk and Wildlife	5
2.5.4	Other Location(s) Considered	5
2.5.5	Zoning	5
2.6	Physical Components and Dimensions of the Project	5
2.6.1	Land Requirements	5
2.6.2	Physical Components and Infrastructure	6
2.6.3	Additional Features	6
2.7	Construction Details	7
2.8	Storm Management Details	10
2.9	Operation and Maintenance Details	10
2.10	Future Modification, Extensions, or Abandonment	11
2.1	1 Project-Related Documents	11
3	Description of the Existing Environment	12
3.1	Physical and Natural Features	12
3.1.1	Site Topography and General Surface Drainage Regime	12
3.1.2	Significant Natural and Managed Areas	13
3.1.3	Protected Watersheds and Wellfields	14
3.1.4	Species at Risk (SAR)	14
3.2	Cultural Features	14
3.3	Existing and Historic Land Uses	14
4	Summary of Environmental Impacts	16
4.1	Air Quality	16
4.2	Biology and Ecology (Aquatic & Terrestrial)	17
4.3	Physical	19
4.4	Community Structure	21

5		Summary of Proposed Mitigation	21
	5.1	Other Considerations	22
6		Public and First Nations Involvement Process	22
7		Approval of Undertaking	22
8		Funding	23
9		Signature	24

APPENDICES

Appendix A	Property Map, Parcel Information and Aerial Photographs
Appendix B	Figures: Figure 1 - Overall Location Plan Figure 2 - Site Area and Surrounding Land Use Figure 3 - Development Area and Delineated Wetlands Figure 4 - Proposed Infrastructure
Appendix C	Wetland Delineation Report - Hive Engineering
Appendix D	Atlantic Canada Conservation Data Centre (ACCDC) Report - April 2022
Appendix E	Fauna, Flora and Habitat Description

Registration Form

PURSUANT TO SECTION 5 (2) OF
THE ENVIRONMENTAL IMPACT ASSESSMENT REGULATION 87-83
CLEAN ENVIRONMENT ACT

1 The Proponent

Name of Proponent: Moncton Industrial Development Ltd.

Principal Contact Name: Mr. Pierre Dupuis

Title: General Manager

Address: 655 Main Street, Moncton, NB

Telephone Number: 506-857-0700

Email Address: pdupuis@moncton4business.com

Principal Contact Person for purposes of Environmental Impact Assessment

Name: Natasha Horsman, P.Eng.

Official Title: Project Engineer - Municipal Engineering

Telephone: 506.857.2777, ext. 178054

Email: natasha.horsman@englobecorp.com

Property Ownership

This project is located on PID No. 01023076 and PID No. 70518634, in Moncton, NB. The land is owned by Moncton Industrial Development Limited. Property Ownership information is attached in Appendix A.

1

2 Project Description

2.1 Project Name

Moncton Industrial Park West, Phase 2 Development - Moncton Industrial Development Ltd.

2.2 Project Overview

The Proponent (Moncton Industrial Development Ltd.) proposes to develop an Industrial Park over a total footprint of approximately 105 hectares (259 acres) on two vacant land parcels (PID No. 01023076 and PID No. 70518634) within an industrial area of Moncton, known as the Moncton Industrial Park. The site has been undeveloped since at least 1945, except for one gravel service road that appears to have been cleared and constructed between PID Nos. 01023076 and 70518634 in 1976.

The proposed park will provide approximately 54 new industrial lots ranging in size from 0.65 ha to 7.3 ha, plus two larger reserved lots that cover areas of 20 ha and 17 ha, respectively. The development will include construction of a road extending from Delong Drive to Horsman Road, three additional interconnecting roads within the park, a bridge over the CN Railway tracks to the north of the park, and water, storm and sanitary servicing.

Water service would come from an existing 300 mm diameter PVC water main with the connection point located south of the intersection between Horsman Road and Desbrisay Road and from an existing 500 mm diameter water main on English Drive through a future easement at the south end of PID 70424692.

The new sanitary collection piping will be connected to the existing network through a future easement between English Drive and the proposed development at the south end of PID 70424692 on English Drive. Downstream sanitary sewer piping will require upsizing from English Drive to west of Wheeler Boulevard and through the Findlay Boulevard Traffic Circle, the infrastructure for the two required sanitary sewer upgrades is owned by the City of Moncton. Even if this development was not to go ahead, the City of Moncton would be required to upgrade this infrastructure in the future in order to continue and improve the sanitary sewer collection services it provides to tenants and residents of the City of Moncton.

While these properties are owned by Moncton Industrial Development, the Proponent is expecting to build the roads and install the supporting water, sanitary and storm infrastructure but sell the proposed lots "as-is" for future development by prospective buyers.

This EIA Registration Document is being submitted in accordance with Schedule A of the NBDELG Guide to Environmental Assessment as the proposed development site is partially situated on wetlands covering areas greater than 2 ha in size. Mapped wetlands are present throughout the site, covering approximately 50 hectares, with approximately 9.71 hectares of wetlands located within the proposed development boundary.

Several Figures have been included in Appendix B of this EIA Registration Document to outline the project, and they are as follows:

- Figure 1 shows the site with respect to its location in the Province of NB
- Figure 2 is an aerial overview with the parcel boundaries and neighbouring community
- Figure 3 is a detailed development plan showing the delineated wetlands at the site.
- Figure 4 is a detailed development plan showing the proposed infrastructure at the site, including the proposed water main, proposed sanitary sewer and proposed stormwater sewer.

The proposed project is currently in the pre-design phase, and as such there are several studies underway that will be provided under separate cover once complete. These studies include; Wetland Functional Assessments and Species at Risk Survey (field work has been completed, report underway), Traffic Impact Analysis, Services Study, and Preliminary Site Servicing plans.

This development would provide opportunities for new and growing businesses and employment opportunities for the community. In summary, the project will generally include the following:

- 56 industrial lots;
- Construction of three streets and one bridge;
- Extension of the watermain from Horsman Rd. and English Rd. into the park; and water services to each lot;
- New sanitary sewer servicing throughout the development and connection to existing sanitary sewer network; and,
- Storm water collection and management infrastructure throughout the park.

2.3 Purpose / Rationale / Need for the Undertaking

Moncton Industrial Development Ltd. (MID) has been fostering industrial and commercial growth in the City for over 60 years. Commercial and industrial land availability is reducing, and existing landowners are outgrowing their current lots. Furthermore, MID is seeking to attract new businesses in order to continue economic growth for the City of Moncton. As such, MID has identified undeveloped land directly west of the existing Moncton Industrial Park West and south of the Moncton Industrial Park development on Horsman Rd. as an opportunity to attract businesses that are outgrowing their existing space and new businesses as possible tenants to this expansion of the Moncton Industrial Park West.

Wetlands and watercourses are present at the site and were field delineated by Hive Engineering in 2020. The proposed development was designed to minimize the impact on existing wetlands and unmapped tributary watercourses, and avoid the larger wetlands along the northeast (9.91 ha) and southwest boundaries (29.2 ha) of the site, however it is anticipated that up to 9.71 hectares of wetland environment located centrally at the site could be permanently lost.

Alternative site layouts were originally explored on the subject parcels, however, these original layouts extended further into the wetlands to the northeast and southwest, therefore these layouts were revised because of their increased impacts on the wetlands and unmapped tributary watercourses.

A "do-nothing" approach would hinder the industrial and commercial growth of Moncton, thus limiting the economic benefit of development for the City of Moncton.

2.4 Project Location

The proposed project is located within an industrial area of Moncton, Westmorland County, New Brunswick and is zoned as Industrial Park, as shown on Figure 1, Appendix B. Specifically, the proposed development is located on PID Nos. 01023076 and 70518634.

The land under consideration is located within the City limits but outside of the City of Moncton's Serviceable Boundary as defined in the City of Moncton's General Municipal Plan.

The site is bound by MIP West to the north and east, CN Gordon Yard to the south and partially undeveloped land owned by Greater Moncton Wastewater Commission to the west.

The site and surrounding land use is shown on the attached Figure 2, and a detailed site plan showing the proposed development is presented on Figure 3 (Appendix B). The coordinates for the site are:

Latitude: 46.085144°, Longitude: -64.862905°

Easting: 355973.26 m E, Northing: 5105194.60 m N

2.5 Siting Considerations

2.5.1 General Site Considerations

The site is primarily tree-covered and includes wetlands and watercourses. Construction methods that minimize impacts to wetlands, watercourse and surrounding environment will be implemented during the project and are outlined in section 2.7, below. Some general considerations are summarized as follows:

- All tree clearing activities are to take place outside of the migratory/nesting bird season as per the *Migratory Birds Convention Act* (MBCA).
- If any archaeologically significant artifacts are uncovered during development activities, all work will stop, and an archaeologist will be brought on site.
- The Land Gazette status of PID Nos. 01023076 and 70518634 was reviewed to verify the potential existence of land related notices or restrictions (such as petroleum storage, dump sites, etc.) that may have an impact on land use. No records were shown for these parcels.

The proposed work will take place in stages.

- Winter 2023 (prior to end of March 2023): Clearing activities associated with the proposed roads at the site.
- Construction Season 2023: Installation of the water main, sanitary and storm water infrastructure along the main access road at the site.
- 2024-2025: Installation of the water main, sanitary and storm water infrastructure along all secondary roads at the site.
- 2024-2025: Construction of remainder of main access road and main access road bridge or structure over CN train tracks to the north of the proposed development.

Once the roads, water main, sanitary main, and storm water infrastructure have been constructed at the site, each lot will be sold undeveloped to future developers. MID will obtain WAWA permits in order to develop the roads and infrastructure at the site, and will cover the wetland compensation for the entire site upfront (approximately 9.71 hectares of wetlands to be compensated). Individual WAWA permits will be obtained by developers and these developers will be under contract with MID to abide by all stipulations of the EIA determination and WAWA permits.

2.5.2 Wetlands and Watercourses

The proposed MIP West Phase 2 development is located within an area with mapped wetlands. Between October 9-13, 2020, Derrick Mitchel, R.P.F. assessed the site to confirm the boundaries of the mapped wetlands, and to identify and delineate any unmapped wetlands at the site. The wetland delineation was conducted in accordance with the Corps of Engineers Wetland Delineation Manual (2006) and Regional Supplement (2012). Wetland boundaries were delineated through paired point wetland analysis and will be discussed further in Section 3.0. Approximately 48.82 hectares of wetland were identified during the assessment, and the field delineated boundaries are presented on Figure 3 in Appendix B.

The park was designed to avoid approximately 40 hectares of wetland, however it is expected that up to 9.71 hectares of wetland will be permanently lost within the project area by the time the park is fully developed. Compensation plan(s) will be developed for NBDELG approval prior to the alteration of any wetlands, and a wetland monitoring program will be executed at the site on an annual basis.

Two unmapped watercourses were also identified at the site. An unnamed tributary to Jonathan Creek is located along the north and northeast boundaries of the site (eventually discharging to Jonathon Creek approximately 1km to the northwest) and an unmapped tributary to Michaels Creek is located along the southwest portion of the site (discharging to Michaels Creek approximately 600m to the south). The watercourses will not be altered, with the exception of a small arm of the Jonathon Creek tributary that extends into the development area. The proposed main road extending from Delong Road to Horsman Road is intersected by the tributary to Jonathon Creek, and a culvert will be installed. The culvert will be designed to allow for fish passage, if fish occur within this tributary.

WAWA Permits will be obtained prior to any alteration(s) to the watercourses.

2.5.3 Species at Risk and Wildlife

A habitat survey was completed to identify the various habitats and wildlife present at the site, and to evaluate the potential for species at risk or their critical habitat within the development area. Results of this survey will be submitted once available; preliminary habitat descriptions, and the likelihood of the presence of SAR at the site are presented in Appendix E.

2.5.4 Other Location(s) Considered

In selecting the proposed site in Moncton, NB, the following factors were considered:

- Proximity to existing road network for semi trucks and trailers;
- Ability to access site with long combination vehicles such as tractor trailers;
- Proximity to services including water, sewer, and electrical;
- Distance to known features such as mapped wetlands and watercourses;
- Size of available site.

Based on these factors, no other potential sites were suitable for the required development.

2.5.5 **Zoning**

The subject properties are located in the "Industrial Park Zone (IP)" in accordance with the zoning map for the City of Moncton. The proposed work will not require rezoning of the land. Nearby properties consist of a mixture of Industrial Park, Heavy Industrial and Rail Industry Zones. One irregular shaped area covering approximately 31 acres along the southern boundary of PID No. 01023076 within wetland WL5 is designated as Open Space and Conservation Zone (P2). This P2 area and the wetland (WL 5) are located greater than 30 m from the proposed development boundary and will not be altered.

2.6 Physical Components and Dimensions of the Project

2.6.1 Land Requirements

The proposed site development will span approximately 105 ha (259 acres) with 56 lots ranging from 0.65 ha to 7.3 ha (with the exception of two reserved lots that cover areas of 20 ha and 17 ha). Approximately 9.71 ha of the total project footprint will be within wetland. Figure 3, Appendix B shows the overall proposed development plan, as well as the delineated wetlands located within the proposed development area and the wetlands that will be avoided to the northeast and southwest. The PIDs affected by this proposed development and their estimated disturbance areas are as follows:

- PID No. 01023076: Disturbed area of approximately 84 ha.

- PID No. 70518634: Disturbed area of approximately 17 ha.
- Road between PIDs: Disturbed area of approximately 4 ha.

2.6.2 Physical Components and Infrastructure

In order to carry out the site development, the following components and infrastructure will be required:

- Main Access Road: The proposed main access road will extend approximately 1.34 km from Delong Drive to the north between the two site PIDs, and cover an approximate surface area of 4 ha. Construction will consist of reinstating the existing gravel road with crushed rock in the winter/spring of 2023, and finishing with asphalt following the installation of underground municipal infrastructure which is planned for 2024. The road will also include concrete side walks, curbs and gutters. The curbs and underground piping network for storm water collection will be used to direct the storm water discharge toward the culvert(s) crossing the CN tracks to the south and east of the proposed development.
- Secondary Roads: The secondary roads will be constructed in 2024 and will consist of the same materials and infrastructure as the main access road.
- Water Main and Sanitary: The water main and sanitary installation will be completed through opencut trenching, with the exception of crossings under CN rail where trenchless methods (jack and bore) will be utilized along the eastern (water main and sanitary) and northern (water main) boundaries.
- Storm Water Management: Like the watermains and sanitary sewer, municipal storm sewers will be installed under future streets in accordance with Figure 4. Storm water within the streets will be captured via catch basins (in the concrete curbs). Future private lot developers will need to limit the stormwater runoff leaving their site to prescribed amounts in accordance with the overall net-zero strategy for this development, which could include on-site storage and/or low-impact development techniques. Furthermore, treatment of the storm water runoff will be provided on private lots and municipal property alike prior to entry into downstream. For private lots, this will be completed upstream of its discharge into either the municipal storm sewers or upstream of its discharge into the existing wetlands to be maintained. In order to ensure drainage of the contiguous wetlands prior to affected lot build out, culverts crossing the roadways or inlets/ditches will direct flow into the underground storm water piping network or towards its existing downstream wetland. Finally, culverts will be installed under the roadway crossing the wetland (WL3) to the north of the proposed development where the tributary to Jonathon Creek intersects the proposed road. These culverts will allow for fish passage, if fish are to occur in this tributary. Refer to Section 2.8 for additional discussion.
- Bridge Structure: A bridge will be constructed over the CN tracks to the north of the proposed development. It will be approximately 40 meters in length and include a 13-meter wide curb-to-curb driveable width along with integrated sidewalk(s) to allow for pedestrian transportation.
- Electrical Services: The site will be serviced via NB Power pole mounted transformers that will be installed along all proposed streets.
- Communications: It is anticipated that underground communications infrastructure will be installed along all proposed streets for the future lot owners to connect to using underground infrastructure.
- External Lighting: External lighting will be installed along the proposed roads to provide safety and security at the site.

2.6.3 Additional Features

In addition to the new major physical features, the following should be noted:

6

- Impervious surfaces: The future streets along with future parking lots, etc. will increase the imperviousness of the development area and therefore, a net-zero approach will be taken to offset the increased storm water runoff that is produced. This will be countered through storm water detention through either natural storage upstream of the culverts crossing the CN tracks or through engineered ponds where required to limit the storm water flow in the underground piping network.
- Set-backs or buffers: Construction will remain a minimum of 30 m from watercourses and wetlands except as otherwise noted herein. Municipal right-of-ways will be designed and constructed in accordance with the city of Moncton Subdivision Development Document for Industrial areas. They will range between 20 m and 23 m depending on the expected traffic in the new development streets. Additionally, zoning by-law # Z-222 will be followed and COM Design Criteria Manual for Municipal Services, COM Standard Municipal Specifications will be used for construction and COM Commercial, Industrial, Institutional and Multi-Unit Residential Development will also be adhered to. The zoning by-law # Z-222 will be adhered to by the purchasers of the lots after the expansion is complete with regard to the minimum lot frontage (40 m), minimum front yard (12 m), minimum flankage yard (12 m), minimum side yard (5 m), minimum rear yard, and maximum lot coverage (80%) among others for industrial park zones. Other applicable standards and procedures will also be adhered to as required.
- Off-site facilities: Off-site facilities will not be required for this project.
- Construction activities: Various construction activities will be required as part of this project. As such, various materials and equipment will be hauled to and from site resulting in an increase of vehicular traffic in the area during construction.

Additionally, increased vehicular traffic can be expected once the industrial park has been developed. As such, a Traffic Impact Study is underway to evaluate the required transportation upgrades to minimize the impact on the operation of the road network. The Traffic Impact Study will be provided once complete.

2.7 Construction Details

The development will be carried out in stages; clearing activities along the main access road and secondary streets is proposed to take place before migratory/nesting bird season 2023. Installation of municipal underground infrastructure along sections of the main access road and downstream of the proposed main access road (Horsman Road extension) will be completed following clearing activities in the summer of 2023. Any infrastructure work to be completed along the sections of the main access road and downstream underground infrastructure that are located within 30 m of wetlands (WL1, WL2 and WL3) will follow the stipulations/provisions of the WAWA permit that will be obtained prior to commencing this work. Placement of crushed rock from the road structure will take place once the water and sewer infrastructure are in place.

The next stage of work will be conducted from Spring to Fall 2024-2025 and is expected to involve the Installation of municipal infrastructure along the remaining secondary streets at the site, placement of subgrade gravels/crushed rock for secondary streets, connection of the main access road to Horsman Road through the construction of a bridge, and placement of asphalt on the main access road and secondary streets.

The following preliminary schedule has been developed for the EIA Registration and subsequent design, bidding, and construction work. The exact timing of each component will be refined as the project progresses depending on the actual time taken to complete the preceding task(s):

Component	Approx. duration (weeks)	Anticipated start date	Anticipated completion date
EIA Registration and Review	17	November 23, 2022	March 15, 2023

Component	Approx. duration (weeks)	Anticipated start date	Anticipated completion date
Engineering Design of Municipal Infrastructure for Main Road (Street A) from Delong Drive and downstream infrastructure (Contract no.1)	10	January 16, 2023	March 31, 2023
Clearing Activities	2	February 27, 2023	March 10, 2023
Bidding & Award (Contract no.1)	4	April 3, 2023	April 28, 2023
Construction of Municipal Infrastructure for Main Road (Street A) from Delong Drive and downstream underground infrastructure	16	May 15, 2023	September 1, 2023
Engineering Design of Municipal Infrastructure for remainder of Main Road and Secondary Roads	24	March 27, 2023	September 8, 2023
Bidding & Awards for remainder of Main Road and Secondary Roads	4	September 11, 2023	October 6, 2023
Construction of Main Access Road Bridge and Secondary Access Roads ¹	64	May 1, 2024	December 13, 2025

¹ Construction will pause from December to May, inclusively.

The estimated hours of construction will be from Monday to Friday between 7:00 A.M. and 7:00 P.M. Shorter days may periodically be required in the construction phase given the earlier sunset time during winter months.

The following equipment is anticipated to be used for the construction procedures:

- Site Clearing: Dozers, chippers, and chainsaws;
- Earthwork: Excavators, dozers, dump trucks, compaction equipment;
- Pipe Installation (water main, sanitary, and storm sewer): Excavators, dump trucks, compaction equipment;
- Road Construction: dozers for site grading, concrete trucks for concrete curb, trucks for granular material and asphalt, compaction and paving equipment;
- Sidewalk: Concrete trucks and formwork;
- Landscaping: Trucks for topsoil and hydroseed placement and spraying.

The actual work will be done by a qualified contractor and its subcontractor(s) selected following the design completion. The specific contractors who will be involved, sources of materials, etc., cannot be confirmed until the contract award has been carried out.

Imported materials where "imported" is interpreted to mean "brought in from off the construction site", will include,

- Imported bedding for pipes;
- Imported granular material for road construction;
- Imported asphalt for road surface;
- Imported concrete for curb and sidewalk;
- Imported piping and appurtenances for pipe installation;

Potential sources of pollutants during the construction period are anticipated to include:

- Exhaust and other emissions from construction equipment.
- Noise from construction equipment.
- Runoff from disturbed surface areas during wet weather events and silt from disturbed surface areas.
 This will be minimized by requiring the contractor to install silt fences and other erosion protection devices prior to ground disturbance and to reinstate disturbed areas as soon as practical.
- Petroleum hydrocarbons from possible leaks, spills, or accidents from construction equipment and vehicles. This will be minimized by requiring the Contractor to have spill kits on-site and to conduct daily inspections of its equipment. No refueling or maintenance of vehicles will occur within 30 m of watercourses or wetlands.

All waste generated during construction will be stored in containers and removed off-site by the contractor and disposed of at appropriate facilities.

The following sequence and procedures are recommended during the construction process:

- Mobilization and installation of environmental protection devices;
- Clearing and grubbing along with disposal of materials off-site;
- Stripping;
- Excavation related to underground piping and structures;
- Underground municipal piping installation;
- Importing of structural fill if required to bring site up to sub-grade level;
- Site grading as required;
- Sidewalk and curb construction;
- New electrical servicing;
- Roadway lighting;
- Asphalt road construction;
- Ground restoration (where required) with topsoil/hydroseed, and granular materials.
- Sell the undeveloped lots for development.

The site will be accessed through the existing Delong Drive. No detours will be required. There may be some minor impacts to vehicular and pedestrian movement when construction vehicles are entering or exiting the site.

Merchantable timber removed during the clearing and grubbing stage will be recycled.

The origin of the required granular materials will be confirmed at the time of the contract award. However, the contractor will be required to source these materials from clean, reputable quarries.

It is noted that some of the work is necessary within three delineated wetlands, including construction of roads, and the future industrial development of the proposed lots. Such work will be subject to the conditions of the future WAWA permits to be obtained from the NBDELG, and the remainder of the wetlands will be protected from silt run-off by installing silt fencing that will be maintained for the duration of the construction. Furthermore, the contractor will be required to utilize heavy-duty mats for travel of construction equipment within the wetland area if the work is to occur outside of the winter months/when the ground is frozen. Construction equipment will be restricted to the limits of the project development and as such, no travelling of equipment will be done in the wetlands that are located outside of the project limits.

2.8 Storm Management Details

The storm water servicing and management was preliminarily evaluated through a municipal servicing study in accordance with the City of Moncton's design criteria and industrial development guidelines which include a net-zero peak runoff requirement for new developments. This study identified the preliminary storm water infrastructure that is recommended to adhere to such guidelines and the site's particularities as summarized below:

Like the watermains and sanitary sewer, municipal storm sewers will be installed under future streets in accordance with Figure 4. Storm water within the streets will be captured via catch basins (in the concrete curbs). Future private lot developers will need to limit the stormwater runoff leaving their site to prescribed amounts in accordance with the overall net-zero strategy for this development, which could include on-site storage and/or low-impact development techniques. The stormwater management strategy for the development includes three (3) separate storm sewer systems to maintain (as much as possible) the existing overall watersheds. Each of these storm sewer systems discharge to locations which ultimately drain to existing wetland areas (WL3 and WL5). Please see Figure 4 for more information.

Each of these wetland areas drain through existing culverts at the limits of the property. Under existing conditions, the combination of existing wetlands and culverts appears to provide substantial peak flow buffering. The proposed stormwater management strategy aims to leverage these natural assets to detain runoff and mitigate impacts on downstream infrastructure.

Preliminary storm water modelling was conducted and indicated the proposed development would result in a short-term increase in water levels in each wetland. This increase is anticipated to be between 0.52 m and 1.20 m during a 24-hr duration 1:100-year storm event and an additional 20% for climate change purposes. Outside of the larger precipitation event and during dry weather, the water levels would remain unchanged from current conditions.

Meanwhile, the current water level in WL3 is set by the culverts that penetrate the CN rail embankment to the east. To maintain long-term control over the discharge of water from this wetland, and to protect the downstream CN rail embankment, a new embankment is being considered upstream (parallel with the CN rail).

Furthermore, treatment of the storm water runoff will be provided on private lots and municipal property alike prior to entry into WL3 and WL5. For private lots, this will be completed upstream of its discharge into either the municipal storm sewers or upstream of its discharge into the existing wetlands to be maintained.

In order to ensure drainage of the contiguous wetlands prior to affected lot build out, culverts crossing the roadways or inlets/ditches will direct flow into the underground storm water piping network or towards its existing downstream wetland. Finally, culverts will be installed under the roadway crossing the wetland (WL3) to the north of the proposed development where the tributary to Jonathon Creek intersects the proposed road. These culverts will allow for fish passage, if fish are to occur in this tributary.

2.9 Operation and Maintenance Details

Civil components including municipal piping will be designed in accordance with the latest Commercial, Industrial, Institutional, and Multi-Unit Residential Development Guidelines. Maintenance of underground piping is expected to be limited, but may include flushing, removal of sediment accumulation, etc.

Minor asphalt surface maintenance is expected to occur every few years and will generally consist of asphalt patching. Meanwhile, major rehabilitation is expected to take place every ± 20 years (asphalt surface rehabilitation) and 60 years (full depth reconstruction).

Water will be supplied through the proposed water main from Horsman Road, Cooke Drive, and English Drive.

Typical waste generated on site will be recycled, and where possible, any non-recyclable waste will be disposed of at an appropriate facility.

Components of the proposed industrial park will have varying life expectancies, but generally, the underground piping has an expected life of 75 years.

Power will be provided to the site through the overhead power lines from Delong Drive and/or Desbrisay Avenue to the proposed streets. Lights will also be installed along these streets for safety purposes.

2.10 Future Modification, Extensions, or Abandonment

The proposed lots located within the project boundaries will be sold by the current owner (Moncton Industrial Development Limited), for future development into industrial businesses.

2.11 Project-Related Documents

The following project-related documents are appended:

- Wetland Delineation of PIDs 01023076 and 70518624 prepared by Hive Engineering;
- Atlantic Canada Conservation Data Centre (ACCDC), 2022. Data Report 7237. MID West Moncton, NB.

The following project-related documents are currently underway and will be provided under separate cover once complete:

- Wetland Functional Assessment. Hive Engineering 2022.
- Species at Risk Survey. Hive Engineering 2022.
- Migratory and Nesting Bird Desktop Analysis. Hive Engineering 2022.
- Traffic Impact Analysis. Englobe 2022.
- Servicing Study. Englobe 2022.
- Preliminary Site Servicing Plans. Englobe 2022.

In addition to the project-related documents, a WAWA application will be submitted as a result of the planned work within 30 metres of a wetland.

3 Description of the Existing Environment

3.1 Physical and Natural Features

3.1.1 Site Topography and General Surface Drainage Regime

The location of the proposed project is shown on Figure 3 (Appendix B). The entire project will be located within the limits of a portion of PID No. 01023076 and a portion of PID No. 70518634. The project site is undeveloped and tree covered with the exception of various dirt roads that are cleared on the site extending north from Delong Drive. One of these roads is a gravel service road located between the two PIDs, which is the location of the proposed main access road to be constructed before the end of March 2023. Various other dirt roads that appear to be logging roads are located throughout PID No. 01023076. Figure 2 shows the project site is situated in a mixed commercial/industrial area of Moncton and is bound by forested land and mapped wetlands to the west, CN railway to the south and east, with commercial/industrial properties farther east and commercial/industrial properties to the north.

The properties slope downward toward the south and east; therefore, surface runoff and groundwater flow are expected to flow in these directions.

Wetland delineations were carried out and included site reconnaissance to ground truth the boundaries of the mapped wetlands. Numerous test pits were advanced to confirm the soil and hydrology conditions, as described in the Wetland Delineation report (Appendix C). Wetland Delineation forms were produced to represent the conditions observed at these locations and can be found in the report mentioned above.

Three wetlands are located within the development boundary, and are defined in the Wetland Report (Hive, 2022) as wetland 1 (WL1), wetland 2 (WL2) and wetland 6 (WL6). A portion of a fourth wetland, wetland 3 (WL3), is located within the proposed main access road that will connect to Horsman Road.

WL1 is classified as a tall shrub swamp, covering an area of 3 ha. The dominant hydrophytic vegetation within WL includes a tree stratum of mature red maple (*Acer rubrum*) and trembling aspen (*Populus tremuloides*), while the shrub species stratum was dominated by speckled alder (*Alnus incana*), and blue-joint reedgrass (*Calamagrostis canadensis*) was the dominant species in the herbaceous stratum. Wetland hydrology indicators within WL1 included water-stained leaves and ground saturation. Wetland soils consisted of a 40 cm layer of depleted silt/sand matrix under 2 cm of organics.

WL2 is classified as a mixed forest swamp that covers an area of 3.1 ha. The WL2 tree stratum was dominated by red maple and balsam fir. The shrub species stratum was dominated by speckled alder and balsam fir. The herbaceous stratum was dominated by sensitive fern (*Onoclea sensibilis*), fowl mana grass (*Glyceria striata*), and dwarf red raspberry (*Rubus pubescens*). Wetland hydrology indicators included for WL2 included water-stained leaves and ground saturation. Wetland soils consisted of a 24 cm of depleted mucky silt over 15 cm depleted silt matrix.

WL3 is classified as a graminoid basin swamp that covers an area of 7.7 ha, 0.81 ha of which is located within the site boundaries. The tree stratum of WL3 was dominated by red maple, while the well-developed shrub stratum was dominated by speckled alder. The herbaceous stratum was dominated by blue-joint reedgrass and a nodding sedge (*Carex gynandra*). Wetland hydrology indicators within WL3 included water-stained leaves and ground saturation. Wetland soils consisted of a thin (4 cm) organic layer over three layers of depleted silt matrix, totalling 39 cm in depth with the lowest layer containing redoximorphic features.

12

WL6 is also classified as a mixed forest swamp, this wetland covers an area of 2.8 ha. The WL6 tree stratum was dominated by mature red maple and balsam fir. The shrub species stratum was dominated by speckled alder and balsam fir. The dominant species in the herbaceous stratum sensitive fern, blue-joint reedgrass, fowl mana grass and dwarf red raspberry. Wetland hydrology indicators included for WL6 included water-stained leaves and ground saturation. Wetland soils consisted of a 3 cm of organics over 39 cm of depleted silt matrix.

Although the results of the field surveys recently completed in August 2022 are not yet fully available, a list of the other vegetative species observed at the site was provided and is attached in Appendix E.

The remaining four wetlands that are located outside of the proposed development boundary are identified by WL4, WL5, WL7 and the majority of WL3.

WL4 is classified as a deciduous riparian swamp that covers an area of 2.7 ha. The tree stratum of WL4 was dominated by mature red maple while the shrub species stratum was dominated by speckled alder and winter berry. The herbaceous stratum was dominated by cinnamon fern, sensitive fern, and dwarf red raspberry. Wetland hydrology within WL4 was apparent with water-stained leaves and ground saturation. Wetland soils consisted of a two layers of depleted silt matrix, totalling 40 cm depth.

WL5 is classified as a coniferous bog/deciduous swamp complex that covers an area of 29.2 ha. The tree stratum of WL5 was dominated by black spruce (*Picea mariana*) while the shrub species stratum was dominated by rhodora (*Rhododendron canadense*). The herbaceous stratum was solely dominated by tussock sedge (*Carex stricta*). Wetland hydrology within WL5 was apparent with high water table and saturated substrate. Wetland soils consisted of a deep histosol.

WL7 is classified as a man-made pond that covers an area of 0.32 ha. WL7 was delineated by Boreal Environmental as it was identified on GeoNB as a provincially mapped wetland, however based on its size and that it is not contiguous with a watercourse it was unclear why this wetland was included in the provincial inventory as it does not meet the criteria to be a regulated wetland feature. WL7 formed in an exhausted or abandoned aggregate pit.

Two different wetland types were identified within the proposed development boundary, these include the tall shrub swamp (WL1) and two mixed forest swamps (WL2 and WL6). The combined area of the wetlands located within the proposed development area is approximately 9.71 ha. While the combined area of the wetlands located outside of the proposed development area that will not be altered as part of this proposed project is approximately 40 ha.

The wetlands receive water from Jonathon Creek to the north, and Michaels Creek to the south. Two watercourses and several drainage swales were also encountered during the survey. The largest watercourse (including a local seasonal tributary) is an unnamed tributary to Jonathon Creek. The tributary discharges to Jonathan Creek approximately 1 kilometre northwest of the property boundary. The other watercourse encountered on-site is an unnamed tributary to Michaels Creek; the tributary discharges to Michaels Creek at a distance of approximately 600 metres south of the property boundary. Ultimately the site and associated tributaries discharge into the Petitcodiac River to the south.

WAWA permits will be required for project activities within 30 meters of the wetlands and watercourses.

3.1.2 Significant Natural and Managed Areas

There is one (1) Managed Area (MA) identified by ACCDC within 5 km of the site.

Ducks Unlimited Canada Conservation Lands

The Ducks Unlimited Canada Conservation Lands are located approximately 3 km south of the site; therefore, the project activities will not impact this managed area. No additional information was reported on the ACCDC report; however, these areas are known to attract birds.

3.1.3 Protected Watersheds and Wellfields

The site is located within the Petitcodiac Watershed. Project activities are not anticipated to affect the watershed.

There are no protected watersheds or wellfields within the project area. The surrounding area is serviced by municipal water infrastructure provided by the city of Moncton. The work is not anticipated to impact municipal water sources.

3.1.4 Species at Risk (SAR)

A background investigation was conducted to determine previous records of species at risk (SAR) in the project area. As part of this investigation, a request was made to the ACCDC who provided a report of the flora and fauna in the area.

The ACCDC report was queried for all rare flora and fauna identified within a 5km radius of the project site. For the purpose of this assessment, SAR are defined as only those species which meet one or more of the following criteria:

- Species Listed as 'Endangered', 'Threatened', 'Vulnerable', or 'Special Concern' under the Federal Species at Risk Act (SARA), New Brunswick Species at Risk Act (NBSARA) or by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).
- Species provincially ranked as "S1" (Critically Imperiled) or "S2" (Imperiled).

In addition to the above-mentioned protections, protection for individual and populations of birds and their nests against harm or destruction is also provided under the *Migratory Birds Convention Act* (MBCA).

Forty-three (43) vertebrate fauna were listed within a 5 km radius of the site including thirteen (13) species listed as 'Endangered', 'Threatened' or 'Special Concern' under COSEWIC, SARA, or NB SARA and eighteen (18) vertebrate fauna provincially ranked as "S1" or "S2".

Three (3) invertebrate fauna were listed within a 5 km radius of the site including one (1) species listed as 'Endangered' under COSEWIC and 'Special Concern' under SARA and NB SARA.

Six (6) vascular flora plants were listed within a 5 km radius of the site including one (1) species listed as 'Threatened' under COSEWIC, and three (3) flora species provincially ranked as "S1" or "S2"

The ACCDC report is provided in Appendix D and the habitat descriptions for the identified SAR are included in Appendix E. A field survey was completed by a qualified biologist in August 2022.and includes a Species at Risk Survey and Wetland Functional Assessment. Desktop analysis of historical migratory activities, nesting, spawning breeding, and feeding within the project site was also completed. The information collected from this field survey and desktop analysis will be provided under separate cover.

3.2 Cultural Features

There are no known cultural features at or in the immediate vicinity of the proposed project. The project site is located within the limits of an industrial park, and various buildings and expansion constructed has occurred nearby. Likewise, there are no know heritage features within the project area.

3.3 Existing and Historic Land Uses

As previously noted, the subject parcels (PID Nos. 01023076 and 70518634) are located within the Moncton Industrial Park. These subject parcels are currently owned by Moncton Industrial Development

Limited and are currently undeveloped with the exception of the gravel road between the two PIDs and trails through PID No. 01023076.

The site is bound by forested land and mapped wetlands to the west, CN railway to the south, east and north, with commercial/industrial properties further east and commercial/industrial properties further north.

Aerial photographs for the years 1945, 1953, 1963, 1976, 1982, 1993 and 2001 were available for review. Google Earth aerial imagery from 2005 to 2022 was reviewed. Copies of the photographs for the years 1945 and 1982 and imagery for the years 2005 and 2021 are provided in Appendix A.

Historical land use observed through aerial photographs and Google Earth imagery is summarized in the following table.

Date	Source	Observations
1945	Aerial Photograph	The subject property is vacant and tree-covered. The railway is present to the north, east, and south of the subject property. Neighbouring properties to the north, east, and south are either vacant and tree-covered or developed as agricultural land with residential dwellings.
1953	Aerial Photograph	No significant changes have occurred to the visible portions of the subject properties or neighbouring properties to the east or south.
1963	Aerial Photograph	No significant changes have occurred to the subject properties. The logging road along the west side of PID No. 01023076 is present, indicating the site has been used for harvesting/logging purposes since at least 1963. CN Gordon Yard has been constructed on the neighbouring property to the south. No other significant changes have occurred on neighbouring properties.
1976	Aerial Photograph	No significant changes have occurred to the subject properties or neighbouring properties to the north and south, with the exception of the gravel road that appears to be cleared from Delong Drive to the north between PID Nos. 01023076 and 70518634. Commercial structures have been constructed on the neighbouring properties to the east. Other neighbouring properties to the east remain vacant and tree covered. Significant commercial and residential development has occurred in the surrounding area.
1982	Aerial Photograph	No significant changes have occurred to the visible portions of the subject properties or neighbouring properties to the north. A portion of the neighbouring property to the southeast has been cleared and filled in. No other significant changes have occurred on neighbouring properties to the north and east. Additional commercial development can be seen further to the north and east.
1993	Aerial Photograph	No significant changes have occurred to the subject properties or neighbouring properties to the north. The site is densely wooded, and the man-made pond (WL7) is visible.
2001	Aerial Photograph	No significant changes have occurred to the visible portion of PID No. 01023076. The southwestern portion of PID No. 70518634 appears to be utilized to store fill. The neighbouring property to the southeast of PID No. 70518634 appears to have been cleared and a ballpark has been developed on the neighbouring property to the south. Additional commercial and residential development can be seen in the surrounding area.
2005- 2022	Google Earth Imagery	In 2005, the neighbouring property to the west is vacant and tree covered and a waste management facility can be seen farther to the northwest. In 2011, the southern portion of the neighbouring property to the west appears to be used to store fill and gravel roadways have been developed on neighbouring properties to the north. Between 2013 and 2015, commercial development can be seen on the neighbouring properties to the north. No other significant changes appear to have occurred on the subject properties or neighbouring properties.

Date	Source	Observations
		Additional residential and commercial development can be seen in the surrounding area.

The Land Gazette status of PID Nos. 01023076 and 70518634 was reviewed to verify the potential existence of land related notices or restrictions (such as petroleum storage, dump sites, etc.) that may have an impact on land use. No records were shown for these parcels.

4 Summary of Environmental Impacts

The proposed project is currently in the pre-design phase, and as such there are studies currently underway that will be provided under separate cover once complete. These studies include; Wetland Functional Assessments and Species at Risk Survey (field work has been completed, report underway), Traffic Impact Analysis, Services Study, and Preliminary site servicing plans. This development would provide opportunities for new businesses and employment opportunities for the community.

Anticipated environmental impacts as a result of this project are identified below in accordance with headings included in Appendix B of the Guide to Environmental Impact Assessment in New Brunswick (2018).

In order to expedite the review of information presented in this Registration Document, the proposed avoidance, mitigation/reduction, and compensation measures for each of the possible impacts described below will be indicated immediately following.

4.1 Air Quality

Dust: Dust will likely be generated during the construction phase when soil is exposed, pipelines are being installed, backfilling activities and when the roads are being constructed.

— Avoidance / Mitigation / Compensation: Construction contracts will require the contractor to apply water to control dust when performing these activities. The exact locations where water is to be applied, the amount of water to be applied, and the times at which it shall be applied will be determined on-site based on conditions. Waste oil will not to be used for dust control under any circumstances. Local streets will be swept if necessary.

Odours/Fumes: Odours are possible during the construction phase, primarily from exhaust fumes expelled from trucks and equipment. An increase in emissions from heavy equipment and trucks is expected during the project, however the anticipated impact to air quality is minor.

Avoidance / Mitigation / Compensation: Work will be limited to within 7:00 AM to 7:00 PM. During the
project, emissions will be kept to a minimum by limiting idle time of vehicles and heavy equipment
onsite.

4.2 Biology and Ecology (Aquatic & Terrestrial)

Wetland Habitat: Three delineated wetlands with a total area of approximately 8.9 ha as well as a portion of a fourth wetland covering 0.81 ha, are present within the proposed development area. As such, the wetlands will be disturbed. Sediment runoff from construction work and contamination of the wetland soil are other potential impacts to the wetland habitat.

— Avoidance / Mitigation / Compensation:

No work will take place outside of the proposed development boundary, therefore approximately 40 ha of delineated wetlands will not be impacted as part of this proposed project. The proposed development was designed in order to maintain at least the 30 meter buffer from these wetlands. Any work being conducted within 30 m of a wetland will use heavy mats, and silt fencing in order to prevent any impacts to the wetlands outside of the project boundaries. Construction equipment will be restricted to the limits of the project footprint and as such, no travelling of equipment will be done in the wetlands that are located outside of the project limits. Furthermore, the stipulations/provisions of the WAWA permit will be adhered to, for work within the wetlands that will be altered within the project boundaries.

Runoff protection such as sediment/silt fencing will be placed and maintained during construction. Any exposed soil areas will also have its cover re-established prior to sediment/silt fencing removal. The contractor will be required to wash equipment prior to it being brought to the site.

Weather conditions are to be assessed on a daily basis to determine the potential risk of weather on the wetland habitat. Work will be scheduled to avoid periods of heavy precipitation.

Machinery and equipment will be checked for leakage of lubricants and fuel prior to beginning work each day. Basic petroleum spill clean-up equipment will be kept on site. All spills or leaks will be promptly contained, cleaned up, and reported to the 24-Hour Environmental Emergencies Report System (1-800-565-1633).

Hazardous materials (e.g., fuels, lubricants, hydraulic oil) and wastes (e.g., waste oil) will be managed so as to minimize the risk of chronic and/or accidental releases. A designated storage area for hazardous materials will be identified and will be at least 30m from the delineated and mapped watercourses and wetlands.

The site layout of the development area has been adjusted to minimize the wetland disturbance to 9.71 ha. As such, the proponent will develop wetland compensation plans to offset the net loss of wetland habitat.

Monitoring of the wetlands will be conducted for the 5 years following completion of the construction work in order to determine if neighboring wetland habitat is disturbed as a result of the development. Monitoring events will be collected in years 1, 3, and 5 following the initial construction expected to take place in 2023. Sample vegetation plots will be selected prior to beginning development in the appropriate season in order to establish a baseline for monitoring the impact to the wetlands outside of the proposed development.

Populations/Communities of Aquatic Species (including flora, fish, birds, marine mammals, etc.): The habitat within the site boundaries consists of forested land with dirt roads and logging or ATV trails, a tall shrub swamp wetland and two mixed forest swamp wetlands. One watercourse, a tributary to Jonathon Creek is located over 30 meters from the proposed development boundary to the north and northeast; however a small channel that branches from this watercourse drains from WL2 within the project boundary into WL3 to the northeast. This small section of watercourse will be altered by the proposed development, no fish habitat is present within this channel. A section of this tributary also intersects the proposed road extending to Horsman Rd; a culvert will be installed at this watercourse and will be designed to allow for fish passage, if fish are to occur within this tributary. Furthermore, the stipulations of the WAWA permit will be adhered to for any work within the watercourse. The dominant hydrophytic vegetation observed includes various tree species (i.e. red maple, trembling aspen, balsam

fir) and a shrub stratum and herbaceous stratum. Disturbance to the wetland habitat outside of the project boundaries is not anticipated. Birds that prefer wetland habitats may occasionally occur onsite (refer to migratory bird discussion below).

— Avoidance / Mitigation / Compensation: A habitat survey will be conducted to determine not only species at risk, but also other species on site. Mitigative measures will be established depending on the results of the survey. However, where feasible, activities will be limited to the time between dawn and dusk to avoid using artificial lighting which can potentially affect bird and bat use of nearby habitats (Canada, 2017). If construction timing restrictions are not possible, Environment and Climate Change Canada's Canadian Wildlife Service (CWS) Guidelines for Migratory Birds and the Province of New Brunswick's Fish and Wildlife Act which provides guidance for species not protected under the MBCA will be followed.

Natural Vegetation Cover: The existing vegetation consists of forested land and cleared gravel roads and dirt trails. A field habitat survey was completed, and the report is currently underway, however a list of plant species observed at the site during the survey is attached in Appendix E.

— Avoidance / Mitigation / Compensation: Vegetative cover must be removed for construction of the roads and lots. Stripped materials will be stockpiled and re-used on-site for restoration where possible and exposed soils will be seeded to restore growth and prevent soil erosion. As the lots within the development area are purchased for development, clearing and grubbing will be limited to only the areas required for the development.

Migratory Birds:

Migratory birds may occasionally occur at the site; however, this is to be confirmed through desktop analysis that is currently underway combined with a field assessment of habitat that was completed in August 2022. The results of the migratory / nesting bird desktop analysis will be provided once available.

Spawning, Nesting, Breeding, Feeding sites

A migratory and nesting bird desktop assessment is underway to assess the potential for spawning, nesting, breeding, and feeding areas within the site boundaries. This desktop analysis is supported by a field survey (habitat assessment) that was completed in August 2022 to determine if suitable habitat for spawning, nesting, breeding or feeding is present at the site. The results of this survey will be provided once available.

Species at risk and other species of conservation concern

The ACCDC data report identified the following SAR within a 5km radius of the subject site;

- thirteen (13) vertebrate fauna species listed as 'Endangered', 'Threatened' or 'Special Concern' under COSEWIC, SARA, or NB SARA and eighteen (18) vertebrate fauna species provincially ranked as "S1" or "S2"
- one (1) invertebrate fauna species listed as 'Endangered' under COSWEIC.
- one (1) vascular flora species listed as 'Threatened' under COSEWIC and three (3) flora species provincially ranked as "S1" or "S2"

Preliminary habitat descriptions and the likelihood of their occurrence at the site based on habitat requirements are available in Appendix E. A field survey was conducted in August 2022 to confirm the presence/absence of habitat for the identified SAR. Results of this survey will be provided once available.

 Avoidance / Mitigation / Compensation (for migratory birds, spawning, nesting, breeding, feeding sites, Species at risk and other species of conservation concern):

The disturbance of the vegetative cover, including clearing and grubbing activities associated with the main road construction (along the current gravel service road) is planned for late winter / early March 2023 and thus is not anticipated to impact spawning, nesting or breeding seasons. Clearing activities for the remaining access roads is planned for winter/spring of 2024, while the clearing of

individual lots will be the responsibility of the future lot purchasers. All work is to be conducted in accordance with the Migratory Birds Convention Act, which outlines that no migratory bird nests or eggs will be moved or obstructed during the construction or operational phase of the project. To ensure project activities are in compliance with the MBCA, tree clearing will take place outside of the migratory/nesting bird season, or a qualified person will be onsite to confirm the absence of nesting or migratory birds prior to and during clearing. If bird breeding activity is identified during activities, work will stop immediately.

If any nests or unfledged chicks are discovered during project activities, all work will pause and CWS will be contacted. Active nests or unfledged chicks will be protected by an appropriate-sized buffer (if required). Buffers/nests will not be marked using flagging tape (or other similar materials) in order to prevent an increased risk of nest predation.

All machinery will be well muffled (if required). Contractors will avoid any sharp or loud noises (e.g., not blow horns or whistles). If necessary, trucks may be required to avoid the use of "hammer" braking along specific sections of the site, while radio communications will replace whistle blasts and horns.

Construction activities will be limited to the time between dawn and dusk to avoid using artificial lighting which can potentially affect bird and bat use of nearby habitats. If construction timing restrictions are not possible, Environment and Climate Change Canada's Canadian Wildlife Service (CWS) Guidelines for Migratory Birds and the Province of New Brunswick's Fish and Wildlife Act which provides guidance for species not protected under the MBCA will be followed.

Excavated materials will be covered so that birds do not nest in the stockpiled materials.

Surveys will be completed by a qualified environmental professional, as required, as breeding periods vary from species to species.

The harassment of wildlife, littering and feeding of wildlife on the property during project activities is prohibited. Waste materials will not to be buried on site. Any construction debris will be disposed of in a provincially approved manner. Wildlife habitat features will be protected by appropriate setback distances (or buffer zones) where required.

4.3 Physical

Noise or Vibration: Construction activities will result in noise caused by the use of equipment and machinery (excavator, trucks, compaction equipment, etc.)

Avoidance / Mitigation / Compensation: Work will be limited to within 7:00 AM to 7:00 PM.

Soil Erosion: Soil erosion is possible during construction.

— Avoidance / Mitigation / Compensation: Disturbed areas will be reinstated as soon as is practical, silt fences and other erosion protection devices will be installed around disturbed soils, excavations and stockpiles, and maintained throughout construction and after completion of construction until the vegetation has fully grown. There will be no extreme slopes to limit potential soil erosion.

Total Site Imperviousness: The future streets along with future parking lots, etc. will increase the imperviousness of the development area and therefore, a net-zero approach will be taken to offset the increased storm water runoff that is produced.

Avoidance / Mitigation / Compensation: To offset the impervious areas created during the municipal infrastructure construction, private lot developers will need to limit the stormwater runoff leaving their site to prescribed amounts in accordance with the net-zero strategy for this development (determined through a separate servicing study), which includes on-site storage and/or low-impact development techniques. The stormwater management strategy for the development includes three (3) separate storm sewer systems to maintain (as much as possible) the existing overall watersheds. Each of these storm sewer systems discharge to locations which ultimately drain to existing wetland areas (WL 3 and WL 5). Outside of the larger precipitation event and during dry weather, the water levels

would remain unchanged from current conditions and treatment of the stormwater would be provided upstream of WL 3 and WL 5. Refer to Section 2.8 for additional discussion on the storm water management strategy.

Soil Moisture/Drainage: The surface drainage pattern will be modified as required to promote drainage into individual detention ponds and naturally available storm water storage to the north-east and southwest (wetlands) prior to being directed to downstream ditching and culverts.

— Avoidance / Mitigation / Compensation: There will be no isolated areas created by the site development, and existing surface drainage will be maintained where possible. If necessary, the private lot developers' storm detention pond location(s) will be selected to limit the modifications required to surface drainage. Storm water collection systems (gutters and catch basins) will be installed in order to collect the draining surface water before being transmitted to the storm natural storm water storage (wetlands), followed by the municipal storm water collection network further downstream. Refer to Section 2.8 for additional discussion on the storm water management strategy.

Groundwater Quality: Groundwater quality could be affected in the event of a spill from construction machinery.

— Avoidance / Mitigation / Compensation: The Contractor will be responsible to have the proper leak and spill prevention equipment onsite prior to commencement of any work. In the event of a spill, the contaminated soils will be removed from the site and disposed of at an approved decontamination site. No re-fueling will be conducted within the 30m buffer zone of a watercourse or wetland.

Surface Water Quantity: One section of a channel branching from the Jonathon Creek tributary between WL2 and WL3 will be altered during development.

 Avoidance / Mitigation / Compensation: A WAWA permit will be obtained and followed for the alteration of this small channel that connects WL2 to WL3.

Quantity and Quality of Wetlands: The site development will disturb approximately 9.71 ha of wetland.

— Avoidance / Mitigation / Compensation: Following the wetland delineation for the subject area, the proposed site development plan was revised to reduce the impact to wetlands at the site. This revision allowed the impacted wetland disturbance to be reduced to approximately 9.71 ha, completely avoiding approximately 40 ha of wetlands present on the site parcels. A compensation plan to offset the loss of habitat will be developed for NBDELG approval prior to disturbance of any wetland.

Watercourse: One watercourse, a tributary to Jonathon Creek is located over 30 meters from the proposed development boundary to the north and northeast; a small section that branches from this watercourse drains from WL2 within the project boundary to WL3 to the northeast. This small section of watercourse will be altered by the proposed development.

— Avoidance / Mitigation / Compensation: Although one section of a drainage channel will be altered by the proposed development, the watercourse provides drainage from WL3 to WL2. There is no fish habitat within this section and the small alteration is not anticipated to have any impacts to the larger tributary on the north and northeast of the site. WAWA Permits will be obtained, and any conditions will be adhered to during the development process.

Domestic/Municipal/Industrial/Agriculture Supplies: To service this development, there is an existing 300 mm diameter PVC water main north of the development area located on Horsman Road and a 500 mm diameter water main east of the development area located on English Drive. A new connection would be made at the end of these existing water mains in order to ensuring water main looping.

The nearest sewer infrastructure is located to the east of the proposed development area on English Drive. The new sanitary sewer connection to the existing sewer infrastructure will be made on English Drive via a municipal easement at the south end of PID 70424692 on English Drive. Sewer piping along the current downstream system will require upsizing from English Drive to west of Wheeler Boulevard and through the Findlay Boulevard Traffic Circle. The infrastructure for the two required sanitary sewer upgrades is owned by the City of Moncton. Even if this development was not to go ahead, the City of

Moncton would be required to upgrade this infrastructure in the future in order to continue and improve the sanitary sewer collection services it provides to tenants and residents of the City of Moncton.

— Avoidance / Mitigation / Compensation: Although this will add additional water supply for the City of Moncton and additional sanitary sewer collection for treatment, the City of Moncton will ensure the additional water supply can be accommodated based on current capacity through a design review submission prior to providing construction permission.

4.4 Community Structure

Employment Opportunities: The development of the site will positively impact employment opportunities.

 Avoidance / Mitigation / Compensation: No mitigation required given the positive impact on employment opportunities. Several hundred employment opportunities will be available following the completion of the park development.

Municipal Income: Municipal income will be increased through the lot purchase and the recurring taxes to be paid to the municipality.

 Avoidance / Mitigation / Compensation: No mitigation required given the positive impact on the municipal income.

Land Use Compatibility: The proposed project is compatible with current land uses since the land is designated for industrial usage and located in a primarily industrial area.

5 Summary of Proposed Mitigation

Different mitigation measures will be used throughout the project to minimize environmental impacts. Many impact avoidance, mitigation/reduction, and compensation measures were identified in Section 4 to expedite the review of information and more conveniently connect the relationship of mitigation with possible impacts presented in this Registration Document. However, general mitigation measures for this site are as follows:

- Disturbed areas will be reinstated as soon as is practical, sediment/silt fences and other erosion protection measures will also be used until disturbed vegetation is fully re-grown.
- Clearing and stripping activities will be limited to the necessary areas to complete the work.
- Construction will be restricted to the site limits and equipment requirements.
- The stipulations/provisions of the WAWA permit will be adhered to for work within 30m of wetlands and watercourses.
- A minimum setback of 30 meters from wetlands and watercourses will be respected for development activities along the boundaries of the proposed development area to ensure no impacts occur to the wetlands located outside of the proposed development.
- The Contractors will be responsible to have leak and spill prevention equipment onsite prior to commencement of any work. In the event of a spill, the contaminated soils will be removed from the site and disposed of at an approved decontamination site. Any spills will be reported to the

DELG Local Regional Office during business hours or to the Canadian Coast Guard's 24-hour reporting system after-hours.

The Contractors will be responsible to provide machinery in good working condition.

5.1 Other Considerations

All work will follow the Terms and Conditions of the NBDELG WAWA, TRC letters and any other provincial or federal letters of advice.

As stated herein, 9.71 ha of wetland is expected to be impacted. As such, the proponent will develop wetland compensation plans to compensate for the net loss of wetland habitat.

6 Public and First Nations Involvement Process

The typical steps to involve the Public and First Nations are outlined below. Confirmation from the NBDELG will be required to ensure that the following steps are required for this specific project (or if additional steps are necessary).

The minimum public and First Nations consultation requirements outlined in Appendix C of the Provincial EIA registration guide will be followed (NBDELG, 2018). Stakeholders include the owners of all properties within a 500m radius as shown on the attached figures. A public notice containing the information specified in the registration guide will be delivered to the above noted stakeholders, in addition to the local Member of the Legislative Assembly (MLA), and the local service district, prior to concluding the EIA process.

Although no First Nation communities are located within the immediate study area, a project notification/information letter will be prepared and submitted to potentially affected First Nations if required by the Department and the Aboriginal Affairs Secretariat in accordance with provincial Duty to Consult requirements.

Following the completion of the consultation process, a summary report on the public and First Nation involvement will be prepared and submitted to NBDELG in accordance with the EIA process requirements.

7 Approval of Undertaking

The following technical approvals are anticipated as being required for this project:

- Approval under the EIA Legislation from the NBDELG.
- Watercourse and Wetland Alteration Permit from the NBDELG for the work in the Delineated Wetlands and its Buffer zone.

8 Funding

No application for a grant or loan of capital funds will be requested from government agencies. Costs will be born by the land owner (following lot purchases from Moncton Industrial Development (Limited)).

23

9 Şignature

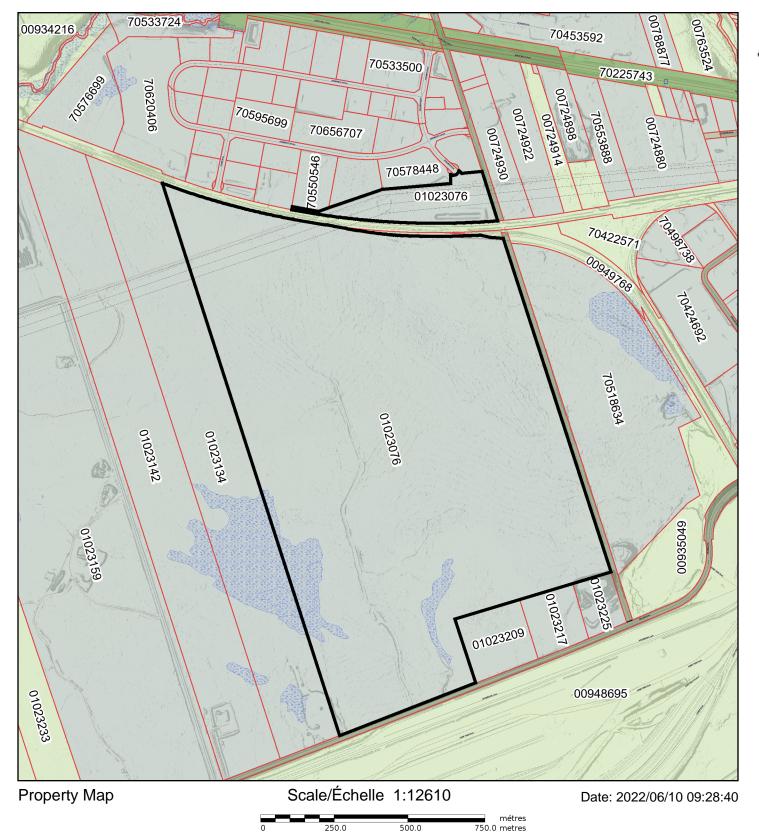
Pierre Dupuis

General Manager

Moncton Industrial Development

EIA Registration Document | MIP West Phase 2 Development (PID Nos. 01023076 and 70518634) - Moncton Industrial Park, Moncton NB Englobe | 2111247 | November 4, 2022

November 2, 2022


Appendix A Property Map, Parcel Information and Aerial Photographs

englobe

Service New Brunswick

Service Nouveau-Brunswick

While this map may not be free from error or omission, care has been taken to ensure the best possible quality. This map is a graphical representation of property boundaries which approximates the size, configuration and location of properties. It is not a survey and is not intended to be used for legal description or to calculate exact dimensions or area.

Même si cette carte n'est peut-être pas libre de toute erreur ou omission, toutes les précautions ont été prises pour en assurer la meilleure qualité possible. Cette carte est une représentation graphique approximative des terrains (limites, dimensions, configuration et emplacement). Elle n'a aucun caractère officiel et ne doit donc pas servir à la rédaction de la description officielle d'un terrain ni au calcul de ses dimensions exactes ou de sa superficie.

Parcel Information Service New Brunswick Service Nouveau-Brunswick

Manner of Tenure:

PID: 1023076 County: Westmorland

Active Date/Time: 1970-01-01 01:01:01 Status: Active

Management Unit: Land Related Description: NB1410 Land

Area: Area Unit: Hectares 219.6

Date Last Updated: 2021-12-14 08:22:14 Harmonization Status: Harmonized

Land Titles Status: Land Titles Date/Time: 2008-08-27 10:25:33 Land Titles

2021-12-14 08:28:21 Not Applicable

Land Gazette NO Information:

Description of Tenure:

Public Comments:

Date of Last CRO:

MAP/CARTE 14T84 14T94 14TE1

Parcel Interest Holders

Owner Qualifier **Interest Type** Moncton Industrial Development Limited Owner

Assessment Reference

PAN **PAN Type Taxing Authority Code Taxing Authority** 6199190 600 CITY OF/CITE DE MONCTON

Parcel Locations

Civic Number Street Name Street Type **Street Direction Place Name** Berry Mills 1400 Road Moncton

County Parish

County **Parish** Westmorland Moncton

Documents

Number	Registration Date	Book	Page	Code	Description
42100868	2021-12-08			6110	Discharge of Mortgage
26510827	2008-11-25			5110	Collateral Mortgage
26255142	2008-10-02			1100	Deed/Transfer
26056656	2008-08-27			1500	Expropriation
25198210	2008-02-14			4500	Notice of Intention to Expropriate
23425466	2007-02-07			2200	Easement

Date/Time: 2022-06-10 09:29:15

_				
\mathbf{n}	CII	ments	s (cont.)	٨
$\mathbf{\nu}$	JUU	1116116	5 (COIII.)	,

Number	Registration Date	Book	Page	Code	Description
658850	1998-10-30	2833	1	101	Deed
616088	1995-12-27	2418	480	119	Other
230233	1959-08-20	S19	665	119	Other
213799	1956-06-18	A18	607	119	Other
203920	1954-06-17	A17	258	119	Other
105228	1918-01-01	E9	439	101	Deed

Plans

Number	Suffix	Registation Date	Code	Description	Lot Information	Orientation
30871553		2011-11-23	9050	Subdivision & Amalgamations	Lot	Provincial Grid
29420867		2010-11-02	9050	Subdivision & Amalgamations	Lot	Provincial Grid
23425417		2007-02-07	9040	Retracement & Plan or Return of Survey	Lot	Provincial Grid
201082		1995-12-27	9020	Easement or Right-of- Way		Provincial Grid

Parcel Relations

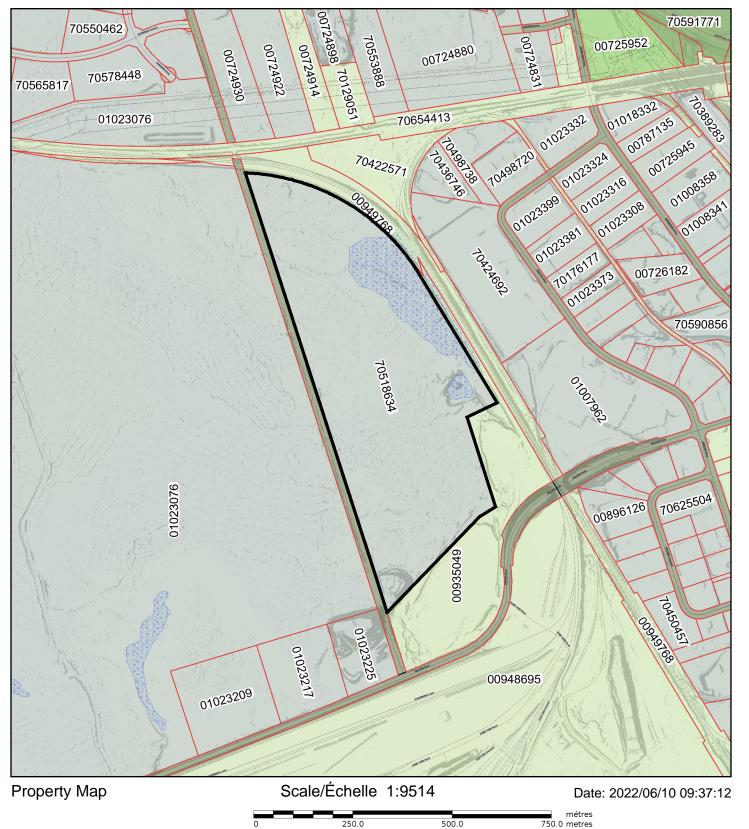
Related PID	Type Of Relation	Lot Information
70533500	Infant	Lot 10-1
70533518	Infant	Lot 10-02
70533526	Infant	Lot 10-03
70533534	Infant	Lot 10-04
70533542	Infant	Lot 10-05
70533559	Infant	Lot 10-06
70533567	Infant	Lot 10-07
70533575	Infant	Lot 10-08
70533583	Infant	Lot 10-10
70533591	Infant	Lot 10-11
70533609	Infant	Lot 10-12
70533617	Infant	Lot 10-13
70533625	Infant	Lot 10-14
70533633	Infant	Lot 10-15

Page 2 Date/Time: 2022-06-10 09:29:15

Parcel Relations

Related PID	Type Of Relation	Lot Information
70533641	Infant	Lot 10-16
70533658	Infant	Lot 10-17
70533666	Infant	Lot 10-18
70533674	Infant	Lot 10-27
70533682	Infant	Lot 10-39
70533690	Infant	Lot 10-40
70533708	Infant	Lot 10-41
70533716	Infant	Public Street Des Brisay
70533724	Infant	Lot Remant
70550371	Infant	Lot 11-08
70550389	Infant	Lot 11-09
70550397	Infant	Lot 11019
70550405	Infant	Lot 11-20
70550413	Infant	Lot 11-21
70550421	Infant	Lot 11-22
70550439	Infant	Lot 11-23
70550447	Infant	Lot 11-24
70550454	Infant	Lot 11-25
70550462	Infant	Lot 11-26
70550470	Infant	Lot 11-28
70550488	Infant	Lot 11-29
70550496	Infant	Lot 11-30
70550504	Infant	Lot 11-31
70550512	Infant	Lot 11-32
70550520	Infant	Lot 11-33
70550538	Infant	Lot 11-34
70550546	Infant	Lot 11-35
70550553	Infant	Lot 11-36
70550561	Infant	Lot 11-37
70550579	Infant	Lot 11-38
70550587	Infant	Lot 11-42
70550595	Infant	Future Street

Page 3 Date/Time: 2022-06-10 09:29:15


Parcel Relations

Related PID	Type Of Relation	Lot Information
70550603	Infant	Future Street
70550611	Infant	Future Street
70550629	Infant	Future Street
70550637	Infant	Future Street
70550645	Infant	Future Street
70550652	Infant	Public Street DesBrisay

Page 4 Date/Time: 2022-06-10 09:29:15

Service New Brunswick

Service Nouveau-Brunswick

While this map may not be free from error or omission, care has been taken to ensure the best possible quality. This map is a graphical representation of property boundaries which approximates the size, configuration and location of properties. It is not a survey and is not intended to be used for legal description or to calculate exact dimensions or area.

Même si cette carte n'est peut-être pas libre de toute erreur ou omission, toutes les précautions ont été prises pour en assurer la meilleure qualité possible. Cette carte est une représentation graphique approximative des terrains (limites, dimensions, configuration et emplacement). Elle n'a aucun caractère officiel et ne doit donc pas servir à la rédaction de la description officielle d'un terrain ni au calcul de ses dimensions exactes ou de sa superficie.

Parcel Information Service New Brunswick Service Nouveau-Brunswick

PID: 70518634 County: Westmorland

Active Date/Time: 2009-12-22 10:07:12 Status: Active

Management Unit: Land Related Description: NB1410 Land

Area Unit: Hectares Area: 33.84

Date Last Updated: Harmonization Status: 2010-01-15 13:39:35 Harmonized

Land Titles Status: Land Titles Date/Time: 2009-12-23 14:32:57 Land Titles

Date of Last CRO: Manner of Tenure: 2009-12-23 14:32:57 Not Applicable

Land Gazette NO Information:

Date

Description of Tenure:

Public Comments:

MAP/CARTE 14TE1

Parcel Interest Holders

Owner Qualifier Interest Type Moncton Industrial Development Limited Owner

Assessment Reference

PAN **PAN Type Taxing Authority Code Taxing Authority** CITY OF/CITE DE MONCTON 6048103 600

Parcel Locations

Civic Number Street Name Street Type **Street Direction Place Name** Horseman Road Moncton

County Parish

County **Parish** Westmorland Moncton

Documents

Number	Re	gistration Date	Book	Page	Code	Description	
28208685	20	09-12-23			3800	Land Titles First Notice	
28208677	20	09-12-23			3720	Land Titles First Order	
28208412	20	09-12-23			3900	Land Titles First Application	
28196310	20	09-12-21			1100	Deed/Transfer	
					Plans		
Number	Suffix	Registation	Code		Description	Lot	Orientation

Page 1 Date/Time: 2022-06-10 09:37:39

Information

Service New Brunswick Parcel Information Service Nouveau-Brunswick

				Plans		
Number	Suffix	Registation Date	Code	Description	Lot Information	Orientation
28196294		2009-12-21	9040	Retracement & Plan or Return of Survey	Lot 09- 500	Provincial Grid
				Parcel Relations		
Related PID			Type Of Re	elation Lot	Information	
935049			Parent	Lo	į	

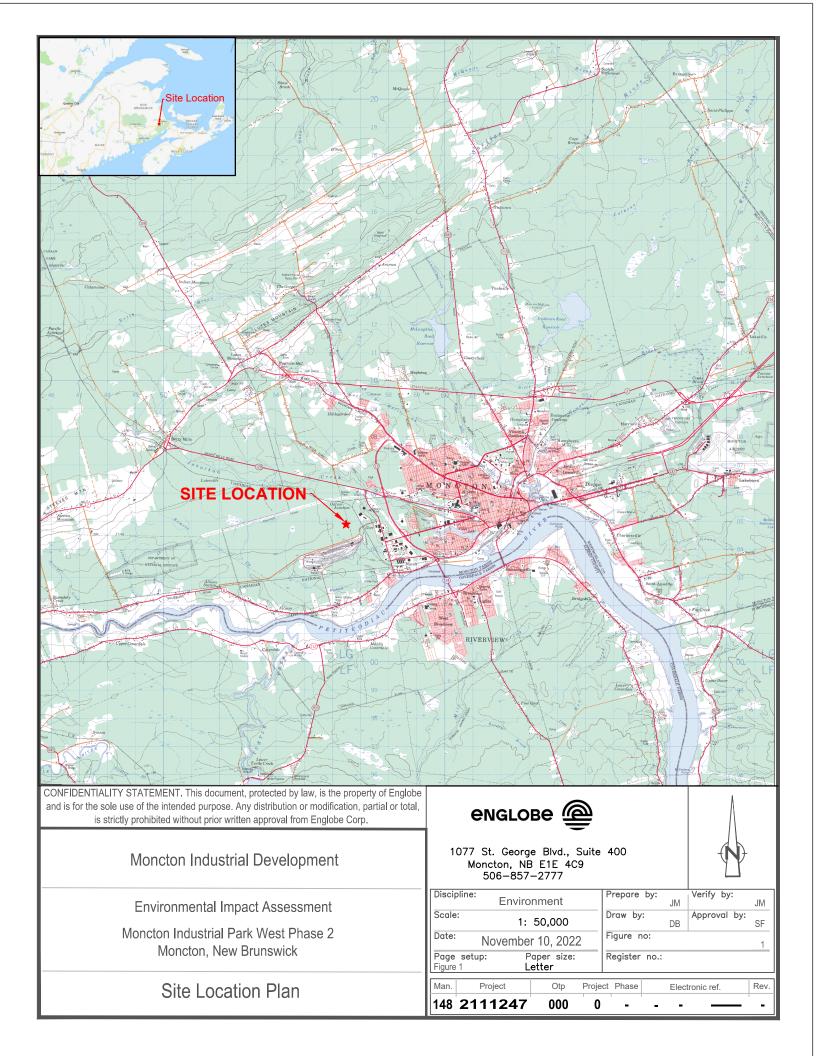
Page 2 Date/Time: 2022-06-10 09:37:39

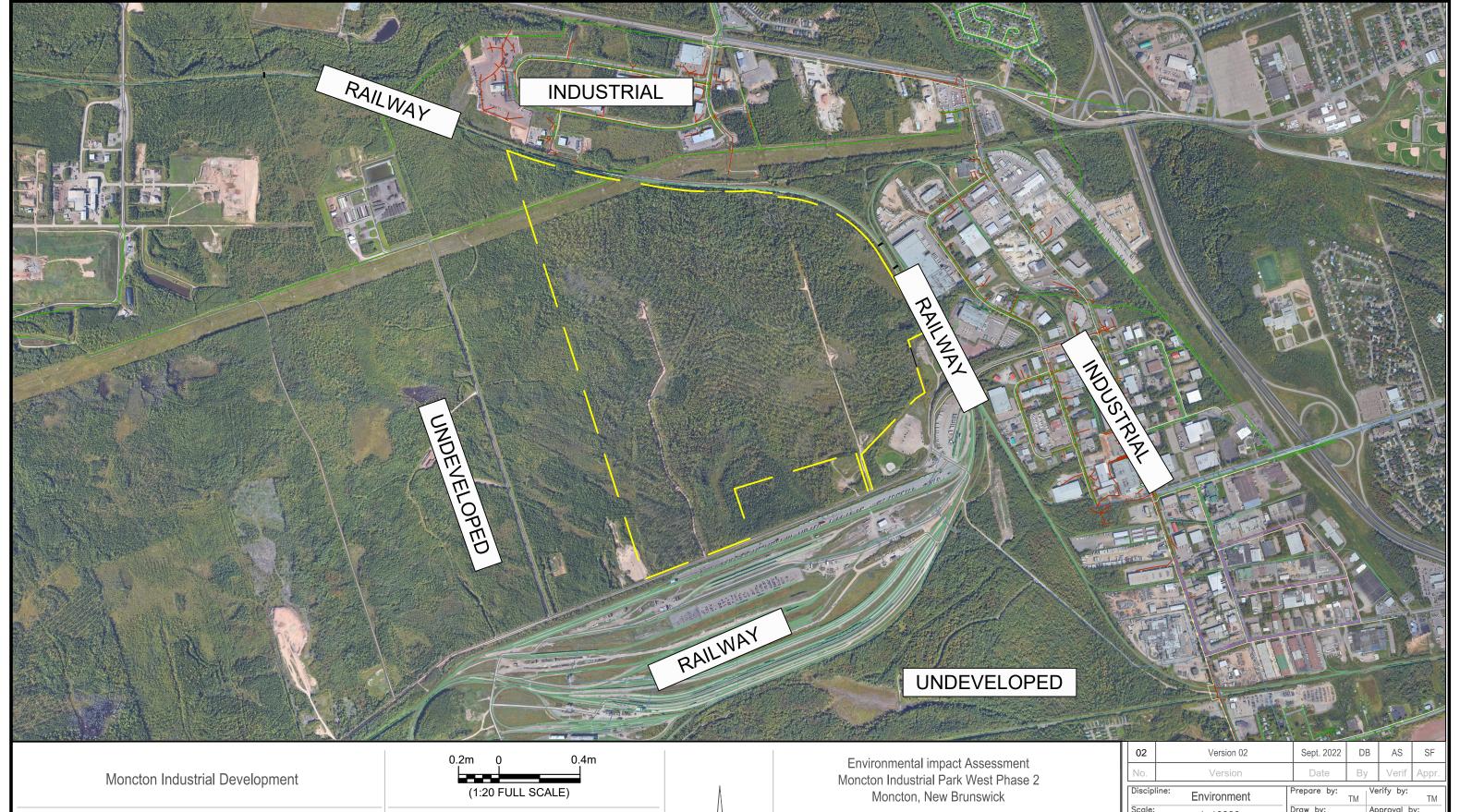
1945 - Aerial Photograph MIP West Phase 2 Development (PID Nos. 01023076 and 70518634), Moncton NB

1982 - Aerial Photograph MIP West Phase 2 Development (PID Nos. 01023076 and 70518634), Moncton NB

2005 - Google Earth Imagery MIP West Phase 2 Development (PID Nos. 01023076 and 70518634), Moncton NB

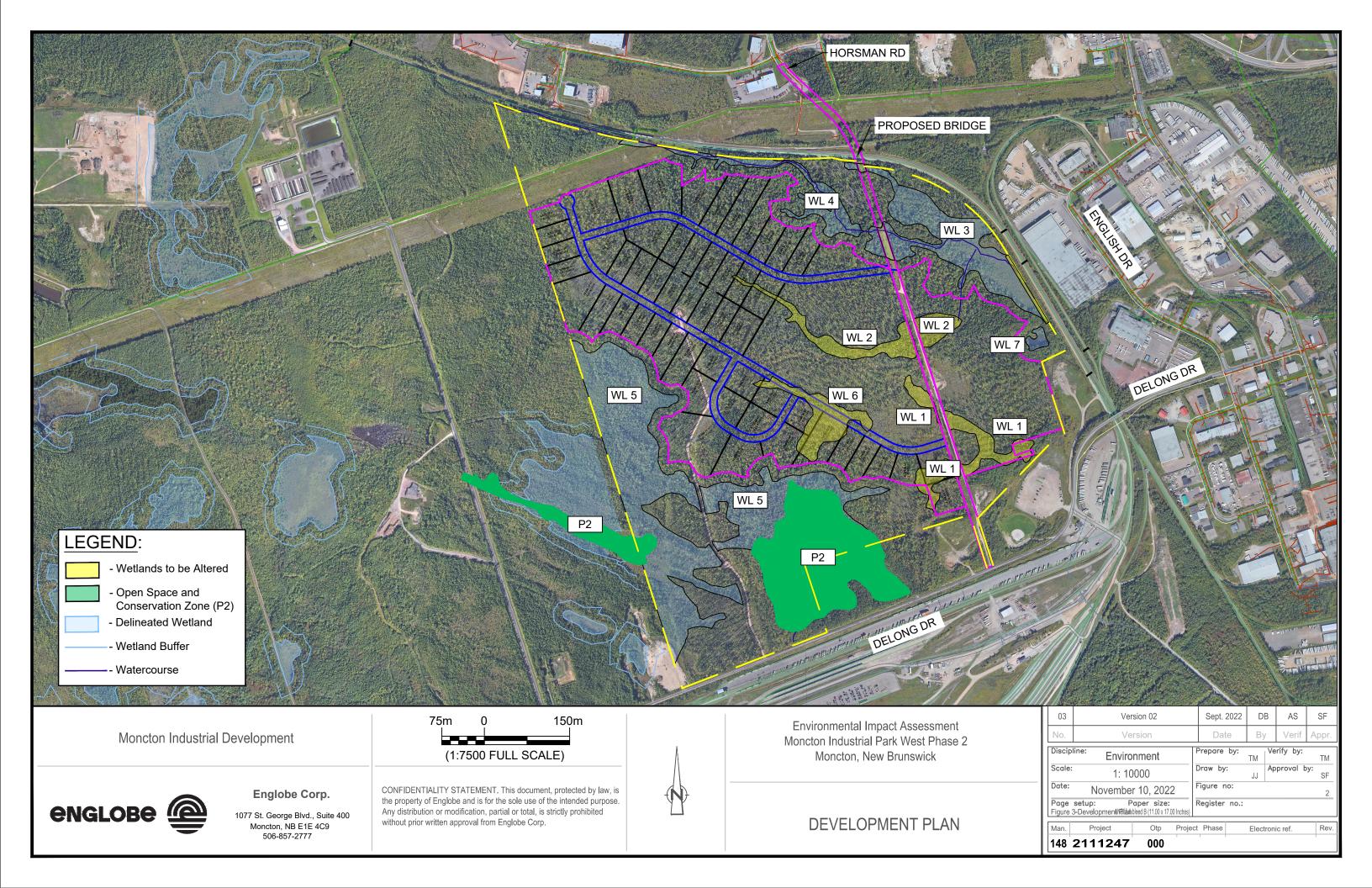
Plate C-3

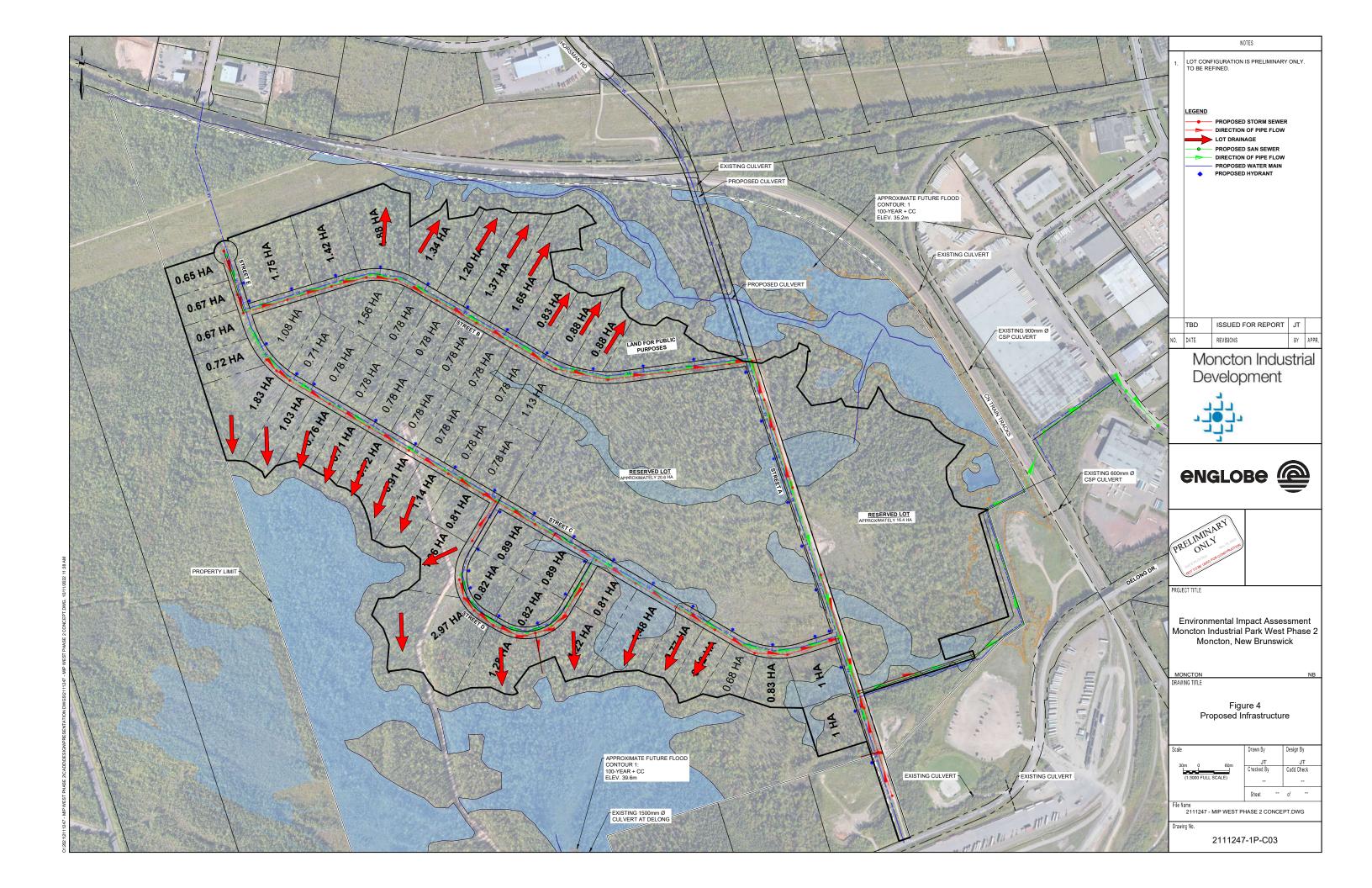

2021 - Google Earth Imagery MIP West Phase 2 Development (PID Nos. 01023076 and 70518634), Moncton NB


Plate C-4

Appendix B Figures: Figure 1 - Overall Location Plan Figure 2 - Site Area and Surrounding Land Use Figure 3 - Development Area and Delineated Wetlands Figure 4 - Proposed Infrastructure

englobe


Englobe Corp.


1077 St. George Blvd., Suite 400 Moncton, NB E1E 4C9 506-857-2777 CONFIDENTIALITY STATEMENT. This document, protected by law, is the property of Englobe and is for the sole use of the intended purpose. Any distribution or modification, partial or total, is strictly prohibited without prior written approval from Englobe Corp.

SITE PLAN

	Town I	THE STATE OF THE S	1 4/1/				
02	Ver	Sept. 20	022	DB	AS	SF	
No.	Ve	rsion	Date		Ву	Verif	Appr.
Discipl	line: Enviro	nment	Prepare t		TM Ve	rify by:	TM
Scale:	1: 10	0000	Draw by:		JJ Ap	proval b	y: SF
Date:	Novembe	r 10, 2022	Figure no	:			2
Page setup: Paper size: Register no.: Figure 2 - Site Plan ANSI full bleed B (11.00 x 17.00 Inches)							
Man.	Project	Otp Projec	ct Phase		Electron	ic ref.	Rev.
148	2111247	000	1 1				'

Appendix C Wetland Delineation Report - Hive Engineering

englobe

Wetland Delineation Report PIDs 01023076 and 70518624

Moncton, New Brunswick

Prepared for:

Moncton Industrial Development

655 Main Street Moncton, New Brunswick E1C 1E8

Project: NB22.03.093

June 2, 2022

Hive Engineering Limited 29 Victoria Street, Unit 102 Moncton, New Brunswick, E1C 9J6 506.386.4897 www.hiveeng.ca

June 2, 2022

Project: NB22.03.083

Moncton Industrial Development

655 Main Street Moncton, New Brunswick E1C 1E8

Attention: Pierre Dupuis, General Manager

Re: Wetland Delineation Report

PIDs 01023076 & 70518624, Moncton, New Brunswick

At your request, Hive Engineering Limited in conjunction with Boreal Environmental has prepared the following wetland delineation report for Moncton Industrial Development (MID) for the properties identified as PIDs 01023076 & 70518624 located in Moncton, New Brunswick. Our conclusions and recommendations are presented in the following report.

Do not hesitate to contact the undersigned with any questions regarding the information presented herein.

Sincerely,

Andrea Kalafut, M.Sc.E., P.Eng.

President and Senior Environmental Engineer

Hive Engineering Limited

Derrick Mitchell, R.P.F.

Recognized Wetland Delineator

Ecologist, Boreal Environmental

TABLE OF CONTENTS

1.0	Introdu	ıction	1
2.0	Regula	tory Framework	1
3.0	Wetlan	d Delineation Methodology	1
3	.1 Veg	etation	2
3	.2 Soil	s	3
3	.3 Hyd	Irology	3
4.0	Wetlan	d Delineation Results	3
4	.1 Ger	neral Site Conditions	3
4	.2 Det	ailed Wetland Description	4
	4.2.1	Wetland Data Point Conditions for WL1	4
	4.2.2	Upland Data Point Conditions for WL1	5
	4.2.3	Wetland Data Point Conditions for WL2	5
	4.2.4	Upland Data Point Conditions for WL2	5
	4.2.5	Wetland Data Point Conditions for WL3	6
	4.2.6	Upland Data Point Conditions for WL3	6
	4.2.7	Wetland Data Point Conditions for WL4	6
	4.2.8	Upland Data Point Conditions for WL4	6
	4.2.9	Wetland Data Point Conditions for WL5	7
	4.2.10	Upland Data Point Conditions for WL5	7
	4.2.11	Wetland Data Point Conditions for WL6	
	4.2.12	Upland Data Point Conditions for WL6	8
	4.2.13	Wetland Conditions for WL7	8
5.0	Closure	2	8
6.0	Referei	nces	9

LIST OF APPENDICES

Appendix A Wetland Delineation Map

Appendix B Wetland Delineation Forms

Appendix C Site Photographs

1.0 INTRODUCTION

Hive Engineering Limited (Hive) was retained by Moncton Industrial Development (MID) to delineate wetlands on two properties identified in the New Brunswick Geographical Corporation's PID database as 01023076 and 70518624. The field component of the assessment was completed by Derrick Mitchell, R.F.P., a Recognized Wetland Delineator. The properties are located north of the CN Railyard in Moncton, New Brunswick (the Project Area). The wetland assessment was conducted to assist in understanding permitting and environmental assessment requirements for the development of the properties as part of an expansion to Moncton's industrial parks.

2.0 REGULATORY FRAMEWORK

Watercourses and wetlands are regulated in New Brunswick under the Watercourse and Wetland Alteration (WAWA) Regulation, New Brunswick Regulation 90-80 of the Clean Water Act. Any proposed alterations within a wetland or watercourse, or within 30 metres of the regulated features, requires a permit issued by the New Brunswick Department of Environment and Local Government (NBDELG).

Under current policy, any wetland greater than one hectare in size and/or contiguous with a watercourse is considered regulated; a delineation is typically required to verify the size of the wetland prior to issuing a permit. Wetland delineations are typically valid for a period of five years following completion of the field work.

Any project that impacts a wetland greater than two hectares in area may be required to register through the Environmental Impact Assessment Regulation, New Brunswick Regulation 87-83 of the New Brunswick Clean Environment Act (Schedule A, Item (v.) "all enterprises, activities, projects, structures, works or programs affecting two hectares or more of bog, march, swamp or other wetland").

3.0 WETLAND DELINEATION METHODOLOGY

Between October 9 and October 13, 2020, Derrick Mitchell, R.FP. identified and delineated wetlands on PIDs 01023076 and 70518624. The wetland delineation was conducted in accordance with the *Corps of Engineers Wetlands Delineation Manual* (2006) and Regional Supplement (2012). Wetland boundaries were delineated through paired point wetland analysis. A figure depicting the locations of the delineated wetlands is presented in Appendix A.

Wetland data were recorded on NBDELG-issued Wetland Delineation Data Sheets, which are presented in Appendix B. *Munsell Soil Color Charts* (Kollmorgen Instruments Co. 1990) were used to identify hydric soils within the survey area and the *Flora of New Brunswick* (Hinds 2000) was consulted for plant nomenclature and identification.

Wetlands were identified using the following criteria:

- The vegetation cover was a minimum of 50%;
- The majority of dominant vegetation species are wetland associated species;
- Hydrologic conditions exist that result in periods of flooding, ponding, or saturation during the growing season; and
- Hydric soils are present.

Data point locations were evaluated for vegetation, hydrology, and soil conditions to support a determination of wetland or non-wetland status. The location of boundary and data points were recorded using a Samsung Tab 8 field computer and the Qfield data collection application. The field computer was connected to a Garmin GLO GPS receiver with a stated accuracy of +/- 3 m.

3.1 Vegetation

The Corps of Engineers Wetlands Delineation Manual defines hydrophytic vegetation as the sum total of macrophytic plant life that occurs in areas where the frequency and duration of inundation or soil saturation produce permanent or periodically saturated soils of sufficient duration to exert a controlling influence on the plant species present. To classify an area as 'wetland,' hydrophytic vegetation should be the dominant plant type.

Two methods, the '50/20 rule' and the Prevalence Index were used to assess the dominance of hydric vegetation. Using the '50/20 rule', dominant plant species observed at each data point were classified according to their indicator status (probability of occurrence in wetlands). If the majority (greater than 50 percent) of the dominant vegetation within the assessment area were classified as obligate (OBL), facultative wetland (FACW), or facultative (FAC) (excluding FAC-), then the site was considered to be dominated by hydrophytic vegetation.

The Prevalence Index is a weighted-average of the wetland indicator status of all species in the sample (OBL=1, FACW=2, FAC=3, FACU=4, UPL=5). Calculated values less than or equal to three represent wetland or hydrophytic vegetation, and values greater than three represent upland vegetation.

3.2 Soils

Hydric soil is formed when it is saturated, flooded, or experiences ponding over an extended

period of time during the growing season, creating anaerobic conditions. Hydric soil indicators

include soil color (gleyed soils and soils with bright mottles and/or low matrix chroma), aquic or

preaquic moisture regime, reducing soil conditions, sulfidic material (odor), soils listed on hydric

soils list, iron and manganese concretions, organic soils (Histosols), histic epipedon, high organic

content in surface layer in sandy soils, and organic streaking in sandy soils.

At each data point, a soil pit was excavated and the soil was then examined for hydric soil

indicators. The matrix color and mottle color (if present) of the soil was determined using Munsell

Soil Color Charts. To establish whether or not a soil was hydric, hydric indicators were determined

using Fielded Indicators of the Hydric Soils in the United States, A Guide to Identifying and

Delineating Hydric Soils, Version 6.0 (USDA and NRCS 2006).

3.3 Hydrology

At each site, the presence of any hydrology indicators (primary and/or secondary) was recorded.

Primary indicators of wetland hydrology include but are not limited to: water marks; drift lines;

sediment deposition; drainage patterns; visual observation of saturated soils; and visual

observation of inundation.

In addition to the primary indicators, there is a variety of secondary wetland hydrology indicators.

Secondary indicators include but are not limited to: oxidized root channels in the upper 30 cm;

water-stained leaves; and local soil survey data. When no primary indicators of wetland

hydrology were observed at a data point, two or more secondary indicators were used to confirm

wetland hydrology.

4.0 WETLAND DELINEATION RESULTS

The following sections describe the general site conditions encountered during the survey as well

as a detailed description of the wetlands identified.

4.1 General Site Conditions

Most of the upland within the Project area has recently been clearcut and was covered in logging

slash. Some partial harvesting has taken place in the wetlands; however, field observations

suggest that the ground was likely too wet for heavy machinery to track through these areas. In

the areas where partial harvesting of wetland had taken place, rutting was observed.

hive ENGINEERING

Wetland Delineation Report PIDs 01023076 & 70518624, Moncton, New Brunswick Project: NB22.03.083 (June 2, 2022)

2

A total of seven of wetlands were identified on-site; several of the wetlands have been bisected by forest access roads.

Wetland 1 has been altered by the presence of the forest access road; therefore, we have classified the wetland into three sub-areas (wetlands 1a, 1b and 1c); these areas are hydrologically connected by culverts located underneath an existing forest access road. Wetlands 2 (sub-areas 2a and 2b) and 5 (sub-areas 5a and 5b) are also separated by forest access roads, but hydrologically connected by culverts. The Figure presented in Appendix A provides the locations of the wetlands and forest access roads. Table 1 summarizes delineated wetlands by type, size, and watershed association.

Table 1: Summary of Wetlands Delineated On-Site (October 2020)

Wetland ID	Area (ha)	Wetland Type*	Watercourse	Associated Watershed
WL 1a, b, c	3.0	Tall shrub swamp	No	Jonathon Creek
WL 2a, b	3.1	Mixed forest swamp	Yes	Jonathon Creek
WL3	7.7	Graminoid basin swamp	Yes	Jonathon Creek
WL 4	2.7	Deciduous riparian swamp	Yes	Jonathon Creek
WL 5a, b	29.2	Coniferous bog/deciduous swamp complex	Yes	Michaels Creek
WL 6	2.8	Mixed forest swamp	No	Michaels Creek
WL 7	0.32	Man-made pond	No	Jonathon Creek

^{*}Canadian Wetland Classification System (CWCS 1997)

Two watercourses and several drainage swales were encountered during the survey. The largest watercourse (including a local seasonal tributary) is an unnamed tributary to Jonathon Creek. The tributary discharges to Jonathan Creek approximately 1 kilometre northwest of the property boundary. The other watercourse encountered on-site is an unnamed tributary to Michaels Creek; the tributary discharges to Michaels Creek at a distance of approximately 600 metres south of the property boundary.

4.2 **Detailed Wetland Description**

4.2.1 Wetland Data Point Conditions for WL1

The tree stratum of WL1 was dominated by mature red maple (*Acer rubrum*) and trembling aspen (*Populus tremuloides*), while the shrub species stratum was dominated by speckled alder (*Alnus incana*). Other shrub species within WL1 included red maple (*Acer rubrum*) and mountain holly (*Nemopanthus mucronatus*), but they were only a minor component of the stratum.

Blue-joint reedgrass (*Calamagrostis canadensis*) was the dominant species in the herbaceous stratum.

Wetland hydrology indicators within WL1 included water-stained leaves and ground saturation. Wetland soils consisted of a 40 cm layer of depleted silt/sand matrix under 2 cm of organics.

4.2.2 Upland Data Point Conditions for WL1

WL1 upland data point was located on a gentle slope. It was dominated by mature mixed forest dominated by red maple and balsam fir (*Abies balsamea*). The shrub stratum was dominated by trembling aspen and wild raisin (*Viburnum nudum*). The herbaceous stratum was dominated by bunchberry (*Cornus canadensis*) and bracken fern (*Pteridium aquilinum*). Other herbaceous species within WL1 were lowbush blueberry (*Vaccinium angustifolium*) and common wintergreen (*Chimaphila umbellata*).

No hydrological indicators were present. A soil pit was excavated to a depth of 40 cm revealing 8 cm of organics over 32 cm of sand textured soil. There were no redoximorphic features observed within the soil layer.

4.2.3 Wetland Data Point Conditions for WL2

The WL2 tree stratum was dominated by red maple and balsam fir. The shrub species stratum was dominated by speckled alder and balsam fir. Other shrub species within WL2 were heart-leaved paper birch (*Betula papyrifera var. cordifolia*), but they were only a minor component of the stratum. The herbaceous stratum was dominated by sensitive fern (*Onoclea sensibilis*), fowl mana grass (*Glyceria striata*), and dwarf red raspberry (*Rubus pubescens*). Other herbaceous species present were velvetleaf blueberry (*Vaccinium myrtilloides*) and evergreen woodfern (*Dryopteris intermedia*).

Wetland hydrology indicators included for WL2 included water-stained leaves and ground saturation. Wetland soils consisted of a 24 cm of depleted mucky silt over 15 cm depleted silt matrix.

4.2.4 Upland Data Point Conditions for WL2

Contributing upland areas for WL2 and WL1 are the same, therefore one upland data point was taken for both WL 1 and WL 2 data points. Refer to WL1 upland data point section for details.

4.2.5 Wetland Data Point Conditions for WL3

The tree stratum of WL3 was dominated by red maple (Acer rubrum), while the well-developed

shrub stratum was dominated by speckled alder. It also contained gray birch (Betula populifolia),

meadow-sweet (Spiraea alba), pussy willow (Salix discolor), red raspberry (Rubus idaeus),

heart-leaved paper birch, and rhodora (*Rhododendron canadense*). The herbaceous stratum was

dominated by blue-joint reedgrass and a nodding sedge (Carex gynandra). Other herbaceous

plants in the plot were fowl manna-grass, crested shield fern (Dryopteris cristata), dwarf red

raspberry, and cinnamon fern (Osmunda cinnamomea).

Wetland hydrology indicators within WL3 included water-stained leaves and ground saturation.

Wetland soils consisted of a thin (4 cm) organic layer over three layers of depleted silt matrix,

totalling 39 cm in depth with the lowest layer containing redoximorphic features.

4.2.6 Upland Data Point Conditions for WL3

WL3 upland data point was located on a slope leading down to an old beaver basin swamp. It

was dominated by mature mixed forest dominated by red maple and balsam fir. The tree stratum

plot also contained heart-leaved paper birch and trembling aspen. The shrub stratum was

dominated by trembling aspen, with wild raisin (Viburnum nudum) and beaked hazelnut

(Corylus cornuta) making up a small amount of understory. The herbaceous strata were

dominated by bunchberry and bristly dewberry (Rubus hispidus).

No hydrological indicators were present. A soil pit was excavated to a depth of 40 cm revealing

5 cm of organics over 40 cm of an undeleted sand/silt textured mineral substrate. There were no

redoximorphic features observed.

4.2.7 Wetland Data Point Conditions for WL4

The tree stratum of WL4 was dominated by mature red maple while the shrub species stratum

was dominated by speckled alder and winter berry. The herbaceous stratum was dominated by

cinnamon fern, sensitive fern, and dwarf red raspberry.

Wetland hydrology within WL4 was apparent with water-stained leaves and ground saturation.

Wetland soils consisted of a two layers of depleted silt matrix, totalling 40 cm depth.

4.2.8 Upland Data Point Conditions for WL4

WL4 upland data point was located on a slope leading down to a mature deciduous riparian

swamp. It was a partially cut mixed forest dominated by red maple and balsam fir. The shrub

hive ENGINEERING

Wetland Delineation Report PIDs 01023076 & 70518624, Moncton, New Brunswick Project: NB22.03.083 (June 2, 2022)

stratum was dominated by trembling aspen, red maple and balsam fir. The shrub stratum also contained lambkill (*Kalmia angustifolia*). The herbaceous strata were dominated by bunchberry and evergreen woodfern.

No hydrological indicators were present. A soil pit was excavated to a depth of 43 cm revealing 12 cm of organics over 28 cm of sand/silt textured mineral substrate. There were no redoximorphic features observed at this location.

4.2.9 Wetland Data Point Conditions for WL5

The tree stratum of WL5 was dominated by black spruce (*Picea mariana*) while the shrub species stratum was dominated by rhodora (*Rhododendron canadense*). Other shrubs in the plot included lambkill (*Kalmia angustifolia*), late lowbush blueberry (*Vaccinium angustifolium*) and mountain holly (*Nemopanthus mucronatus*). The herbaceous stratum was solely dominated by tussock sedge (*Carex stricta*).

Wetland hydrology within WL5 was apparent with high water table and saturated substrate. Wetland soils consisted of a deep histosol.

4.2.10 Upland Data Point Conditions for WL5

WL5 upland data point was located on a slope leading down to a mature coniferous bog. It was a mature buffered mixed forest dominated by balsam fir, black spruce, gray birch, and trembling aspen. The shrub stratum was dominated by lambkill, also containing, trembling aspen, and gray birch. The herbaceous strata were dominated by bracken fern (*Pteridium aquilinum*) and trailing arbutus (*Epigaea repens*), also containing bunchberry and dewdrop (*Rubus repens*).

No hydrological indicators were present. A soil pit was excavated to a depth of 40 cm revealing 10 cm of organics over 30 cm of sand/silt textured mineral substrate. There were no redoximorphic features observed at this location.

4.2.11 Wetland Data Point Conditions for WL6

The WL6 tree stratum was dominated by mature red maple and balsam fir. The shrub species stratum was dominated by speckled alder and balsam fir. The dominant species in the herbaceous stratum sensitive fern, blue-joint reedgrass, fowl mana grass and dwarf red raspberry.

Wetland hydrology indicators included for WL6 included water-stained leaves and ground saturation. Wetland soils consisted of a 3 cm of organics over 39 cm of depleted silt matrix.

4.2.12 Upland Data Point Conditions for WL6

Contributing upland areas for WL1 are the same as WL6. Refer to WL1 upland data point for upland information pertaining to WL6.

4.2.13 Wetland Conditions for WL7

WL7 was delineated because it was observed on GeoNB (i.e., a provincially mapped wetland); however, it is only 0.32 ha in size and it is not contiguous with a watercourse. It is unclear why this wetland is included in the provincial wetland inventory as it does not meet the criteria to be a regulated wetland feature. WL7 is a man-made wetland that formed in an exhausted or abandon aggregate pit (see Appendix C).

5.0 **CLOSURE**

The assessment has identified seven wetlands on-site; three of which are connected hydrologically by culverts traversing underneath existing forest access roads.

Six of the seven wetlands are greater than 2 hectares in area. Any work in or within 30 metres of these wetlands will require a permit (WAWA) issued by the NBDELG. Furthermore, any disturbance to these wetlands is potentially subject to an Environmental Impact Assessment under the Clean Environment Act. This document should be shared with regulatory authorities in order to understand of the assessment and permitting requirements associated with development of the property.

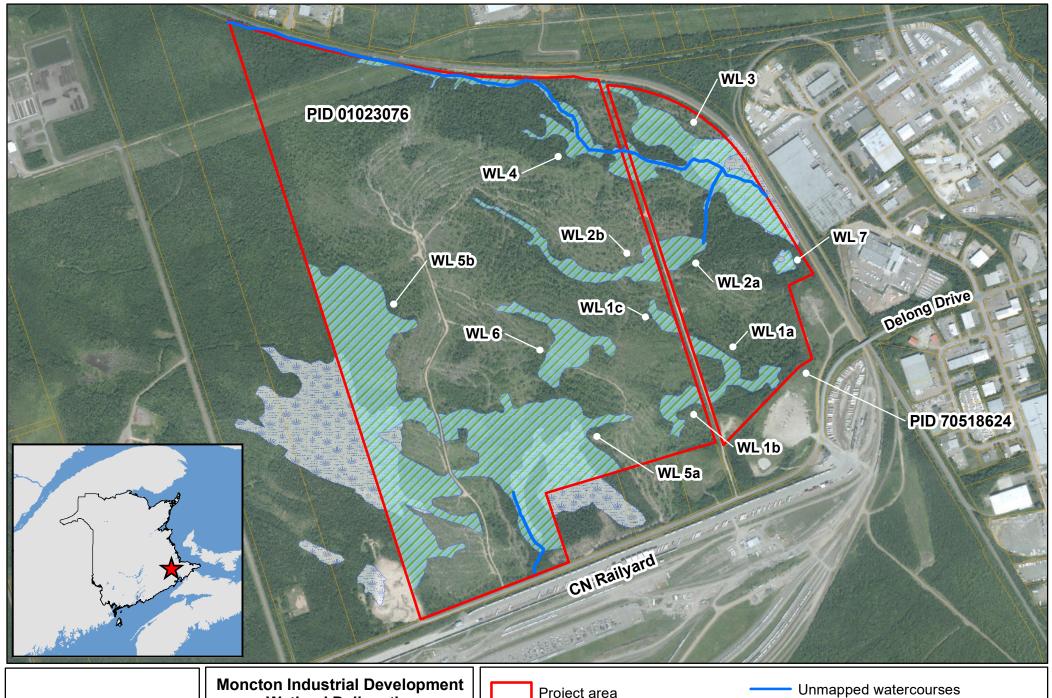
6.0 **REFERENCES**

Canadian Wetland Classification System (2nd Ed.). (1997). University of Waterloo, Waterloo, ON.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. U. S. Army Engineer Waterways Experiment Station. Vicksburg, Mississippi.

Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region.

Fish and Wildlife Service. 1988. National List of Plant Species that Occur in Wetlands, Region 1.


Hinds, H.R. 2000. Flora of New Brunswick, 2nd Ed., University of New Brunswick Press, Fredericton, NB.

Kollmorgen Instruments Company. 1990. Munsell Soil Color Charts. Kollmorgen Corporation. Baltimore, Maryland.

USDA NRCS. 2018. Field Indicators of Hydric Soils in the United States A Guide for Identifying and Delineating Hydric Soils, Version 8.2.

APPENDIX A Wetland Delineation Map hive engineering

Moncton Industrial Development Wetland Delineation Moncton, NB

May 7, 2022

Project area

Property boundaries

Delineated wetlands

Provincially mapped wetlands

APPENDIX B Wetland Delineation Forms hive engineering

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

Municipality	y/County: Westmorland	d County Sampling Date: Oct 13, 2020
	Sampling Point: <u>V</u>	VL1 wet
filiation: Boreal Envir	onmental Landform ((hillslope, terrace, etc.): NA
Slope (%): <u>0</u>	X coord: 262732	9.6 Y coord _7455146.0
		and Type: Tall Shrub Swamp
		(If no, explain in Remarks.)
		"Normal Circumstances" present? Yes X No
map showing	sampling point lo	ocations, transects, important features, etc.
. No	Is the Sampled	d Area
	within a Wetla	nd? Yes <u>X</u> No
No	If yes, optional	Wetland Site ID:
		_
plants.		
		Dominance Test worksheet:
· <u></u>		Number of Dominant Species
		That Are OBL, FACW, or FAC: 4 (A)
		Total Number of Dominant
		Species Across All Strata: 4 (B)
		Percent of Dominant Species
		That Are OBL, FACW, or FAC: 100 (A/B)
	= Lotal Cover	Prevalence Index worksheet:
	YES FACW	Total % Cover of: Multiply by:
	· · · · · · · · · · · · · · · · · · ·	OBL species x 1 =
		FACW species 130 x 2 = 260
		FAC species <u>25</u> x 3 = <u>75</u>
		FACU species x 4 =
		UPL species x 5 =
	- 0	Column Totals: <u>155</u> (A) <u>335</u> (B)
<u>70</u>	= Lotal Cover	Prevalence Index = B/A = 2.16
70	YES FACW	
		Hydrophytic Vegetation Indicators:
		Rapid Test for Hydrophytic Vegetation
		X Dominance Test is >50%
		X Prevalence Index is ≤3.0¹
		Morphological Adaptations ¹ (Provide supporting
		data in Remarks or on a separate sheet)
		Problematic Hydrophytic Vegetation¹ (Explain)
		Indicators of hydric soil and water discourse
<u>75</u>		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
)		
		Hydrophytic
		Vegetation
		Present? Yes X No
	Filiation: Boreal Envir Slope (%): 0 oil Map Unit Name/Ty I for this time of year significantly naturally pro map showing No No To no 10 10 10 5 70 70 70 5 75 75 75	Sampling Point: _V ilitation: _Boreal Environmental _ Landform (

SOIL Sampling Point: WL1 wet

Depth	Matrix		Redox Features					
cm) Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	<u>Texture</u>	Remarks
2	- 1- 1-						Organic	
40+ <u>7.5YF</u>	R/3/2	<u>95</u>	5YR/5/8	5			Silt/Sand	
			-			-		
		_						
			-					
Type: C=Concentr	ation, D=De	pletion, RN	M=Reduced Matrix,	CS=Cover	ed or Coate	ed Sand G	rains. ² Lo	cation: PL=Pore Lining, M=Matrix.
lydric Soil Indicate	ors:						Indicators	s for Problematic Hydric Soils ³ :
Histosol (A1)			Stripped M	, ,			Coas	t Prairie Redox (A16)
Histic Epipedon			Dark Surfa	. ,			5 c N	flucky Peat or Peat (S3)
Black Histic (A3			Polyvalue		` '		Iron-l	Manganese Masses (F12)
Hydrogen Sulfic			Thin Dark	•	•		Piedi	mont Floodplain Soils (F19)
Stratified Layers			Loamy Gle		(F2)		Red	Parent Material (F21)
Depleted Below		ce (A11)	X Depleted N	` ,				Shallow Dark Surface (F22)
Thick Dark Surf			Redox Dar		. ,		Othe	r (Explain in Remarks)
Sandy Mucky M			Depleted [
Sandy Gleyed N			Redox De	oressions ((F8)			
Sandy Redox (S	55)							
	-	-4:						
Restrictive Layer (i			vetland hydrology m	ust be pre	sent, unless	s disturbed	T probleman	C.
• `	ii observeu).						
Type: NA								
Depth (cm): NA		es present					Hydric Soi	I Present? Yes XNo
Depth (cm): NA		es present					Hydric Soi	I Present? Yes XNo
Depth (cm): NA	orphic featur	•					Hydric Soi	I Present? Yes XNo
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology	orphic featur	»:	uired; check all that	apply)				
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology	orphic featur	»:		apply)			Secondar	I Present? Yes XNo
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (i	orphic featur y Indicators minimum of	»:	uired; check all that		ives (B9)		Secondar	y Indicators (minimum of two required)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (i	y Indicators minimum of	»:	uired; check all that	tained Lea			Secondar S	y Indicators (minimum of two required) Surface Soil Cracks (B6)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (ii Surface Water (High Water Tab	y Indicators minimum of	»:	uired; check all that X Water-S Aquatic	tained Lea Fauna (B1	3)		Secondar Secondar	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (High Water Tab X Saturation (A3)	y Indicators minimum of (A1)	»:	uired; check all that X Water-S Aquatic Marl De	tained Lea Fauna (B1 posits (B1	3) 5)		SecondarSCN	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (i Surface Water (i High Water Tab X Saturation (A3) Water Marks (B	y Indicators minimum of (A1) ble (A2)	»:	uired; check all that X Water-S Aquatic Marl De Hydroge	tained Lea Fauna (B1 posits (B1 en Sulfide (3) 5) Odor (C1)	ing Posts	SecondarSCN	y Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (ii Surface Water (ii High Water Tab X Saturation (A3) Water Marks (B Sediment Depo	y Indicators minimum of (A1) ble (A2) sits (B2)	»:	uired; check all that X Water-S Aquatic Marl De Hydroge Oxidized	itained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosph	3) 5) Odor (C1) neres on Liv	-	Secondar S C C (C3)S	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (ii Surface Water (ii) High Water Tab X Saturation (A3) Water Marks (B Sediment Depo Drift Deposits (B	y Indicators minimum of (A1) ble (A2) sits (B2) sits (B2)	»:	uired; check all that X Water-S Aquatic Marl De Hydroge Oxidizee	tained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosph	3) Odor (C1) neres on Liv ced Iron (C ²	4)	Secondar S D	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Staturation Visible on Aerial Imagery (C5) Staturated or Stressed Plants (D1)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (r High Water Tab X Saturation (A3) Water Marks (B Sediment Deporation of the poor	y Indicators minimum of (A1) ole (A2) sits (B2) a3) ust (B4)	»:	<u>X</u> Water-S Aquatic Marl De Hydroge Oxidized Recent	tained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosph e of Reduc	3) 5) Odor (C1) neres on Liv ced Iron (C ² ction in Tille	4)	Secondar S C N C C (C3) S S S S S	y Indicators (minimum of two required) Surface Soil Cracks (B6) Prainage Patterns (B10) Moss Trim Lines (B16) Pry-Season Water Table (C2) Crayfish Burrows (C8) Staturation Visible on Aerial Imagery (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Pepth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (remark) Surface Water (remark) High Water Tab X Saturation (A3) Water Marks (B Sediment Depo Drift Deposits (E Algal Mat or Cru Iron Deposits (E	y Indicators minimum of (A1) ole (A2) sits (B2) a3) ust (B4)	one is requ	<u>X</u> Water-S Aquatic Marl De Hydroge Oxidizee Presence Recent Thin Mu	tained Lea Fauna (B1 posits (B1! en Sulfide (d Rhizosph e of Reduc lron Reduc ck Surface	3) 5) Odor (C1) neres on Liv ced Iron (C4 ction in Tille	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (r High Water Tab X Saturation (A3) Water Marks (B Sediment Deporation of the poor	y Indicators minimum of (A1) ole (A2) sits (B2) a3) ust (B4)	one is requ	<u>X</u> Water-S Aquatic Marl De Hydroge Oxidized Presence Recent Thin Mu	tained Lea Fauna (B1 posits (B1! en Sulfide (d Rhizosph e of Reduc lron Reduc ck Surface	3) 5) Odor (C1) neres on Liv ced Iron (C4 ction in Tille	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required) Surface Soil Cracks (B6) Prainage Patterns (B10) Moss Trim Lines (B16) Pry-Season Water Table (C2) Crayfish Burrows (C8) Staturation Visible on Aerial Imagery (C5) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Pepth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (no prima	y Indicators minimum of (A1) ble (A2) bl) sits (B2) 33) ust (B4) 35) ble on Aerial	one is requ	x Water-S Aquatic Marl De Hydroge Oxidizee Presenc Recent Thin Mu	tained Lea Fauna (B1 posits (B1! en Sulfide (d Rhizosph e of Reduc lron Reduc ck Surface	3) 5) Odor (C1) neres on Liv ced Iron (C4 ction in Tille	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required burface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Esturation Visible on Aerial Imagery (Citother or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Pepth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (ii Surface Water (iii) High Water Tab X Saturation (A3) Water Marks (B Sediment Depo Drift Deposits (E Algal Mat or Cru Iron Deposits (E Inundation Visit	y Indicators minimum of (A1) ble (A2) bl) sits (B2) 33) ust (B4) 35) ble on Aerial	one is requ	x Water-S Aquatic Marl De Hydroge Oxidizee Presenc Recent Thin Mu	tained Lea Fauna (B1 posits (B1! en Sulfide (d Rhizosph e of Reduc lron Reduc ck Surface	3) 5) Odor (C1) neres on Liv ced Iron (C4 ction in Tille	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C4) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (i Surface Water (i High Water Tab X Saturation (A3) Water Marks (B Sediment Depoil Depoil (B Algal Mat or Cru Iron Deposits (B Inundation Visib Sparsely Vegetion	y Indicators minimum of (A1) ole (A2) sits (B2) a3) ust (B4) a5) ole on Aerial ated Concar	one is required. Imagery (Eve Surface	X Water-S Aquatic Marl De Hydroge Oxidized Presend Recent Thin Mu B7) (B8)	tained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosph e of Reduc fron Reduc ck Surface explain in F	3) 5) Odor (C1) heres on Liv ced Iron (C4 ction in Tille e (C7) Remarks)	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C4) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Pepth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (ii Surface Water (iii) High Water Tab X Saturation (A3) Water Marks (B Sediment Depo Drift Deposits (E Algal Mat or Cru Iron Deposits (E Inundation Visit	y Indicators minimum of (A1) ole (A2) sits (B2) a3) ust (B4) a5) ole on Aerial ated Concar	one is required. Imagery (Eve Surface	x Water-S Aquatic Marl De Hydroge Oxidizee Presenc Recent Thin Mu	tained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosph e of Reduc fron Reduc ck Surface explain in F	3) 5) Odor (C1) heres on Liv ced Iron (C4 ction in Tille e (C7) Remarks)	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (r High Water Tab X Saturation (A3) Water Marks (B Sediment Deporation Deporation Deposits (E) Algal Mat or Cru Iron Deposits (E) Inundation Visib Sparsely Vegeta	y Indicators minimum of (A1) sits (B2) sits (B2) sust (B4) sole on Aerial ated Concav	one is required in the second	Lired; check all that X Water-S Aquatic Marl De Hydroge Oxidizee Presenc Recent Thin Mu B7) Other (E	tained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosph e of Reduc ck Surface explain in F	3) 5) Odor (C1) heres on Liv ced Iron (C ² ction in Tille c (C7) Remarks)	4)	Secondar SCNC (C3)SSS	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (r High Water Tab X Saturation (A3) Water Marks (Br Sediment Deporation Drift Deposits (Fr Algal Mat or Cro Iron Deposits (Fr Inundation Visible Sparsely Veget: Veter Table Present (aturation Present)	y Indicators minimum of (A1) ble (A2) sits (B2) sits (B4) sits (B4) ated Concav c: ent?	i: one is required in the second in the seco	X Water-S Aquatic Marl De Hydroge Oxidized Presend Recent Thin Mu B7) (B8)	tained Lea Fauna (B1 posits (B1 en Sulfide (d Rhizosphe e of Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction Reduction).	3) 5) Odor (C1) heres on Liv ced Iron (C4 ction in Tiller (C7) Remarks)	d Soils (Ce	Secondar Secondar S C C C C C C C C C C C C	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C4) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (r High Water Tab X Saturation (A3) Water Marks (Br Sediment Deporation (B1) Algal Mat or Cru Iron Deposits (B1) Inundation Visib Sparsely Vegeta Vater Table Present auturation Present? apillary fringe)	y Indicators minimum of (A1) sits (B2) sits (B2) sits (B4) sits (B4) ated Concav site	one is required. Imagery (Eve Surface Yes Yes	X Water-S Aquatic Marl De Hydroge Oxidized Presend Recent Thin Mu 37) Other (E	tained Lea Fauna (B1 posits (B1) en Sulfide (d Rhizosph e of Reduc lron Reduc ck Surface explain in F	3) 5) Odor (C1) neres on Liv ced Iron (C4 ction in Tille e (C7) Remarks)	d Soils (Ce	Secondar	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Staturation Visible on Aerial Imagery (C8) Staturation Visible on Aerial Imagery (C8) Staturation (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Depth (cm): NA Remarks: Redoximo YDROLOGY Vetland Hydrology Primary Indicators (r Surface Water (r High Water Tab X Saturation (A3) Water Marks (Br Sediment Deporation (B1) Algal Mat or Cru Iron Deposits (B1) Inundation Visib Sparsely Vegeta Vater Table Present auturation Present? apillary fringe)	y Indicators minimum of (A1) sits (B2) sits (B2) sits (B4) sits (B4) ated Concav site	one is required. Imagery (Eve Surface Yes Yes	Lired; check all that X Water-S Aquatic Marl De Hydroge Oxidized Presenc Recent Thin Mu 37) Other (E	tained Lea Fauna (B1 posits (B1) en Sulfide (d Rhizosph e of Reduc lron Reduc ck Surface explain in F	3) 5) Odor (C1) neres on Liv ced Iron (C4 ction in Tille e (C7) Remarks)	d Soils (Ce	Secondar	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Staturation Visible on Aerial Imagery (C8) Staturation Visible on Aerial Imagery (C8) Staturation (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

roject/Site: Industrial Park Expansi	on	Municipality	//County: \	Westmorland	I County	Samplir	ng Date: Oc	t 13 - 2020
pplicant/Owner <u>: MID</u>						Sampling	Point: WL	1 & WL2 u
nvestigator(s): Derrick Mitchell and	Ryan Power Affilia	tion: Boreal Envir	onmental	Landform ((hillslope, terrace, etc	:.): <u>NA</u>		
ocal relief (concave, convex, none)	: <u>None</u> Slo	ppe (%): <u>2</u>	_X coord:	2627332.5	Y co	ord <u>7455157.</u>	5	
atum: NAD83 NBDS								
re climatic / hydrologic conditions o								
Are Vegetation, Soil		-						
Are Vegetation, Soil					eded, explain any ar			
SUMMARY OF FINDINGS	 Attach site m 	ap showing s	samplin	g point lo	cations, transe	cts, import	ant featui	res, etc.
Hydrophytic Vegetation Present?	Voc. V	No	ls t	he Sampled	Area			
Hydric Soil Present?		No			nd? Yes _	No <u>X</u>		
Wetland Hydrology Present?		No	lf v	es ontional \	Wetland Site ID:			
Remarks: (Explain alternative pro				cs, optional t	veliana olic ib.			
			,					
VEGETATION - Use scient	ific names of pla	ants.						
			Dominar	nt Indicator	Dominance Test v	vorksheet:		
Tree Stratum (Plot size: 15)	% Cover	Species'	? Status	Number of Domina			
1. Betula populifolia		10		FAC	That Are OBL, FAC		_ 5	(A)
2. Populus tremuloides		20	YES	FAC	Total Number of D	ominant		
3. Abies balsamea		30	YES	FAC	Species Across All		6	(B)
4. Acer rubrum		5		FAC	Percent of Domina	nt Species		
5. Betula papyrifera var. cordifoli	ia	5		FACU	That Are OBL, FAC		83	(A/B)
		70	= Total Co	over	Dravelance Index			
Sapling/Shrub Stratum (Plot size		_ ,			Prevalence Index		Maritim Ira har	
					Total % Cover OBL species	OT: X		<u>:</u>
2. Populus tremuloides					FACW species			
· · ·				<u>FAC</u>		7 x		
4					FACU species 5			
5					UPL species 6_			
6					Column Totals: 13			
		50	= Total Co	over		.,	,	(=)
Herb Stratum (Plot size: 1)				Prevalence Index =	= B/A = <u>3.12</u>		
·			YES	<u>FAC</u>				
2. Chimaphila umbellata		1		<u>UPL</u>	Uvdranhytia Van	totion Indian		
3. <u>Pteridium aquilinum</u>		5	YES	<u>UPL</u>	Hydrophytic Vege			
4. Vaccinium angustifolium		2		<u>FAC</u>	Rapid Test for	, , ,	egetation	
5.					X Dominance Te			
6.		-			Morphological		'Drovido ouo	norting
7					data in Remar			
8					Problematic H	·	•	
9							•	. ,
10					¹ Indicators of hydri			gy must
Woody Vine Stratum (Plot size:_	,	<u>18</u>	= Total Co	over	be present, unless	disturbed or p	roblematic.	
1. No woody vines					Hydrophytic			
2					Vegetation Present?	Yes X	No	
		138	= Total Co					

SOIL Sampling Point: WL1 & WL2 up

Profile Description: (Describe to the de	pth needed to docur	ment the	maioator	or commi	tile absence	of indicators.)
Depth Matrix	Redox Features				_	
(cm) Color (moist) %	Color (moist)	%	Type ¹	Loc ²	<u>Texture</u>	Remarks
8 7.5YR/5/8	· -				Organic Sandy	·
32 <u>7.5YR/5/8</u>					Sandy	
	<u> </u>					
					-	
	-					
	<u> </u>					
¹ Type: C=Concentration, D=Depletion, RN	M=Reduced Matrix, C	S=Cove	ed or Coate	ed Sand Gr	rains. ² Lo	ocation: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:					Indicator	s for Problematic Hydric Soils³:
Histosol (A1)	Stripped Ma	, ,			Coa	st Prairie Redox (A16)
Histic Epipedon (A2)	Dark Surfac	` '				flucky Peat or Peat (S3)
Black Histic (A3)	Polyvalue B		` '			Manganese Masses (F12)
Hydrogen Sulfide (A4)	Thin Dark S	,	,			mont Floodplain Soils (F19)
Stratified Layers (A5)Depleted Below Dark Surface (A11)	Loamy Gley		((F2)			Parent Material (F21)
Thick Dark Surface (A12)	Depleted Ma Redox Dark	. ,	(EG)			Shallow Dark Surface (F22)
Sandy Mucky Mineral (S1)	Redox Dark Depleted Da		` '		Otne	r (Explain in Remarks)
Sandy Gleyed Matrix (S4)	Redox Depi					
Sandy Redox (S5)		000.01.0	(. 5)			
. , ,						
³ Indicators of hydrophytic vegetation and v	vetland hydrology mu	st be pre	sent, unles	s disturbed	l or problemat	ic.
Restrictive Layer (if observed):						
Type: NA						
Depth (cm): NA					Hydric So	I Present? YesNo X
Remarks:						
HYDROLOGY						
HYDROLOGY Wetland Hydrology Indicators:						
	uired; check all that a	pply)			Seconda	ry Indicators (minimum of two required)
Wetland Hydrology Indicators:	uired; check all that a	pply)				· · · · · · · · · · · · · · · · · · ·
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required)			aves (B9)			ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requestion	Water-Sta	ained Lea			 	Surface Soil Cracks (B6) Drainage Patterns (B10)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested) Surface Water (A1) High Water Table (A2)	Water-Sta	ained Lea auna (B	13)		 	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required.) Surface Water (A1) High Water Table (A2) Saturation (A3)	Water-Sta Aquatic F Marl Depo	ained Lea auna (Ba	13) 5)] 	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required: Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	Water-Sta Aquatic F Marl Depo Hydrogen	ained Lea auna (B' osits (B1 osits)	13) 5) Odor (C1)	ving Poots		Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	Water-Sta Aquatic F Marl Depo Hydrogen Oxidized	ained Lea auna (B ² osits (B1 i Sulfide Rhizospl	13) 5) Odor (C1) neres on Liv	•	(C3) (C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	Water-Sta Aquatic F Marl Depo Hydrogen Oxidized Presence	ained Lea auna (Brosits (B1 Sulfide Rhizospl	13) 5) Odor (C1) neres on Liv ced Iron (C	4)	(C3) (C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	Water-Sta Aquatic F Marl Depo Hydrogen Oxidized Presence Recent Ire	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille	4)	(C3) (C3) (C5)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	Water-Sta Aquatic F Marl Depo Hydrogen Oxidized Presence Recent Iro	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Reduck k Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille c (C7)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (1)	Water-Sta Aquatic F Aquatic F Marl Depo Hydrogen Oxidized Presence Recent Iro Thin Muc	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Reduck k Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille c (C7)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	Water-Sta Aquatic F Aquatic F Marl Depo Hydrogen Oxidized Presence Recent Iro Thin Muc	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Reduck k Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille c (C7)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Compared to Concave Surface)	Water-Sta Aquatic F Aquatic F Marl Depo Hydrogen Oxidized Presence Recent Iro Thin Muc	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Reduck k Surface	(3) Odor (C1) neres on Liv ced Iron (C ction in Tille c (C7)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Incomplete Sparsely Vegetated Concave Surface) Field Observations:	Water-Sta Aquatic F Aquatic F Marl Depo Hydrogen Oxidized Presence Recent In Thin Muci	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Redu k Surface plain in I	Odor (C1) Dodor (C1) Deres on Liv Ced Iron (C Ction in Tille E (C7) Remarks)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Incomplete Sparsely Vegetated Concave Surface) Field Observations: Surface Water Present? Yes	Water-Sta Aquatic F Aquatic F Marl Depo Hydrogen Oxidized Presence Recent In Thin Muci B7) Other (Ex	ained Lea auna (B' osits (B1 I Sulfide Rhizospl of Redu on Redu k Surface plain in F	Odor (C1) Dodor (C1) Deres on Liveced Iron (C Dotton in Tille De (C7) Remarks)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Primary Indicators (minimum of one is requested) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Sparsely Vegetated Concave Surface) Field Observations: Surface Water Present? Yes Water Table Present? Yes	Water-Sta Aquatic F Aquatic F Hydrogen Oxidized Presence Recent Ird Thin Muc B7) Other (Ex (B8) No Depth (color	ained Lea auna (B' osits (B1 I Sulfide Rhizospl of Redu on Reduc k Surface plain in I	Odor (C1) Odor (C1) neres on Liv ced Iron (C ction in Tille (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Image) Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes	Water-Sta Aquatic F Aquatic F Marl Depo Hydrogen Oxidized Presence Recent In Thin Muci B7) Other (Ex	ained Lea auna (B' osits (B1 I Sulfide Rhizospl of Redu on Reduc k Surface plain in I	Odor (C1) Odor (C1) neres on Liv ced Iron (C ction in Tille (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Compared to Sparsely Vegetated Concave Surface) Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes capillary fringe)	Water-Sta Aquatic F Aquatic F Marl Depriment Oxidized Presence Recent Ind Thin Muct B7) Other (Ext (B8) No X Depth (compared) No X Depth (compared)	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Redu k Surface plain in f	Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Compared to Sparsely Vegetated Concave Surface) Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes capillary fringe)	Water-Sta Aquatic F Aquatic F Marl Depriment Oxidized Presence Recent Ind Thin Muct B7) Other (Ext (B8) No X Depth (compared) No X Depth (compared)	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Redu k Surface plain in f	Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required. Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Insurance Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes capillary fringe) Describe Recorded Data (stream gauge, m.)	Water-Sta Aquatic F Aquatic F Marl Depriment Oxidized Presence Recent Ind Thin Muct B7) Other (Ext (B8) No X Depth (compared) No X Depth (compared)	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Redu k Surface plain in f	Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required.) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Image) Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes	Water-Sta Aquatic F Aquatic F Marl Depriment Oxidized Presence Recent Ind Thin Muct B7) Other (Ext (B8) No X Depth (compared) No X Depth (compared)	ained Lea auna (B' osits (B1 Sulfide Rhizospl of Redu on Redu k Surface plain in f	Odor (C1) neres on Liv ced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

roject/Site: Industrial Park Expansion	Municipalit	y/County: We	stmorland	d CountySamp	oling Date: Oct 13 - 2020
pplicant/Owner <u>: MID</u>		Sampling	Point: W	/L2 wet	
vestigator(s): Derrick Mitchell and Ryan Power A	filiation: Boreal Envir	onmental L	andform (hillslope, terrace, etc.): NA	
ocal relief (concave, convex, none): <u>Concave</u>	Slope (%):0	X coord	2627283	3.2 Y coord <u>7455385.1</u>	
atum: NAD83 NBDS S					
re climatic / hydrologic conditions on the site typic					
Are Vegetation, Soil, or Hydrology	-				
Are Vegetation, Soil, or Hydrology					
SUMMARY OF FINDINGS – Attach sit	e map showing	sampling	point lo	ocations, transects, impo	rtant features, etc
Hydrophytic Vegetation Present? Yes X	. No		Sampled		
	No		a Wetlai	nd? Yes X No	
Wetland Hydrology Present? Yes >			optional \	Wetland Site ID:	
Remarks: (Explain alternative procedures here of	r in a separate repor	t.)			
VEGETATION – Use scientific names o	f plants.				
T 0: (B) : (5)		Dominant I		Dominance Test worksheet:	
Tree Stratum (Plot size: 15	<u></u>	Species? S		Number of Dominant Species	7 (4)
1. Abies balsamea		YES		That Are OBL, FACW, or FAC:	7 (A)
Acer rubrum Betula papyrifera var. cordifolia		YES '		Total Number of Dominant	7 (5)
			-AC	Species Across All Strata:	(B)
4				Percent of Dominant Species	(4/5)
5		= Total Cove	r	That Are OBL, FACW, or FAC:	100 (A/B)
Sapling/Shrub Stratum (Plot size: 5	·	10141 0014	•	Prevalence Index worksheet	•
1. Alnus incana		YES	FACW	Total % Cover of:	Multiply by:
2. Abies balsamea	15	YES	FAC		x 1 =
3. <u>Ilex verticillata</u>	5		FACW+	FACW species 70	
4				FAC species 109	
5				FACU species	
6					x 5 =
	50	_= Total Cove	r	Column Totals: 179	_(A) <u>467</u> (B)
Herb Stratum (Plot size: 1)	<u> </u>			Prevalence Index = B/A = 2.6	·
1. Rubus pubescens	15	YES	FAC		
2. Onoclea sensibilis	_20	YES	FACW		
3. Glyceria striata	15	YES	FACW	Hydrophytic Vegetation India	
4. Vaccinium myrtilloides	2		FAC	Rapid Test for Hydrophytic	Vegetation
5. Dryopteris intermedia	2		FAC	X Dominance Test is >50%	
6.				X Prevalence Index is ≤3.0¹	
7				Morphological Adaptations data in Remarks or on a se	s' (Provide supporting eparate sheet)
8.				Problematic Hydrophytic V	. ,
9.				. robicinado riyaropriyao v	-3-mion (Explain)
10.				¹ Indicators of hydric soil and w	
		= Total Cove	•	be present, unless disturbed of	r problematic.
Woody Vine Stratum (Plot size:)				
1. No woody vines				Hydrophytic	
				•	
2				Vegetation Present? Yes X	No

SOIL Sampling Point: WL2 wet

Depth Ma	trix	Redox Features					e of indicators.)
(cm) Color (moist)	<u>%</u>	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
24 7.5YR/2.5/1						Silt	Mucky silt
15 7.5YR/4/2	90	7.5YR/4/6	10			Silt	
				_			
		_		_			
					-		
Type: C=Concentration, D	=Depletion, R	M=Reduced Matrix,	CS=Covere	ed or Coate	ed Sand G	rains. ² L	ccation: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:						Indicator	s for Problematic Hydric Soils ³ :
Histosol (A1)		Stripped M	, ,			Coa	st Prairie Redox (A16)
Histic Epipedon (A2)		Dark Surfa		/ - - \			Mucky Peat or Peat (S3)
Black Histic (A3)		Polyvalue I		. ,			-Manganese Masses (F12)
Hydrogen Sulfide (A4) Stratified Layers (A5)		Thin Dark		,			dmont Floodplain Soils (F19)
Depleted Below Dark S	urface (A11)	Loamy Gle X_ Depleted N		(FZ)			Parent Material (F21)
Thick Dark Surface (A1		Redox Dar		F6)			y Shallow Dark Surface (F22) er (Explain in Remarks)
Sandy Mucky Mineral (, S1)	Depleted D		,			or (Explain in Normano)
Sandy Gleyed Matrix (S		Redox Dep					
Sandy Redox (S5)							
Indicators of hydrophytic ve	agetation and	wetland hydrology m	uet he pres	eent unles	e dieturha	d or problema	tic
Restrictive Layer (if obser		welland hydrology in	uot be prec	Jorn, armos	- alotarbet	Т	
• `	vea):						
Type: NA							"
Depth (cm): NA						Hydric Sc	il Present? Yes X No
Remarks:						11,411.000	
Remarks:							
Remarks: IYDROLOGY Wetland Hydrology Indica							
Remarks: IYDROLOGY Wetland Hydrology Indica		quired; check all that	apply)			Seconda	ry Indicators (minimum of two required)
Remarks: IYDROLOGY Wetland Hydrology Indica Primary Indicators (minimur		•				Seconda	ury Indicators (minimum of two required) Surface Soil Cracks (B6)
Remarks: IYDROLOGY Wetland Hydrology Indica Primary Indicators (minimur Surface Water (A1)		X_ Water-S	tained Lea			Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10)
Remarks: IYDROLOGY Wetland Hydrology Indica Primary Indicators (minimur Surface Water (A1) High Water Table (A2)		X Water-S Aquatic	tained Lea Fauna (B1	3)		Seconda ——	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Remarks: IYDROLOGY Wetland Hydrology Indicates Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3)		X Water-S Aquatic Marl De	tained Lea Fauna (B1 posits (B15	3))		Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Remarks: IYDROLOGY Wetland Hydrology Indicates (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1)	n of one is rec	X Water-S Aquatic Marl De _l Hydroge	tained Lea Fauna (B1: posits (B15 n Sulfide (3)) Odor (C1)		Seconda ————————————————————————————————————	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Remarks: IYDROLOGY Wetland Hydrology Indicates (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	n of one is rec	X Water-S Aquatic Marl Del Hydroge Oxidized	tained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph	3)) Odor (C1) eres on Liv	•	Seconda	ury Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9
Remarks: IYDROLOGY Wetland Hydrology Indicates Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	n of one is rec	X Water-S Aquatic Marl De Hydroge Oxidized Presence	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc	3) Odor (C1) eres on Lived red Iron (C	4)	Seconda	Iny Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1)
Remarks: HYDROLOGY Wetland Hydrology Indicates Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	n of one is rec	X Water-S Aquatic Marl Del Hydroge Oxidized Presenc Recent I	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc	3) Odor (C1) eres on Lived Iron (C4) tion in Tille	4)	Seconda	ery Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Remarks: IYDROLOGY Wetland Hydrology Indica Primary Indicators (minimur Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	n of one is rec	X_ Water-S Aquatic Marl Del Hydroge Oxidized Presenc Recent I Thin Mu	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface	3) Odor (C1) eres on Lived Iron (C- tion in Tille	4)	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Remarks: IYDROLOGY Wetland Hydrology Indicates Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A	n of one is rec	X_ Water-S Aquatic Marl Del Hydroge Oxidized Presence Recent I Thin Mu (B7) X_ Water-S	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc	3) Odor (C1) eres on Lived Iron (C- tion in Tille	4)	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Remarks: NYDROLOGY Netland Hydrology Indicates Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	n of one is rec	X_ Water-S Aquatic Marl Del Hydroge Oxidized Presence Recent I Thin Mu (B7) X_ Water-S	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface	3) Odor (C1) eres on Lived Iron (C- tion in Tille	4)	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Remarks: IYDROLOGY Wetland Hydrology Indicate Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co	n of one is rec	X_ Water-S Aquatic Marl Del Hydroge Oxidized Presenc Recent I Thin Mu (B7) X_ Water-S	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface	3) Odor (C1) eres on Lived Iron (C- tion in Tille	4)	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Remarks: IYDROLOGY Wetland Hydrology Indicate Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co	n of one is rec	X Water-S Aquatic Marl Del Hydroge Oxidized Presenc Recent I Thin Mu Other (E	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface explain in R	3)) Odor (C1) eres on Lived Iron (C- tion in Tille (C7) emarks)	4)	Seconda ————————————————————————————————————	Livy Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Remarks: IYDROLOGY Wetland Hydrology Indicate Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co Field Observations: Surface Water Present?	n of one is rec	X_ Water-S Aquatic Marl Dep Oxidized Presence Recent I Thin Mu Other (EB)	tained Lear Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduct ron Reduct ck Surface explain in R	3) Ddor (C1) eres on Lived Iron (C- tion in Tille (C7) emarks)	4)	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Remarks: HYDROLOGY Wetland Hydrology Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co Field Observations: Surface Water Present? Water Table Present?	of one is reconstruction of one is reconstruct	X Water-S Aquatic Marl De Hydroge Oxidizec Presenc Recent I Thin Mu Other (E	tained Lear Fauna (B1: posits (B15: en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface explain in R	3)) Odor (C1) eres on Liv ed Iron (C- tion in Tille (C7) emarks)	4) d Soils (Co	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Remarks: IYDROLOGY Wetland Hydrology Indicate Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co Field Observations: Surface Water Present?	of one is reconstruction of one is reconstruct	X_ Water-S Aquatic Marl Dep Oxidized Presence Recent I Thin Mu Other (EB)	tained Lear Fauna (B1: posits (B15: en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface explain in R	3)) Odor (C1) eres on Liv ed Iron (C- tion in Tille (C7) emarks)	4) d Soils (Co	Seconda	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Remarks: IYDROLOGY Wetland Hydrology Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co Field Observations: Surface Water Present? Water Table Present? Saturation Present? Saturation Present?	erial Imagery ncave Surface Yes Yes Yes Yes X	X Water-S Aquatic Marl De Hydroge Oxidized Presenc Recent I Thin Mu Other (E e (B8) No Depth No Depth No Depth	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface explain in R (cm):	3)) Odor (C1) eres on Lived Iron (C- tion in Tille (C7) emarks)	4) d Soils (Ce	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Remarks: IYDROLOGY Wetland Hydrology Indicate Primary Indicators (minimur) Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co Field Observations: Surface Water Present? Water Table Present?	erial Imagery ncave Surface Yes Yes Yes Yes X	X Water-S Aquatic Marl De Hydroge Oxidized Presenc Recent I Thin Mu Other (E e (B8) No Depth No Depth No Depth	tained Lea Fauna (B1: posits (B15 en Sulfide C d Rhizosph e of Reduc ron Reduc ck Surface explain in R (cm):	3)) Odor (C1) eres on Lived Iron (C- tion in Tille (C7) emarks)	4) d Soils (Ce	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

roject/Site: Industrial Park Expansion	Municipality	/County: Westmorland	d County S	Sampling Date: Oct 13 - 202
pplicant/Owner: MID		Sampling Point: <u>V</u>	VL3 wet	
nvestigator(s): Derrick Mitchell and Ryan Power Affi	liation: Boreal Enviro	. •		
ocal relief (concave, convex, none): Concave				
latum: NAD83 NBDS Soi				
re climatic / hydrologic conditions on the site typical	-			
Are Vegetation, Soil, or Hydrology_	significantly	disturbed? Are '	"Normal Circumstances" pre	sent? Yes X No
Are Vegetation, Soil, or Hydrology_	naturally pro	blematic? (If ne	eeded, explain any answers	in Remarks.)
SUMMARY OF FINDINGS – Attach site	map showing	sampling point lo	ocations, transects, ir	nportant features, etc.
Hydrophytic Vegetation Present? Yes X_		Is the Sampled	d Area nd?	No
Hydric Soil Present? Yes X_				
Wetland Hydrology Present? Yes X_ Remarks: (Explain alternative procedures here or			Wetland Site ID:	
VEGETATION – Use scientific names of	Absolute	Dominant Indicator	Dominance Test worksh	neet:
Tree Stratum (Plot size: 15	% Cover	Species? Status	Number of Dominant Spe	
1. Acer rubrum	_25	YES FAC	That Are OBL, FACW, or	
2. Populus tremuloides	_5	FAC	Total Number of Dominan	t
3. Abies balsamea	2	FAC	Species Across All Strata:	
4			Percent of Dominant Spec	ripe
5			That Are OBL, FACW, or	
0 1 0 1 0 1 0 1 5		= Total Cover	Prevalence Index works	hoot:
Sapling/Shrub Stratum (Plot size: 5		540		
1. <u>Salix discolor</u>		FAC	OBL species	<u>Multiply by:</u> x 1 =
2. Alnus incana		YES FACW	FACW species 81	
3. Betula populifolia		FAC	FAC species 56	
Spiraea alba Rhododendron canadense		FAC	FACU species	
Rhododendron canadense Betula papyrifera var. cordifolia		<u>FAC</u> FACU	UPL species	
7. Rubus idaeus	2		-	(A) <u>330</u> (B)
	27	= Total Cover	Prevalence Index = B/A =	
Herb Stratum (Plot size: 1	<u>51</u>	= Total Cover		
1. Glyceria striata	10	FACW		
Calamagrostis canadensis	30	YES FACW		
3. Carex gynandra	20	YES FACW	Hydrophytic Vegetation	Indicators:
4. Rubus pubescens	2	FAC	Rapid Test for Hydro	ohytic Vegetation
5. Osmunda cinnamomea		FAC	X Dominance Test is >5	50%
			X Prevalence Index is ≤	3.0 ¹
6. <u>Dryopteris cristata</u>				ations ¹ (Provide supporting
7			data in Remarks or or	· · ·
8			Problematic Hydroph	ytic Vegetation ¹ (Explain)
9			Indicators of hydric soil a	nd wetland hydrology must
10		– Total Cayor	be present, unless disturb	
Woody Vine Stratum (Plot size:		= Total Cover		
1. No woody vines			Hydrophytic	
No woody vines 2			Vegetation	
				X No

SOIL Sampling Point: WL3 wet

Profile Desc	ription: (Describ	e to the de	epth needed to doc	ument the	indicator	or confirm	the absence	of indicators.)	
Depth	Matrix		Redox Features			_			
	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	<u>Texture</u>	Remarks	
<u>4</u> 16	7 5VD/2 5/1		_		_		Organic Silt		
15	7.5YR/2.5/1 7.5YR/5/1						Silt		
8	7.5YR/6/1	80	7.5YR/6/8	<u></u>	_		Silt		
	7.511(0)1		7.5117/0/0						
Type: C=Co	oncentration, D=D	epletion, R	 M=Reduced Matrix,	CS=Cover	ed or Coate	ed Sand Gr	rains. ² Lo	cation: PL=Pore Lining, M=Matrix.	
Hydric Soil I	ndicators:						Indicator	s for Problematic Hydric Soils ³ :	
Histosol (A1) Stripped Matrix (S6)							Coast Prairie Redox (A16)		
Histic Epipedon (A2) Dark Surfaces (S7)						5 c Mucky Peat or Peat (S3)			
Black Histic (A3) Polyvalue Below Surface (S8)						Iron-Manganese Masses (F12)			
Hydrogen Sulfide (A4) Thin Dark Surface (S9)						Piedmont Floodplain Soils (F19)			
Stratified Layers (A5) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) X_ Depleted Matrix (F3)							Red Parent Material (F21)		
Depleted Below Dark Surface (A11) Depleted Matrix (F3) Redox Dark Surface (F6)						Very Shallow Dark Surface (F22) Other (Explain in Remarks)			
Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7)							Ouic	(Explain in Remarks)	
	leyed Matrix (S4)		Redox De						
Sandy R	edox (S5)								
³ Indicators of	hydrophytic vege	tation and	wetland hydrology m	nust be pre	sent, unles	s disturbed	l or problemat	ic.	
Restrictive L	ayer (if observe	d):							
Type: NA	• •	,							
Depth (cm): NA							Hydric So	il Present? Yes XNo	
Remarks:	, <u> </u>								
HYDROLO	GY								
Wetland Hyd	drology Indicator	s:							
Primary India	ators (minimum c	f one is red	quired; check all that	apply)			Seconda	ry Indicators (minimum of two required)	
								Surface Soil Cracks (B6)	
Surface	Water (A1)		X Water-S	Stained Lea	ives (B9)		Drainage Patterns (B10)		
High Water Table (A2) Aquatic Fauna (B13)							Moss Trim Lines (B16)		
X Saturation	on (A3)		Marl De	posits (B1	5)			Ory-Season Water Table (C2)	
Water Marks (B1) Hydrogen Sulfide Odor (C1)							(Crayfish Burrows (C8)	
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots							(C3) S	Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3) Presence of Reduced Iron (C4)								Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6)								Geomorphic Position (D2)	
Iron Dep				ick Surface	` '			Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)								Microtopographic Relief (D4)	
Sparsely	Vegetated Conc	ave Surface	e (B8)				F	FAC-Neutral Test (D5)	
Field Observ	rations:								
Surface Water	er Present?	Yes	_ No Depth	(cm):					
Water Table I	Present?	Yes	_ No Depth	(cm):					
Saturation Present? Yes XNo Depth (cm): _0 (includes capillary fringe)						Wet	Wetland Hydrology Present? Yes X No		
		m gauge, n	nonitoring well, aeria	l photos, p	revious insp	pections), i	f available:		
Remarks:									

Project/Site: Industria	al Park Expansio	n	Municipali	ty/County:	Westmorland	County	Sampli	ng Date: O	ct 13 - 2020
Applicant/Owner: MII	D			Samp	ling Point: W	L3 up			
nvestigator(s): Derri	ck Mitchell and F	<u>Ryan Powe</u> r Affilia	ition: Boreal Envi	ronmental	_ Landform (I	nillslope, terrace, et	c.): <u>NA</u>		
ocal relief (concave	, convex, none):	_NoneSI	ope (%): 2	X coor	d: 2627341.0	Y	coord <u>745560</u>	3.3	
Datum: NAD83									
are climatic / hydrolo									
Are Vegetation	_		-						
Are Vegetation									
SUMMARY OF	FINDINGS -	- Attach site n	nap showing	sampli	ng point lo	cations, trans	ects, import	ant featu	res, etc.
Hydrophytic Vege	etation Present?	Yes X	No	Is	the Sampled	Area			
Hydric Soil Prese			No		ithin a Wetlar	id? Yes	No <u>X</u>		
Wetland Hydrolog			No		ves. optional \	Vetland Site ID:			
, ,	••	cedures here or in			, oo, opoa				
VEGETATION	- Use scienti	fic names of p	ants.						
		<u> </u>		Domina	nt Indicator	Dominance Test	t worksheet:		
Tree Stratum (Pl	ot size: 15)	% Cove	Species	s? Status	Number of Domir	nant Species		
1. Abies balsame	ea		30	YES	FAC	That Are OBL, FA	ACW, or FAC:	_ 4	(A)
2. Acer rubrum			20	YES	FAC	Total Number of	Dominant		
3. Populus tremu	uloides		5		<u>FAC</u>	Species Across A		5	(B)
4. Betula papyrife	era var. cordifolia	3	5		FACU	Percent of Domir	ant Species		
5						That Are OBL, FA		80	(A/B)
0 1'/011- 01-	on towns (Districtions	. =		_= Total C	Cover	Prevalence Inde	v workshoot:		
-		: 5	 '	VEC	FACIL		er of:	Multiply by	ı·
						OBL species	эт OI. Х	1 =	/·
						FACW species 5			
_						FAC species 6			
						FACU species 2	26 x	4 = 104	
				_		UPL species			
						Column Totals: 9	98	(A) <u>315</u>	(B)
		,	26	_= Total C	Cover	Prevalence Index	, _ B/A 2 21		
Herb Stratum (Pl)	_	\/=0	=	Frevalence index	1 = D/A = <u>3.21</u>		
1. Cornus canad				YES	<u>FAC</u>				
2. Rubus hispidu			5		<u>FACW</u> FACU	Hydrophytic Ve	netation Indica	tors:	
3. <u>Oclemena acu</u>			1		FACU FAC	' ' '	or Hydrophytic '		
4. <u>Doellingeria u</u>	mbellata	-	1		FAC	X Dominance		vogotation	
5.			-	_		Prevalence I			
6.							al Adaptations ¹	(Provide sur	porting
							arks or on a sep		
						Problematic	Hydrophytic Ve	getation¹ (Ex	xplain)
10.					`ovor	¹ Indicators of hyd be present, unles			gy must
Woody Vine Strat	tum (Plot size:			_= Total C	ovei	pe present, unles	s disturbed of p	DIODIEMATIC.	
-						Hydrophytic Vegetation			
<u> ۲</u>				= Total C		Present?	Yes X	No	_

SOIL Sampling Point: WL3 up

(cm) Color (moist)	trix %	Redox Feature Color (moist)	<u>es</u> %	Type ¹	Loc ²	Texture	Remarks
5		Color (moist)		<u>Type</u>		Organic	remarks
15 7.5YR/5/3						Sand/silt	
20 7.5YR/5/6						Sand/silt	_
		_					
							_
							_
Type: C=Concentration, D	=Depletion,	RM=Reduced Mat	rix, CS=Cove	ered or Coat	ed Sand G	rains. ² L	ocation: PL=Pore Lining, M=Matrix.
lydric Soil Indicators:						Indicato	rs for Problematic Hydric Soils ³ :
Histosol (A1)		Strippe	d Matrix (S6)				ast Prairie Redox (A16)
Histic Epipedon (A2)		Dark S	urfaces (S7)			5 c	Mucky Peat or Peat (S3)
Black Histic (A3)		Polyval	ue Below Su	rface (S8)		Iron	n-Manganese Masses (F12)
Hydrogen Sulfide (A4)	Thin Da	ark Surface (S9)		Pie	dmont Floodplain Soils (F19)	
Stratified Layers (A5) Loamy Gleyed Matrix (F2)							d Parent Material (F21)
Depleted Below Dark Surface (A11) Depleted Matrix (F3)							y Shallow Dark Surface (F22)
Thick Dark Surface (A12) Redox Dark Surface (F6)							er (Explain in Remarks)
Sandy Mucky Mineral (ed Dark Surfa				
Sandy Gleyed Matrix (54)	Redox	Depressions	(F8)			
Candy Nedox (CO)							
Indicators of hydrophytic v	egetation an	d wetland hydrolog	y must be pr	esent, unles	s disturbed	d or problema	atic.
Restrictive Layer (if obse	rved):						
Type: NA							
Depth (cm): NA						Hydric So	oil Present? Yes <u>No X</u>
Depth (cm): NA Remarks: YDROLOGY	itors:					Hydric So	oil Present? YesNo <u>X</u>
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indica		equired; check all t	hat apply)				oil Present? YesNo X
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indica		equired; check all t	hat apply)			Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indica			hat apply) er-Stained Le	aves (B9)		Seconda	ary Indicators (minimum of two required)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicators (minimum		Wate				Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6)
Depth (cm): NA Remarks: YDROLOGY Wetland Hydrology Indica Primary Indicators (minimula) Surface Water (A1)		Wate	er-Stained Le	13)		Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indica Primary Indicators (minimu Surface Water (A1) High Water Table (A2)		Wate Aqua Marl	er-Stained Le	13) 15)		Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Depth (cm): NA Remarks: YDROLOGY Wetland Hydrology Indica Primary Indicators (minimul Surface Water (A1) High Water Table (A2) Saturation (A3)	m of one is r	Wate Aqua Marl Hydr	er-Stained Le atic Fauna (B Deposits (B1	13) 15) Odor (C1)	ving Roots	Second:	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Depth (cm): NA Remarks: YDROLOGY Wetland Hydrology Indica Primary Indicators (minimul Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	m of one is r	Wate Aqua Marl Hydr Oxid	er-Stained Le atic Fauna (B Deposits (B1 ogen Sulfide	13) I5) Odor (C1) heres on Li	-	Second:	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Depth (cm): NA Remarks: IYDROLOGY Wetland Hydrology Indicator (minimum of the company of the c	m of one is r	Wate Aqua Marl Hydr Oxid Pres	er-Stained Le atic Fauna (B Deposits (B¹ ogen Sulfide ized Rhizosp ence of Redu	13) 15) Odor (C1) heres on Li uced Iron (C	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1)
Depth (cm): NA Remarks: IYDROLOGY Wetland Hydrology Indicators (minimulation (Ma)) — Surface Water (A1) — High Water Table (A2) — Saturation (A3) — Water Marks (B1) — Sediment Deposits (B2) — Drift Deposits (B3) — Algal Mat or Crust (B4)	m of one is r	Wate Aqua Marl Hydr Oxid Pres Rece	er-Stained Le atic Fauna (B Deposits (B1 ogen Sulfide ized Rhizosp ence of Redu ant Iron Redu	13) Odor (C1) heres on Liuced Iron (C action in Tille	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Depth (cm): NA Remarks: YDROLOGY Wetland Hydrology Indicators (minimum of the content of the c	m of one is r	Wate Aqua Aqua Marl Hydr Oxid Pres Rece	er-Stained Le atic Fauna (B Deposits (Ba ogen Sulfide ized Rhizosp ence of Redu ent Iron Redu Muck Surfac	13) 15) Odor (C1) Theres on Ligure Iron (C) Theres in Tille There (C7)	4)	Seconda ————————————————————————————————————	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimulation) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A	m of one is r	WateAquaMarlHydrOxidPresReceThin y (B7)Othe	er-Stained Le atic Fauna (B Deposits (B1 ogen Sulfide ized Rhizosp ence of Redu ant Iron Redu	13) 15) Odor (C1) Theres on Ligure Iron (C) Theres in Tille There (C7)	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicators (minimum of the content of the c	m of one is r	WateAquaMarlHydrOxidPresReceThin y (B7)Othe	er-Stained Le atic Fauna (B Deposits (Ba ogen Sulfide ized Rhizosp ence of Redu ent Iron Redu Muck Surfac	13) 15) Odor (C1) Theres on Ligure Iron (C) Theres in Tille There (C7)	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimus) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co	m of one is r	WateAquaMarlHydrOxidPresReceThin y (B7)Othe	er-Stained Le atic Fauna (B Deposits (Ba ogen Sulfide ized Rhizosp ence of Redu ent Iron Redu Muck Surfac	13) 15) Odor (C1) Theres on Ligure Iron (C) Theres in Tille There (C7)	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: YDROLOGY Netland Hydrology Indica Primary Indicators (minimulation) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co	n of one is r	WateAquaMarlHydrOxidPresReceThin y (B7)Othe	er-Stained Le atic Fauna (B Deposits (B1 ogen Sulfide ized Rhizosp ence of Redu ent Iron Redu Muck Surfac r (Explain in	13) Odor (C1) wheres on Living Iron (C) cuction in Tille te (C7) Remarks)	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: YDROLOGY Wetland Hydrology Indica Primary Indicators (minimul Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A	n of one is r	WateAquaAquaHydrOxidPresReceThin y (B7)Other ce (B8)	er-Stained Le atic Fauna (B Deposits (B ogen Sulfide ized Rhizosp ence of Redu ent Iron Redu Muck Surfac r (Explain in	13) Odor (C1) heres on Liuced Iron (C action in Tille e (C7) Remarks)	4)	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicators (minimus) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Co	erial Imager oncave Surfa Yes Yes	Wate Aqua Marl Hydr Oxid Pres Rece Thin y (B7) Other	er-Stained Le atic Fauna (B Deposits (B¹ ogen Sulfide ized Rhizosp ence of Redu ent Iron Redu Muck Surfac r (Explain in	13) 15) Odor (C1) heres on Lir uced Iron (C action in Tille te (C7) Remarks)	4) ed Soils (Co	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimular Marks (Mater Table (A2)) Saturation (A3) Water Marks (Mater Mater M	erial Imager oncave Surfa Yes Yes Yes	WateAquaAquaMarlHydrOxidPresReceThin _y (B7)Other _ce (B8)NoDeNoDeNoDe	er-Stained Leatic Fauna (B Deposits (B1 ogen Sulfide ized Rhizospence of Redu ent Iron Redu Muck Surfact r (Explain in	13) Odor (C1) wheres on Liveced Iron (Conction in Tille (C7) Remarks)	4) ed Soils (Co	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Depth (cm): NA Remarks: YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimus) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A Sparsely Vegetated Considered Cons	erial Imager oncave Surfa Yes Yes Yes	WateAquaAquaMarlHydrOxidPresReceThin _y (B7)Other _ce (B8)NoDeNoDeNoDe	er-Stained Leatic Fauna (B Deposits (B1 ogen Sulfide ized Rhizospence of Redu ent Iron Redu Muck Surfact r (Explain in	13) Odor (C1) wheres on Liveced Iron (Conction in Tille (C7) Remarks)	4) ed Soils (Co	Seconda	ary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

roject/Site: Industrial Park Expansion	Municipality	//County: Wes	tmorland Cou	inty S	Sampling Date: _	Oct 13 - 202
pplicant/Owner <u>: MID</u>		Sampling F	Point: WL4 w	ret		
vestigator(s): Derrick Mitchell and Ryan Power A	Affiliation: Boreal Envir	onmental La	ndform (hillslo	ppe, terrace, etc.): NA		
ocal relief (concave, convex, none): Concave	Slope (%):0	X coord:	2626996.9	Y coord	7455789.4	
atum: NAD83 NBDS	Soil Map Unit Name/Ty	pe:	Wetland Type	e: Mature Deciduous R	iparian Swamp	
re climatic / hydrologic conditions on the site typic						
Are Vegetation, Soil, or Hydrolog	-					
Are Vegetation, Soil, or Hydrolog						110
SUMMARY OF FINDINGS – Attach si	te map showing	sampling p	oint locat	ions, transects, in	nportant feat	tures, etc.
Hydrophytic Vegetation Present? Yes	X No	Is the S	Sampled Are	a		
	X No	within	a Wetland?	Yes X	No	
Wetland Hydrology Present? Yes	X No	If yes, o	optional Wetla	and Site ID:		
Remarks: (Explain alternative procedures here	or in a separate report	.)				
VEGETATION – Use scientific names of	of plants.					
Tree Observes (Plateines 45		Dominant In		minance Test worksh	eet:	
Tree Stratum (Plot size: 15	·	Species? St	INU	mber of Dominant Spec		(4)
1. Acer rubrum		YES F		at Are OBL, FACW, or	-AC: <u>6</u>	(A)
Picea glauca Abies balsamea				tal Number of Dominan		(D)
				ecies Across All Strata:	6	(B)
4 5			Pe	rcent of Dominant Spec		(A (D)
3. <u> </u>		= Total Cover		at Are OBL, FACW, or	FAC: <u>100</u>	(A/B)
Sapling/Shrub Stratum (Plot size: 5				evalence Index works	heet:	
1. Alnus incana	30	YES F	ACW	Total % Cover of:	Multiply	by:
2. Ilex verticillata	10	YES F	ACVVT	BL species		
3. Acer rubrum	_ 5	<u>F</u>	AC	CW species 60		
4. Abies balsamea	5	<u>F</u>	AC	C species 137		
5				CU species		
6				L species		
	50	= Total Cover		lumn Totals: 197		<u>31</u> (D)
Herb Stratum (Plot size: 1		-	Pro	evalence Index = B/A =	2.70	
1. Onoclea sensibilis	20	YES F	ACW			
2. Rubus pubescens	30	YES F	AC			
3. Cornus canadensis	5	<u>F</u>	AC Hy	drophytic Vegetation		
4. Osmunda cinnamomea	<u>15</u>	YES F	AC	_ Rapid Test for Hydror	, ,	1
5.				_ Dominance Test is >5		
6.			X	Prevalence Index is ≤		
7				_ Morphological Adapta data in Remarks or or		
8				Problematic Hydrophy	•	•
9				, , .		,
10				dicators of hydric soil a		
W 1.1/2 01 1 1 7 1 1 1		= Total Cover	be	present, unless disturb	ed or problemati	C.
Woody Vine Stratum (Plot size:)					
1. No woody vines				drophytic		
			1/0	getation		
2					X No	

SOIL

Sampling Point: WL4 wet

Profile Description: (Describe to the depth peeded to decument the indicator or confirm the absence of indicators.)

Profile Des	scription: (Describ	e to the de	pth needed to docu	ment the	indicator	or confirm	n the absenc	e of indicators.)
Depth		,	Redox Features					•
(cm)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²		Remarks
20	7.5YR/3/2						Silt	
20	7.5YR/2.5/2						Silt	
								_
		_						
	-							
-	_							
¹ Type: C=0	Concentration, D=D	epletion, RN	M=Reduced Matrix, C	S=Cove	ed or Coate	ed Sand G	rains. ² L	ocation: PL=Pore Lining, M=Matrix.
Hydric Soil	I Indicators:						Indicato	rs for Problematic Hydric Soils³:
Histoso	, ,		Stripped Ma	. ,			Coa	ast Prairie Redox (A16)
	Epipedon (A2)		Dark Surfac	` ,				Mucky Peat or Peat (S3)
	Histic (A3) gen Sulfide (A4)		Polyvalue E		, ,			n-Manganese Masses (F12)
	ed Layers (A5)		Thin Dark S Loamy Gley	`	,			dmont Floodplain Soils (F19)
	ed Eayers (A5) ed Below Dark Surfa	ace (A11)	X Depleted M		. ,			d Parent Material (F21) y Shallow Dark Surface (F22)
	Dark Surface (A12)	.00 (/ 11 1)	Redox Dark	, ,				er (Explain in Remarks)
	Mucky Mineral (S1)		Depleted D		, ,		0	er (Explain in Remarks)
	Gleyed Matrix (S4)		Redox Dep		, ,			
Sandy	Redox (S5)							
³ Indicators	of hydrophytic vege	tation and v	vetland hydrology mu	ıst be pre	esent, unless	s disturbe	d or problema	atic.
Restrictive	Layer (if observed	i):						
Туре: <u>N</u>	IA							
Depth (c	cm): NA						Hydric So	oil Present? Yes XNo
Remarks:								
HYDROLO	ngy							
	ydrology Indicator	s:						
			uired; check all that a	annly)			Seconda	ary Indicators (minimum of two required)
1 minary ma	ilicators (minimum o	One is req	anca, check an that t	дріу)				Surface Soil Cracks (B6)
Confee	- 10/ (0.4)		V Matan Ct	-:	(DO)			Drainage Patterns (B10)
	e Water (A1)		X Water-St		` '			Moss Trim Lines (B16)
	/ater Table (A2)		Aquatic F	,	•			Dry-Season Water Table (C2)
X Saturat			Marl Dep					
	Marks (B1)		Hydrogei		, ,	ina Dooto		Crayfish Burrows (C8)
	ent Deposits (B2)		Oxidized Presence			-		Saturation Visible on Aerial Imagery (C9)
	eposits (B3)				•	•		Stunted or Stressed Plants (D1)
_	Mat or Crust (B4)				ction in Tille	u Solis (C		Geomorphic Position (D2)
	eposits (B5)	I Imagan, (Thin Muc					Shallow Aquitard (D3)
	tion Visible on Aeria			kpiain in i	Kemarks)			Microtopographic Relief (D4)
Sparse	ely Vegetated Conca	ve Sunace	(DO)					FAC-Neutral Test (D5)
Field Ohee	mustis ma							
Field Obse		.,	N V 5 II	,				
			No X Depth (
Water Table			No X Depth (10/04	المسامين المسامل	any Brancout 2 - Van V
Saturation F capillary frin		Yes X	_No Depth (cm): <u>(</u>)_ (includes	, vve	liand Hydroi	ogy Present? Yes XNo
Describe Re	corded Data (strear	n gauge, m	onitoring well, aerial	photos, p	revious insp	pections),	if available:	
Remarks:								

roject/Site: Industrial Park Expansion	Municipality	y/County: Westmorlan	d County S	Sampling Date: Oct 13 - 2020
pplicant/Owner <u>: MID</u>		Sampling Point: \(_\)	NL4 up	
vestigator(s): Derrick Mitchell and Ryan Power Af	filiation: Boreal Envir	onmental Landform	(hillslope, terrace, etc.): NA	
ocal relief (concave, convex, none): None	_Slope (%):_2	_X coord: <u>2626990.</u>	1 Y coord <u>74</u>	55785.2
atum: <u>NAD83 NBDS</u> _S	oil Map Unit Name/Ty	/pe: Wetland	d Type: Partial Cut Mixed fore	est
re climatic / hydrologic conditions on the site typica				
Are Vegetation, Soil, or Hydrology	-	<u> </u>		
Are Vegetation, Soil, or Hydrology.			eeded, explain any answers i	
SUMMARY OF FINDINGS – Attach site	e map showing	sampling point l	ocations, transects, in	nportant features, etc.
Hydrophytic Vegetation Present? Yes X	No	Is the Sample	d Area	
	No	within a Wetla	ınd? Yes	No <u>X</u>
	No	If yes, optional	Wetland Site ID:	
Remarks: (Explain alternative procedures here of	or in a separate report	t.)		
VEGETATION - Use scientific names or	f plants.			
		Dominant Indicator	Dominance Test worksh	eet:
Tree Stratum (Plot size: 15	·	Species? Status	Number of Dominant Spec	
1. <u>Abies balsamea</u>		YES FAC	That Are OBL, FACW, or F	FAC: <u>7</u> (A)
2. Acer rubrum	.,	YES FAC	Total Number of Dominant	
3			Species Across All Strata:	(B)
4			Percent of Dominant Spec	
5		= Total Cover	That Are OBL, FACW, or F	FAC: <u>100</u> (A/B)
Sapling/Shrub Stratum (Plot size: 5		= Total Cover	Prevalence Index worksl	neet:
1. Abies balsamea		YES FAC	Total % Cover of:	Multiply by:
2. Acer rubrum	· ·		OBL species	
3. Populus tremuloides			FACW species	
4. Kalmia angustifolia	2	FAC	FAC species 107	
5		-	FACU species	
6			=	x 5 =
	27	= Total Cover	Column Totals: 107	(A)(B)
Herb Stratum (Plot size: 1)	<u>51</u>	_= Total Cover	Prevalence Index = B/A =	3.0
Dryopteris intermedia	_10	YES FAC		
2. Cornus canadensis	5	YES FAC		
3			Hydrophytic Vegetation	Indicators:
4		-	Rapid Test for Hydrop	hytic Vegetation
5.			X Dominance Test is >5	0%
6.		.	X Prevalence Index is ≤	
7		.		tions ¹ (Provide supporting
8			data in Remarks or on	, ,
9		<u>-</u>	- Froblematic mydfopny	tic Vegetation ¹ (Explain)
10			Indicators of hydric soil ar	nd wetland hydrology must
Manda Vina Chratum / Dist sing		= Total Cover	be present, unless disturbe	
Woody Vine Stratum (Plot size:				
1. No woody vines		-	Hydrophytic	
2			Vegetation Yes	XNo
	107	= Total Cover		

SOIL Sampling Point: WL4 up

Profile Description: Depth	Matrix		Redox Feat					,		
cm) Color (m		%	Color (mois		Type ¹	Loc ²	Texture	Remarks		
12							Organic			
9 <u>7.5YR</u>							Silt/Sand			
19 7.5YF	R/4/6						Silt/sand			
		_								
Type: C=Concentra	tion D-De	nletion R	M-Reduced M	atrix CS-Co	ered or Coa	ted Sand Gr	ains ² l c	cation: PL=Pore Lining, M=Matrix.		
		piction, r	William Cadaca Wi	atrix, 00=001		eca Garia Gi				
Hydric Soil Indicato Histosol (A1)	rs:		Strip	oed Matrix (Se	6)			s for Problematic Hydric Soils ³ : st Prairie Redox (A16)		
Histic Epipedon ((A2)		•	Surfaces (S7	•			flucky Peat or Peat (S3)		
Black Histic (A3)				alue Below S				Manganese Masses (F12)		
Hydrogen Sulfide (A4)			Thin	Dark Surface	(S9)			mont Floodplain Soils (F19)		
Stratified Layers (A5)			Loan	y Gleyed Ma	rix (F2)			Parent Material (F21)		
				eted Matrix (F				Shallow Dark Surface (F22)		
Thick Dark Surfa		x Dark Surfac			-	r (Explain in Remarks)				
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7)										
Sandy Gleyed M	atrix (S4)			x Depression						
Sandy Redox (S	5)									
Indicators of hydroph	nytic veget	ation and	wetland hydrol	ogy must be p	resent, unle	ss disturbed	or problemat	ic.		
Restrictive Layer (if	observed):								
Type: NA										
D ()				Type: NA						
Depth (cm): NA Remarks:							Hydric Soi	I Present? YesNo X		
Remarks:	Indicators	»:					Hydric Soi	I Present? YesNo X		
			quired; check a	I that apply)				I Present? YesNo X		
Remarks: IYDROLOGY Wetland Hydrology			quired; check a	I that apply)			Secondar			
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m	inimum of				eaves (B9)		Secondal	y Indicators (minimum of two required)		
YDROLOGY Wetland Hydrology Primary Indicators (m	ninimum of		W	ater-Stained L	. ,		Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10)		
Remarks: YDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table	ninimum of		W	ater-Stained L uatic Fauna (B13)		Secondar S E	ry Indicators (minimum of two required) Burface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3)	ninimum of (A1) e (A2)		W. Ac Ma	ater-Stained L uatic Fauna (arl Deposits (E	B13) 315)		Secondar S E N	y Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1	11) 21) 2 (A2)		W. Ac Ma Hy	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid	B13) 315) e Odor (C1)	iving Poets	SecondalSCN	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos	at1) e (A2)) its (B2)		W. Ac M: Hy O:	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos	B13) 315) e Odor (C1) pheres on Li	-	SecondalS	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B:	11) 241) 26 (A2) 31)		W. Ac M; O: Pr	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec	B13) s15) e Odor (C1) pheres on Li duced Iron (C	24)	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3)	inimum of (A1) (A2) (A2) (B2) (B3) (St (B4)		W. Ac Ma Hy Oo Pr Re	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec cent Iron Rec	B13) 815) e Odor (C1) pheres on Li duced Iron (C duction in Till	24)	Secondal	Cy Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B8	inimum of (A1) (A2) (A2) (B2) (B3) (B4) (B4)	one is red	W. Ad Ma Hy On Pr Re Tr	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec icent Iron Rec in Muck Surfa	B13) s15) e Odor (C1) pheres on Li duced Iron (C luction in Tilli ce (C7)	24)	Secondar SCCC (C3)SSS	cy Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B3 Inundation Visible	inimum of (A1) (A2) (A2) (A2) (A3) (A4) (A4) (A5) (A6) (A6) (A6) (A6) (A6) (A6) (A6) (A6	one is red	W. Ac Hy Ox Pr Re Th (B7) Ot	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec cent Iron Rec	B13) s15) e Odor (C1) pheres on Li duced Iron (C luction in Tilli ce (C7)	24)	Secondar SCCC (C3)SSS	Cy Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (CS) Stunted or Stressed Plants (D1) Geomorphic Position (D2)		
Primary Indicators (m. Surface Water (A. High Water Table Saturation (A3) Water Marks (B1 Sediment Depose Drift Deposits (B3 Iron Deposits (B5 Iron Deposits	inimum of (A1) (A2) (A2) (A2) (A3) (A4) (A4) (A5) (A6) (A6) (A6) (A6) (A6) (A6) (A6) (A6	one is red	W. Ac Hy Ox Pr Re Th (B7) Ot	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec icent Iron Rec in Muck Surfa	B13) s15) e Odor (C1) pheres on Li duced Iron (C luction in Tilli ce (C7)	24)	Secondal	cy Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Visible Sparsely Vegetat	inimum of (A1) (A2) (A2) (A2) (A3) (A4) (A4) (A5) (A6) (A6) (A6) (A6) (A6) (A6) (A6) (A6	one is red	W. Ac Hy Ox Pr Re Th (B7) Ot	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec icent Iron Rec in Muck Surfa	B13) s15) e Odor (C1) pheres on Li duced Iron (C luction in Tilli ce (C7)	24)	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Orayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B6 Inundation Visible Sparsely Vegetar Field Observations:	inimum of (A1) (A2) (A2) (A2) (B3) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (B4	Imagery	W. Ad Ma On Pr Re Th (B7) Ot e (B8)	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec cent Iron Rec in Muck Surfa her (Explain in	B13) e Odor (C1) pheres on Li duced Iron (C luction in Till ce (C7) n Remarks)	24)	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Orayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B3 Inundation Visible Sparsely Vegetat Field Observations: Surface Water Preser	inimum of (A1) (A2) (A2) (A2) (A3) (A4) (A5) (A4) (A5) (A6) (A6) (A6) (A6) (A6) (A6) (A6) (A6	Imagery ve Surface	W Ac Ma Hy Or Pr Re Tr (B7) Ot. e (B8)	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec cent Iron Rec in Muck Surfa her (Explain in	B13) a15) e Odor (C1) pheres on Liduced Iron (Cluction in Tillace (C7) a Remarks)	24)	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Orayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Visible Sparsely Vegetat Field Observations: Surface Water Present?	inimum of (A1) (A2) (A2) (A2) (A3) (A4) (A4) (A4) (A4) (A4) (A4) (A4) (A4	Imagery ve Surface Yes	W Ac M: No [ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec icent Iron Rec in Muck Surfa her (Explain in	B13) e Odor (C1) pheres on Li duced Iron (C luction in Till ce (C7) n Remarks)	C4) ed Soils (C6	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)		
Primary Indicators (m. Surface Water (A. High Water Table Saturation (A3) Water Marks (B1 Sediment Depose Drift Deposits (B3 Inundation Visible Sparsely Vegetal Visible Surface Water Presert Vater Table Present?	inimum of (A1) (A2) (A2) (A2) (A3) (A4) (A4) (A4) (A4) (A4) (A4) (A4) (A4	Imagery ve Surface Yes	W Ac Ma Hy Or Pr Re Tr (B7) Ot. e (B8)	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec icent Iron Rec in Muck Surfa her (Explain in	B13) e Odor (C1) pheres on Li duced Iron (C luction in Till ce (C7) n Remarks)	C4) ed Soils (C6	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Orayfish Burrows (C8) Saturation Visible on Aerial Imagery (C8) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B5 Inundation Visible Sparsely Vegetat Field Observations: Surface Water Presert Vater Table Present? Saturation Present? capillary fringe)	inimum of (A1) (A2) (A2) (A2) (B3) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (B4	Imagery ve Surface Yes Yes	W Ac Ma Hy Or Pr Re Th Ot e (B8) No [No No [No [No [No [No No [No No	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec cent Iron Rec in Muck Surfa her (Explain in	B13) e Odor (C1) pheres on Liduced Iron (Cluction in Tillece (C7) n Remarks)	C4) ed Soils (C6) Wet	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)		
Remarks: IYDROLOGY Wetland Hydrology Primary Indicators (m Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Depos Drift Deposits (B3 Algal Mat or Crus Iron Deposits (B3 Inundation Visible Sparsely Vegetat Field Observations: Surface Water Preser	inimum of (A1) (A2) (A2) (A2) (B3) (B4) (B4) (B4) (B4) (B4) (B4) (B4) (B4	Imagery ve Surface Yes Yes	W Ac Ma Hy Or Pr Re Th Ot e (B8) No [No No [No [No [No [No No [No No	ater-Stained L uatic Fauna (arl Deposits (E drogen Sulfid idized Rhizos esence of Rec cent Iron Rec in Muck Surfa her (Explain in	B13) e Odor (C1) pheres on Liduced Iron (Cluction in Tillece (C7) n Remarks)	C4) ed Soils (C6) Wet	Secondal	ry Indicators (minimum of two required) Surface Soil Cracks (B6) Orainage Patterns (B10) Moss Trim Lines (B16) Ory-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)		

Project/Site Industrial Park Expansion	Municipality/County: Westmorlar	nd County Sampling Date: Oct 13 - 2020
Applicant/Owner <u>: MID</u>	Sampling Point: _\	WL5 wet
nvestigator(s): Derrick Mitchell and Ryan Power A	ffiliation: Boreal Environmental Landform	(hillslope, terrace, etc.): NA
ocal relief (concave, convex, none): Concave	Slope (%): 1 X coord: 262702	24.0 Y coord 7454788.0
		d Type: Mature coniferous bog
		(If no, explain in Remarks.)
	· · · · · · · · · · · · · · · · · · ·	"Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrolog		
SUMMARY OF FINDINGS – Attach si	e map showing sampling point I	ocations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes	No Is the Sample	
	No within a Wetla	and? Yes X No
Wetland Hydrology Present? Yes 2		Wetland Site ID:
Remarks: (Explain alternative procedures here		
VEGETATION – Use scientific names of	of plants.	
Tree Stratum (Plot size: 15	Absolute Dominant Indicator <u>% Cover Species? Status</u>	
1. Picea mariana		Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
2		
3		Total Number of Dominant Species Across All Strata: 3 (B)
4		
5		Percent of Dominant Species I That Are OBL, FACW, or FAC: 100 (A/B)
_	85 = Total Cover	
Sapling/Shrub Stratum (Plot size: 5)	Prevalence Index worksheet:
1. Rhododendron canadense		
2. <u>Kalmia angustifolia</u>		FACW species 85
3. <u>Vaccinium angustifolium</u>		FAC species 85 x 3 =255
4. Nemopanthus mucronatus		FACU species x 4 =
5		UPL species x 5 =
6		Column Totals: 175 (A) 430 (B)
	<u>85</u> = Total Cover	Prevalence Index = B/A = 2.45
Herb Stratum (Plot size: 1	5 750 001	rievalence index = B/A = 2.43
1. <u>Carex stricta</u>		-
2		Hydrophytic Vegetation Indicators:
3		Rapid Test for Hydrophytic Vegetation
4		X Dominance Test is >50%
5. 6.		
7		Morphological Adaptations¹ (Provide supporting
8.		data in Remarks or on a separate sheet)
9.		Problematic Hydrophytic Vegetation ¹ (Explain)
10.		Indicators of hydric soil and wetland hydrology must
	5 = Total Cover	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size:)	
1. No woody vines		Hydrophytic
2		Vegetation
		Present? Yes X No

SOIL Sampling Point: WL5 wet Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth Redox Features Type¹ Loc² Texture Remarks (cm) Color (moist) 150 Organics ¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. ²Location: PL=Pore Lining, M=Matrix. **Hydric Soil Indicators:** Indicators for Problematic Hydric Soils³: X Histosol (A1) ___ Stripped Matrix (S6) ___ Coast Prairie Redox (A16) __ Histic Epipedon (A2) __ Dark Surfaces (S7) __ 5 c Mucky Peat or Peat (S3) Black Histic (A3) __ Polyvalue Below Surface (S8) ____ Iron-Manganese Masses (F12) __ Hydrogen Sulfide (A4) ___ Thin Dark Surface (S9) Piedmont Floodplain Soils (F19) Stratified Layers (A5) ___ Loamy Gleyed Matrix (F2) ____ Red Parent Material (F21) Depleted Below Dark Surface (A11) ___ Depleted Matrix (F3) ___ Very Shallow Dark Surface (F22) Thick Dark Surface (A12) ____ Redox Dark Surface (F6) ___ Other (Explain in Remarks) ___ Sandy Mucky Mineral (S1) ___ Depleted Dark Surface (F7) __ Sandy Gleyed Matrix (S4) ___ Redox Depressions (F8) ___ Sandy Redox (S5) ³Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: NA Depth (cm): NA Hvdric Soil Present? Yes X No Remarks: **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Secondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Surface Water (A1) __ Water-Stained Leaves (B9) Moss Trim Lines (B16) X High Water Table (A2) Aquatic Fauna (B13) Dry-Season Water Table (C2) X Saturation (A3) Marl Deposits (B15) __ Hydrogen Sulfide Odor (C1) ___ Crayfish Burrows (C8) ___ Water Marks (B1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation Visible on Aerial Imagery (C9) _ Drift Deposits (B3) Presence of Reduced Iron (C4) Stunted or Stressed Plants (D1) _ Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) ___ Geomorphic Position (D2) __ Iron Deposits (B5) _ Thin Muck Surface (C7) __ Shallow Aquitard (D3) __ Inundation Visible on Aerial Imagery (B7) ___ Other (Explain in Remarks) ___ Microtopographic Relief (D4) Sparsely Vegetated Concave Surface (B8) ___ FAC-Neutral Test (D5)

Field Observations: Surface Water Present? No _____ Depth (cm): Yes X No _____ Depth (cm): <u>15</u> Water Table Present? Wetland Hydrology Present? Yes X____ No _ Saturation Present? Yes X No Depth (cm): 0 (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks:

Project/Site: Industria	<u>al Park Expansio</u>	n	Municipa	ality/County:	Westmorland	l County	Sampling	Date: Oc	t 13 - 2020
Applicant/Owner: MI	D			Samp	ling Point: <u>W</u>	/L5 up			
nvestigator(s): Derri	ck Mitchell and R	<u> Ryan Powe</u> r Aff	filiation: Boreal En	vironmental	Landform (hillslope, terrace, et	c.): <u>NA</u>		
ocal relief (concave	, convex, none):	_None	Slope (%): 2	X coor	d: 2627056.9	Y	coord <u>7454801.0</u>		
						Type: Mature Buffe			
						,, - <u></u>			(s)
-	_		-						
						Normal Circumstan			INO
Are Vegetation	, Soil	, or Hydrology_	naturally	problematic	? (If ne	eeded, explain any a	inswers in Remar	KS.)	
SUMMARY OF	FINDINGS -	- Attach site	map showin	g sampli	ng point lo	cations, transe	ects, importai	nt featur	es, etc.
Lludraphytia Vaga	otation Dragant?	Voc	V No	Is	the Sampled	l Area			
Hydric Soil Prese			XNo No	_		nd? Yes	No <u>X</u>		
Wetland Hydrolog			No		ves ontional \	Wetland Site ID:			
1			r in a separate rep		yes, optional	vvetiana olic ib.			
` '	·			,					
VEGETATION	- Use scienti	fic names of	plants.						
			Absolu	te Domina	ant Indicator	Dominance Test	worksheet:		
Tree Stratum (PI	ot size: 15)	% Cov	<u>ver</u> Species	s? Status	Number of Domin	ant Species		
1. Populus tremu	uloides		15	YES_	<u>FAC</u>	That Are OBL, FA	CW, or FAC:	5	(A)
2. <u>Picea mariana</u>	9				FACW	Total Number of I	Dominant		
3. <u>Betula populif</u>				YES	<u>FAC</u>	Species Across A	ll Strata:	7	(B)
4. Abies balsame	ea		10	YES_	<u>FAC</u>	Percent of Domin	ant Species		
5						That Are OBL, FA		71	(A/B)
Sapling/Shrub St	ratum (Plot size:	- 5		= Total C	Cover	Prevalence Inde	x worksheet:		-
1. Populus tremu			,		FAC		er of:	Multiply by:	
2. <u>Viburnum nud</u>						OBL species _	x 1	=	
3. Kalmia angus				YES		FACW species 1	0 x 2	= 20	
Betula populification			2		FAC	FAC species 1	<u>02</u> x 3	= 306	
						FACU species 2			
6.						UPL species _	x 5	=	
			50	Tatal C	S	Column Totals: 1	<u>32</u> (A)	406	(B)
Herb Stratum (Pl	lot size: 1)	52	= Total C	over	Prevalence Index	= B/A = <u>3.08</u>		
Pteridium aqu			10	YES	FACU				
2. Cornus canad			5		FAC				
3. Epigaea reper	าร		10	YES	FACU	Hydrophytic Veg	etation Indicato	rs:	
4. Dalibarda repe	ens		_5		FAC	Rapid Test fo	r Hydrophytic Ve	getation	
5.						X Dominance T	est is >50%		
6.						Prevalence Ir	ndex is ≤3.0¹		
7							al Adaptations ¹ (P		oorting
							rks or on a separa	,	nloin\
						Fioblematic	Hydrophytic Vege	ıalı∪ıı (⊏X)	(ווווסוק)
						¹ Indicators of hyd	ric soil and wetlar	d hydrolog	y must
				= Total C	Cover	be present, unles			,,
Woody Vine Stra	tum (Plot size:)						
1. No woody vine	es					Hydrophytic			
2						Vegetation Present?	Yes X N	lo	
						CLESCIII (162 V [/		

SOIL Sampling Point: WI 5 up

Profile Des								,
Depth	Matrix		Redox Features					
(cm)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
10	7 EVD/4/2						Organic	
30	7.5YR/4/3		_				Silt/Sand	
			_		_			
	· -							
¹Type: C=C	Concentration, D=D	Depletion, R	RM=Reduced Matrix,	CS=Cove	red or Coate	ed Sand Gr	rains. ² Lo	ocation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indicator	s for Problematic Hydric Soils³:
Histoso	` '		Stripped M	, ,			Coa	st Prairie Redox (A16)
	pipedon (A2)		Dark Surfa	` ,				Mucky Peat or Peat (S3)
	listic (A3)		Polyvalue		` ,			-Manganese Masses (F12)
	en Sulfide (A4)		Thin Dark	,	,			lmont Floodplain Soils (F19)
	ed Layers (A5) ed Below Dark Sur	face (A11)	Loamy Gle	-				Parent Material (F21)
	ed Below Dark Sur eark Surface (A12)	iace (ATT)	Depleted N Redox Dai	, ,			-	y Shallow Dark Surface (F22)
	Mucky Mineral (S1)	Redox Dai		` '		Othe	er (Explain in Remarks)
	Gleyed Matrix (S4)	•	Redox De					
	Redox (S5)	,	Redox De	pressions	(1 0)			
,	,							
³ Indicators of	of hydrophytic veg	etation and	wetland hydrology m	nust be pre	esent, unles	s disturbed	l or problemat	ic.
Restrictive	Layer (if observe	ed):						
Туре: <u>N</u>	Α .							
Depth (c							Hydric So	il Present? Yes No X
Remarks:			 ,				1 .,	
rtomants.								
HYDROLO	DGY							
		rs:						
Wetland Hy	drology Indicato		nuired: check all that	annly)			Saconda	ry Indicators (minimum of two required)
Wetland Hy	drology Indicato		quired; check all that	apply)				ry Indicators (minimum of two required)
Wetland Hy Primary Indi	rdrology Indicato		•					Surface Soil Cracks (B6)
Wetland Hy Primary Indi	rdrology Indicato icators (minimum o		Water-S	Stained Le			°	Surface Soil Cracks (B6) Drainage Patterns (B10)
Wetland Hy Primary Indi Surface High W	drology Indicators (minimum of water (A1) ater Table (A2)		Water-S Aquatic	Stained Les Fauna (B	13)		: : :	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Wetland Hy Primary Indi Surface High W Saturati	rdrology Indicato icators (minimum of a Water (A1) ater Table (A2) ion (A3)		Water-S Aquatic Marl De	Stained Le Fauna (B posits (B1	13) 5)] 	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Wetland Hy Primary Indi Surface High W Saturati Water N	rdrology Indicato icators (minimum of www.e. Water (A1) ater Table (A2) ion (A3) Marks (B1)		Water-S Aquatic Marl De Hydroge	Stained Lea Fauna (B posits (B1 en Sulfide	13) 5) Odor (C1)			Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Wetland Hy Primary Indi Surface High W Saturati Water M Sedime	wdrology Indicatoricators (minimum of water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2)		Water-S Aquatic Marl De Hydroge Oxidized	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp	13) 5) Odor (C1) heres on Liv	•	(C3) (C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Wetland Hy Primary Indi Surface High W Saturati Water M Sedime Drift De	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		Water-S Aquatic Marl De Hydroge Oxidizer Presence	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu	13) 5) Odor (C1) heres on Liv loced Iron (C	4)	(C3) (C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Wetland Hy Primary Indi Surface High W Saturati Water M Sedime Drift De	wdrology Indicatoricators (minimum of water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2)		Water-S Aquatic Marl De Hydroge Oxidizer Presence	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu	13) 5) Odor (C1) heres on Liv	4)	— [Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		Water-S Aquatic Marl De Hydroge Oxidized Presenc	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu	13) 5) Odor (C1) heres on Liv ced Iron (C ction in Tille	4)	(C3) (C3) (C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) posits (B3) at or Crust (B4)	of one is red	Water-S Aquatic Marl De Hydroge Oxidizee Presenc Recent Thin Mu	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu Iron Redu	13) 5) Odor (C1) heres on Liviced Iron (C ction in Tille	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) at or Crust (B4) posits (B5)	of one is red	Water-S Aquatic Aquatic Marl De Hydroge Oxidizer Presenc Recent Thin Mu (B7) Water-S	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu Iron Redu ick Surfac	13) 5) Odor (C1) heres on Liviced Iron (C ction in Tille	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De	e Water (A1) fater Table (A2) fon (A3) Marks (B1) fon Deposits (B2) frosits (B3) fat or Crust (B4) frosits (B5) fon Visible on Aeri	of one is red	Water-S Aquatic Aquatic Marl De Hydroge Oxidizer Presenc Recent Thin Mu (B7) Water-S	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu Iron Redu ick Surfac	13) 5) Odor (C1) heres on Liviced Iron (C ction in Tille	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) at or Crust (B4) posits (B5) ion Visible on Aeri	of one is red	Water-S Aquatic Aquatic Marl De Hydroge Oxidizer Presenc Recent Thin Mu (B7) Water-S	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp ce of Redu Iron Redu ick Surfac	13) 5) Odor (C1) heres on Liviced Iron (C ction in Tille	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hy Primary Indi Surface High W Saturati Water M Sedime Drift De Algal M Iron De Inundat Sparsel	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) at or Crust (B4) posits (B5) ion Visible on Aeri by Vegetated Conc	of one is red	Water-S Aquatic Aquatic Marl De Hydroge Oxidizer Presenc Recent Thin Mu (B7) Water-S	Stained Le: Fauna (B posits (B1 en Sulfide d Rhizospi de of Redu Iron Redu ack Surface Explain in I	13) 5) Odor (C1) heres on Lived Iron (C ction in Tille e (C7) Remarks)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Inundat Sparsel	e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) at or Crust (B4) posits (B5) ion Visible on Aeri by Vegetated Conc	of one is red	Water-S Aquatic Aquatic Marl De Hydroge Oxidizer Presenc Recent Thin Mu (B7) Other (E	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizosp de of Redu Iron Redu Iron Redu Ick Surface Explain in I	13) 5) Odor (C1) heres on Liv need Iron (C ction in Tille e (C7) Remarks)	4)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Inundat Sparsel Field Obser Surface Water Table	with the control of t	of one is red	Water-SAquaticAquaticAquaticAteriorOxidizerPresenceRecentThin MuOther (E	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizospice of Redu Iron Redu ick Surface Explain in I	13) 5) Odor (C1) heres on Liviced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hy Primary Indi Surface High W Saturati Water M Sedime Drift De Algal M Iron De Inundat Sparsel	water (A1) ater Table (A2) ion (A3) Marks (B1) at or Crust (B4) posits (B5) ion Visible on Aeri by Vegetated Conc water Present? Present?	of one is red	Water-S Aquatic Aquatic Marl De Hydroge Oxidizer Presenc Recent Thin Mu (B7) Other (E	Stained Lea Fauna (B posits (B1 en Sulfide d Rhizospice of Redu Iron Redu ick Surface Explain in I	13) 5) Odor (C1) heres on Liviced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Inundat Sparsel Field Obser Surface Wat Water Table Saturation P capillary frince	with the following states and the following states and the following states are states as well as the following	al Imagery eave Surfac Yes Yes	Water-SAquatic Marl De Oxidizer Presenc Recent Thin Mu (B7) Other (E e (B8) No Depth No Depth No Depth	Stained Learna (Brauna	13) 5) Odor (C1) heres on Liveced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Primary India Surface High W Saturati Water M Sedime Drift De Algal M Iron De Inundat Sparsel Field Obser Surface Water Table Saturation P capillary frince	with the following states and the following states and the following states are states as well as the following	al Imagery eave Surfac Yes Yes	Water-SAquaticAquaticAquaticAteriorOxidizerPresenceRecentThin MuOther (E	Stained Learna (Brauna	13) 5) Odor (C1) heres on Liveced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Inundat Sparsel Field Obser Surface Wat Water Table Saturation P capillary frince	with the following states and the following states and the following states are states as well as the following states are sta	al Imagery eave Surfac Yes Yes	Water-SAquatic Marl De Oxidizer Presenc Recent Thin Mu (B7) Other (E e (B8) No Depth No Depth No Depth	Stained Learna (Brauna	13) 5) Odor (C1) heres on Liveced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hy Primary Indi Surface High W Saturati Water N Sedime Drift De Algal M Iron De Inundat Sparsel Field Obser Surface Wat Water Table Saturation P capillary frince	with the following states and the following states and the following states are states as well as the following states are sta	al Imagery eave Surfac Yes Yes	Water-SAquatic Marl De Oxidizer Presenc Recent Thin Mu (B7) Other (E e (B8) No Depth No Depth No Depth	Stained Learna (Brauna	13) 5) Odor (C1) heres on Liveced Iron (C ction in Tille e (C7) Remarks)	4) d Soils (C6	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

Project/Site: Industrial Park Expansion	Municipalit	y/County: Westmorla	nd County San	npling Date: Oct 13 - 2020
pplicant/Owner <u>: MID</u>		Sampling Point: _	WL6 wet	_
nvestigator(s): Derrick Mitchell and Ryan Power	Affiliation: Boreal Envir	onmental Landform	(hillslope, terrace, etc.): NA	
ocal relief (concave, convex, none):Concave	Slope (%):0	X coord: 26269	25.3 Y coord <u>7455068.</u>	5
atum: NAD83 NBDS				
re climatic / hydrologic conditions on the site typ				
Are Vegetation, Soil, or Hydrolo	· ·	·		
Are Vegetation, Soil, or Hydrolo			needed, explain any answers in F	
				ŕ
SUMMARY OF FINDINGS – Attach s	ite map showing	sampling point	locations, transects, imp	ortant features, etc.
Hydrophytic Vegetation Present? Yes	XNo	Is the Sample	ed Area	
	X No	within a Wetl	and? Yes X No)
Wetland Hydrology Present? Yes			l Wetland Site ID:	
Remarks: (Explain alternative procedures here	or in a separate repor	t.)		
VEGETATION - Use scientific names	of plants.			
		Dominant Indicato	Dominance Test worksheet	
Tree Stratum (Plot size: 15	·	Species? Status	Number of Dominant Species	
1. Abies balsamea		YES FAC	_ That Are OBL, FACW, or FAC	C: <u>7</u> (A)
2. Acer rubrum		YES FAC	Total Number of Dominant	- (5)
Betula papyrifera var. cordifolia		FAC	_ Species Across All Strata:	(B)
4			Percent of Dominant Species	
5		= Total Cover	That Are OBL, FACW, or FAC	C: <u>100</u> (A/B)
Sapling/Shrub Stratum (Plot size: 5	· · · · · · · · · · · · · · · · · · ·	_= 10tai 00vci	Prevalence Index workshee	et:
1. Alnus incana		YES FACW	Total % Cover of:	Multiply by:
2. Abies balsamea		YES FAC	OBL species	x 1 =
3			FACW species 65	
4			FAC species 92	
5			FACU species	
6				x 5 =
	40	= Total Cover	Column Totals: 157	(A) <u>406</u> (B)
Herb Stratum (Plot size: 1	40	_= 10tai 00vci	Prevalence Index = B/A = 2.	6
1. Rubus pubescens	10	YES FAC		
2. Onoclea sensibilis	25	YES FACW	_	
3. Glyceria striata	10	YES FACW	Hydrophytic Vegetation Ind	icators:
4. Vaccinium myrtilloides	2	FAC	Rapid Test for Hydrophy	tic Vegetation
5			X Dominance Test is >50%	
6.			X Prevalence Index is ≤3.0	
7			Morphological Adaptation data in Remarks or on a	
8.			Problematic Hydrophytic	• /
9.			— I Tobiemalic Hydrophylic	vogetation (Explain)
10			_ Indicators of hydric soil and	wetland hydrology must
		= Total Cover	be present, unless disturbed	
Woody Vine Stratum (Plot size:)			
1. No woody vines			Hydrophytic	
ا ا			Vegetation	
2				No

SOIL Sampling Point: WL2 wet

Depth <u>Mar</u>		Redox Features					
Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
3						Organic	_
39 7.5YR/4/2	95	7.5YR/4/6	5			Silt	
		_					
		_					
Type: C=Concentration, D	=Depletion, R	M=Reduced Matrix,	CS=Covere	ed or Coate	ed Sand G	rains. ² L	ocation: PL=Pore Lining, M=Matrix.
lydric Soil Indicators:						Indicator	rs for Problematic Hydric Soils ³ :
Histosol (A1)		Stripped M	. ,				ast Prairie Redox (A16)
Histic Epipedon (A2)		Dark Surfa	, ,	(= =)			Mucky Peat or Peat (S3)
Black Histic (A3)		Polyvalue		, ,			-Manganese Masses (F12)
Hydrogen Sulfide (A4)		Thin Dark					dmont Floodplain Soils (F19)
Stratified Layers (A5)	urfood (A11)	Loamy Gle		(F2)			Parent Material (F21)
Depleted Below Dark SThick Dark Surface (A1)		X Depleted N	, ,	(E6)			y Shallow Dark Surface (F22)
Thick Dark Surface (AT		Redox Dar Depleted D				Oth	er (Explain in Remarks)
Sandy Mucky Mineral (S Sandy Gleyed Matrix (S	,	Depleted L					
Sandy Gleyed Matrix (C Sandy Redox (S5)	• • • •	Nedux De	prossions (. 0)			
5a, 11545/1 (50)							
Indicators of hydrophytic ve	egetation and	wetland hydrology m	ust be pres	sent, unless	s disturbe	d or problema	tic.
estrictive Layer (if obser	ved):						
Type: NA							
Depth (cm): NA						Hydric Sc	oil Present? Yes X No
Vetland Hydrology Indica							
Vetland Hydrology Indica		quired; check all that	apply)			'	•
Vetland Hydrology Indica Primary Indicators (minimun		•				_	ary Indicators (minimum of two required Surface Soil Cracks (B6)
Wetland Hydrology Indica rimary Indicators (minimun Surface Water (A1)		quired; check all that X_ Water-S		ves (B9)		_	Surface Soil Cracks (B6) Drainage Patterns (B10)
Vetland Hydrology Indica		•	tained Lea				Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Vetland Hydrology Indica Primary Indicators (minimun Surface Water (A1) High Water Table (A2)		X Water-S Aquatic	tained Lea	3)			Surface Soil Cracks (B6) Drainage Patterns (B10)
Vetland Hydrology Indica Primary Indicators (minimun Surface Water (A1) High Water Table (A2)		X Water-S Aquatic Marl De	tained Lea Fauna (B1	3) 5)			Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Vetland Hydrology Indica Primary Indicators (minimum Surface Water (A1) High Water Table (A2) X_ Saturation (A3)	n of one is rec	X Water-S Aquatic Marl De Hydroge	stained Lea Fauna (B1 posits (B15 en Sulfide (3) 5)	ing Roots		Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Vetland Hydrology Indica Primary Indicators (minimun Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	n of one is rec	X Water-S Aquatic Marl De Hydroge Oxidized	itained Lea Fauna (B1 posits (B15 en Sulfide (d Rhizosph	3) 5) Odor (C1)	-	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Vetland Hydrology Indica Primary Indicators (minimun Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	n of one is rec	X Water-S Aquatic Marl De Hydroge Oxidized Presence	stained Lea Fauna (B1 posits (B15 en Sulfide (d Rhizosph ee of Reduc	3) i) Odor (C1) eres on Liv	1)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C
High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	n of one is rec	X Water-S Aquatic Marl De Hydroge Oxidized Presenc Recent	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph ee of Reduc Iron Reduc	3) Odor (C1) eres on Liv ed Iron (C ² tion in Tille	1)	(C3)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2)
Vetland Hydrology Indicators (minimum Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	n of one is rec	X_ Water-S Aquatic Marl De Hydroge Oxidized Presend Recent I	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph te of Reduc lron Reduc ck Surface	3) Odor (C1) eres on Liv ed Iron (C ² tion in Tille	1)	(C3) 5)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Vetland Hydrology Indica Primary Indicators (minimun Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on A	n of one is rec	X_ Water-S Aquatic Marl De Hydroge Oxidized Presence Recent l Thin Mu (B7) Other (E	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph te of Reduc lron Reduc ck Surface	3) Odor (C1) eres on Liv ed Iron (C ² tion in Tille	1)	(C3) 6)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Vetland Hydrology Indica rimary Indicators (minimun Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	n of one is rec	X_ Water-S Aquatic Marl De Hydroge Oxidized Presence Recent l Thin Mu (B7) Other (E	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph te of Reduc lron Reduc ck Surface	3) Odor (C1) eres on Liv ed Iron (C ² tion in Tille	1)	(C3) 6)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Vetland Hydrology Indica Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Au Sparsely Vegetated Co	n of one is rec	X_ Water-S Aquatic Marl De Hydroge Oxidized Presence Recent l Thin Mu (B7) Other (E	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph te of Reduc lron Reduc ck Surface	3) Odor (C1) eres on Liv ed Iron (C ² tion in Tille	1)	(C3) 6)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Vetland Hydrology Indica Primary Indicators (minimum Surface Water (A1) High Water Table (A2) X Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Au Sparsely Vegetated Co	n of one is rec	X Water-S Aquatic Marl De Hydroge Oxidized Presenc Recent I Thin Mu Other (E	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph ee of Reduc Iron Reduc ck Surface Explain in R	3) ii) iii) iiiiiiiiiiiiiiiiiiiiiiiiiii	1)	(C3) 6)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C: Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Vetland Hydrology Indica Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Ac Sparsely Vegetated Co ield Observations: urface Water Present?	erial Imagery (ncave Surface	X_ Water-S Aquatic Marl De Oxidized Presend Recent I Thin Mu Other (E	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph ee of Reduc Iron Reduc ck Surface explain in R	3) Ddor (C1) eres on Liv red Iron (C ² tion in Tille (C7) emarks)	1)	(C3) 6)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Vetland Hydrology Indica Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on AcSparsely Vegetated Coileld Observations: urface Water Present?	erial Imagery (ncave Surface Yes Yes	X Water-S Aquatic Marl De Hydroge Oxidized Presend Recent I Thin Mu Other (E	stained Lea Fauna (B1 posits (B15 en Sulfide (d Rhizosph ee of Reduc lron Reduc ck Surface explain in R	3) Codor (C1) Codor (C1) Codor (C1) Codor (C2) Codor (C7) Codor (C7) Codor (C7) Codor (C7) Codor (C7) Codor (C1) Codor (C	d Soils (C	(C3) 6)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Vetland Hydrology Indica Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Anterior Sparsely Vegetated Control ield Observations: urface Water Present? //ater Table Present? aturation Present? apillary fringe)	erial Imagery (ncave Surface Yes Yes Yes X	X Water-S Aquatic Marl De Oxidized Presenc Recent Thin Mu Other (E e (B8) No Depth No Depth No Depth	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph ee of Reduc Iron Reduc ck Surface explain in R (cm): (cm): (cm):	3) i) i) i) codor (C1) eres on Liv ided Iron (C4 tion in Tiller (C7) emarks) (includes	d Soils (C	(C3) 6) Eland Hydrold	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
/etland Hydrology Indica rimary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Anticology Sparsely Vegetated Control ield Observations: urface Water Present? vater Table Present? aturation Present? apillary fringe)	erial Imagery (ncave Surface Yes Yes Yes X	X Water-S Aquatic Marl De Oxidized Presenc Recent Thin Mu Other (E e (B8) No Depth No Depth No Depth	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph ee of Reduc Iron Reduc ck Surface explain in R (cm): (cm): (cm):	3) i) i) i) codor (C1) eres on Liv ided Iron (C4 tion in Tiller (C7) emarks) (includes	d Soils (C	(C3) 6) Eland Hydrold	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Vetland Hydrology Indica Irimary Indicators (minimun Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Active Sparsely Vegetated Co ield Observations: urface Water Present? vater Table Present?	erial Imagery (ncave Surface Yes Yes Yes X	X Water-S Aquatic Marl De Oxidized Presenc Recent Thin Mu Other (E e (B8) No Depth No Depth No Depth	stained Lea Fauna (B1 posits (B15 en Sulfide C d Rhizosph ee of Reduc Iron Reduc ck Surface explain in R (cm): (cm): (cm):	3) i) i) i) codor (C1) eres on Liv ided Iron (C4 tion in Tiller (C7) emarks) (includes	d Soils (C	(C3) 6) Eland Hydrold	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)

APPENDIX C Site Photographs hive engineering

Photograph 1. Representative tree and shrub cover within WL 1 wet.

Photograph 3. Soil pit within WL 1 wet showing depleted matrix below a two cm organic layer.

Photograph 2. Representative herbaceous vegetation within WL 1 wet. $\label{eq:constraint} % \begin{subarray}{ll} \end{subarray} % \begin{subarr$

Photograph 4. Representative tree and shrub cover within WL 1 and WL 2 up. $\,$

Photograph 5. Upland ground cover for WL 1 and WL 2.

Photograph 7. Representative tree and shrub cover within WL 2 wet.

Photograph 6. Upland soil pit showing sandy soil under eight cm organic layer.

Photograph 8. Representative herbaceous vegetation within WL 2 wet.

Photograph 9. Soil pit within WL 2 wet showing depleted mucky silt matrix over depleted silt.

Photograph 11. Representative herbaceous vegetation within WL 3 wet.

Photograph 10. Representative tree and shrub cover within WL 3 wet.

Photograph 12. Soil pit within WL 3 wet showing depleted silty matrix.

Photograph 13. Representative upland tree, shrub, and ground cover for WL 3 up.

Photograph 14. Upland soil pit for WL 3 up.

Photograph 15. Representative wetland tree and shrub strata for WL 4 wet.

Photograph 16. Representative herbaceous strata for WL 4 wet.

Photograph 17. Wetland soil pit for WL 4 wet showing two layers of depleted silt.

Photograph 19. Representative upland shrub and herbaceous cover for WL 4 up.

Photograph 18. Representative upland tree strata for WL 4 up.

Photograph 20. Upland soil pit for WL 4 up.

Photograph 21. Representative tree and shrub strata for WL 5 wet.

Photograph 22. Representative herbaceous strata for WL 5 wet.

Photograph 23. Photo of soil auger in WL 5 wet embedded in deep organic layer (histosol).

Photograph 24. Representative upland tree strata in WL 5 up.

Photograph 25. Representative upland shrub and herbaceous strata for WL 5 up.

Photograph 26. Upland soil pit for WL 5 up.

Appendix D Atlantic Canada Conservation Data Centre (ACCDC) Report - April 2022

englobe

DATA REPORT 7237: MID West Moncton, NB

Prepared 14 April 2022 by J. Pender, Data Manager

CONTENTS OF REPORT

1.0 Preface

- 1.1 Data List
- 1.2 Restrictions
- 1.3 Additional Information

Map 1: Buffered Study Area

2.0 Rare and Endangered Species

- 2.1 Flora
- 2.2 Fauna

Map 2: Flora and Fauna

3.0 Special Areas

- 3.1 Managed Areas
- 3.2 Significant Areas
- Map 3: Special Areas

4.0 Rare Species Lists

- 4.1 Fauna
- 4.2 Flora
- 4.3 Location Sensitive Species
- 4.4 Source Bibliography

5.0 Rare Species within 100 km

5.1 Source Bibliography

Map 1. A 100 km buffer around the study area

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (AC CDC; www.accdc.com) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The AC CDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the AC CDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees.

Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the AC CDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

1.1 DATA LIST

Included datasets:

Filanama

rnename	
MidwMonctonNB_7237ob.xls	
MidwMonctonNB_7237ob100km.xls	s
MidwMonctonNB_7237msa.xls	

 $MidwMoncton NB_7237ff_py.xls$

Contents

Rare or legally-protected Flora and Fauna in your study area A list of Rare and legally protected Flora and Fauna within 100 km of your study area Managed and Biologically Significant Areas in your study area Rare Freshwater Fish in your study area (DFO database)

1.2 RESTRICTIONS

The AC CDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting AC CDC data, recipients assent to the following

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The AC CDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) AC CDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) AC CDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an AC CDC data response.

1.3 ADDITIONAL INFORMATION

The accompanying Data Dictionary provides metadata for the data provided.

Please direct any additional questions about AC CDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries

Sean Blaney Senior Scientist / Executive Director (506) 364-2658 sean.blaney@accdc.ca

Data Management, GIS

James Churchill Conservation Data Analyst / Field Biologist (902) 679-6146 james.churchill@accdc.ca

Animals (Fauna) John Klymko Zoologist (506) 364-2660

john.klymko@accdc.ca

Billing Jean Breau

Financial Manager / Executive Assistant (506) 364-2657

jean.breau@accdc.ca

Questions on the biology of Federal Species at Risk can be directed to AC CDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Hubert Askanas, Energy and Resource Development: (506) 453-5873.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Donna Hurlburt, NS DLF: (902) 679-6886. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NS DLF Regional Biologist:

Western: Emma Vost (902) 670-8187

Emma. Vost@novascotia.ca

Eastern: Harrison Moore (902) 497-4119 Harrison.Moore@novascotia.ca

Western: Sarah Spencer (902) 541-0081

Sarah.Spencer@novascotia.ca

Eastern: Maureen Cameron-MacMillan

(902) 295-2554

Maureen.Cameron-MacMillan@novascotia.ca

Central: Shavonne Meyer

(902) 893-0816

Shavonne.Meyer@novascotia.ca

(902) 890-1046 Kimberly.George@novascotia.ca

Central: Kimberly George

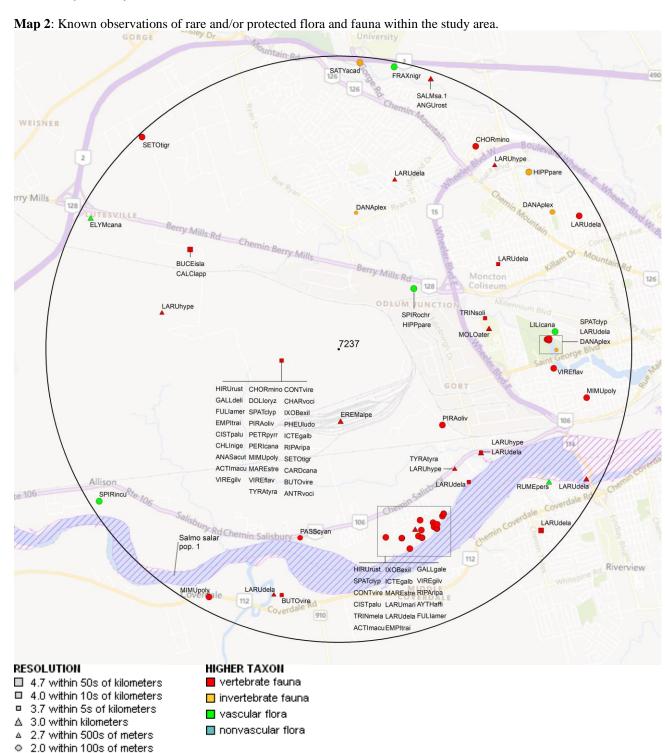
Eastern: Elizabeth Walsh

(902) 563-3370

Elizabeth.Walsh@novascotia.ca

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Garry Gregory, PEI Dept. of Communities, Land and Environment: (902) 569-7595.

2.0 RARE AND ENDANGERED SPECIES


2.1 FLORA

The study area contains 6 records of 6 vascular, no records of nonvascular flora (Map 2 and attached: *ob.xls), excluding 'location-sensitive' species.

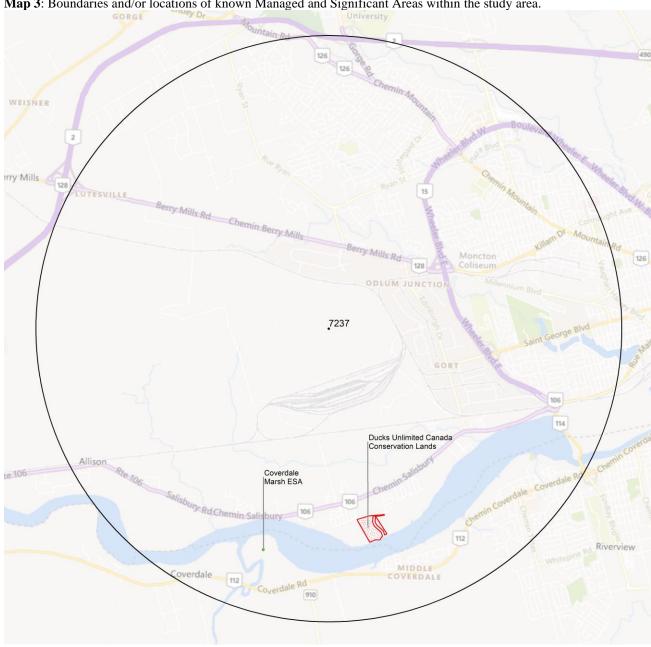
2.2 FAUNA

1.7 within 10s of meters

The study area contains 198 records of 43 vertebrate, 6 records of 3 invertebrate fauna (Map 2 and attached data files - see 1.1 Data List), excluding 'location-sensitive' species. Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

Managed Area Dignificant Area

3.0 SPECIAL AREAS


3.1 MANAGED AREAS

The GIS scan identified 1 managed area in the vicinity of the study area (Map 3 and attached file: *msa.xls).

3.2 SIGNIFICANT AREAS

The GIS scan identified 1 biologically significant site in the vicinity of the study area (Map 3 and attached file: *msa.xls).

Map 3: Boundaries and/or locations of known Managed and Significant Areas within the study area.

Data Report 7237: MID West Moncton, NB Page 5 of 28

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

4.1 FLORA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Р	Fraxinus nigra	Black Ash	Threatened			S3S4	1	4.9 ± 0.0
Ρ	Spiranthes ochroleuca	Yellow Ladies'-tresses				S1S2	1	1.6 ± 0.0
Ρ	Spiranthes incurva	Sphinx Ladies'-tresses				S1S3	1	4.8 ± 0.0
Ρ	Elymus canadensis	Canada Wild Rye				S2S3	1	4.8 ± 1.0
Ρ	Rumex persicarioides	Peach-leaved Dock				S3S4	1	4.2 ± 1.0
Ρ	Lilium canadense	Canada Lily				S3S4	1	3.7 ± 0.0

4.2 FAUNA

T.2	2 FAUNA							
	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy population	Endangered	Endangered	Endangered	S2	1	4.9 ± 1.0
Α	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	2	1.0 ± 7.0
Α	Antrostomus vociferus	Eastern Whip-Poor-Will	Threatened	Threatened	Threatened	S2B	1	1.0 ± 7.0
Α	Riparia riparia	Bank Swallow	Threatened	Threatened		S2B	16	1.0 ± 7.0
Α	Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	Threatened	S3B	5	1.0 ± 7.0
Α	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	1	4.9 ± 1.0
Α	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	3	1.0 ± 7.0
Α	Bucephala islandica	Barrow's Goldeneye	Special Concern	Special Concern	Special Concern	S2S3N,S3M	1	3.1 ± 11.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	7	1.0 ± 7.0
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	4	1.0 ± 7.0
Α	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	2	1.0 ± 7.0
Α	Fulica americana	American Coot	Not At Risk			S1B	2	1.0 ± 7.0
Α	Chlidonias niger	Black Tern	Not At Risk			S2B	1	1.0 ± 7.0
Α	Vireo flavifrons	Yellow-throated Vireo				S1?B	2	1.0 ± 7.0
Α	Tringa melanoleuca	Greater Yellowlegs				S1?B,S4S5M	2	3.5 ± 0.0
Α	Gallinula galeata	Common Gallinule				S1B	2	3.4 ± 0.0
Α	Aythya affinis	Lesser Scaup				S1B,S4M	1	3.3 ± 0.0
Α	Eremophila alpestris	Horned Lark				S1B,S4N,S5M	1	1.2 ± 1.0
Α	Butorides virescens	Green Heron				S1S2B	2	1.0 ± 7.0
Α	Empidonax traillii	Willow Flycatcher				S1S2B	5	1.0 ± 7.0
Α	Petrochelidon pyrrhonota	Cliff Swallow				S2B	3	1.0 ± 7.0
Α	Cistothorus palustris	Marsh Wren				S2B	19	1.0 ± 7.0
Α	Mimus polyglottos	Northern Mockingbird				S2B	7	1.0 ± 7.0
Α	Mareca strepera	Gadwall				S2B,S3M	3	1.0 ± 7.0
Α	Tringa solitaria	Solitary Sandpiper				S2B,S4S5M	1	2.6 ± 3.0
Α	Larus hyperboreus	Glaucous Gull				S2N	10	2.8 ± 0.0
Α	Icterus galbula	Baltimore Oriole				S2S3B	12	1.0 ± 7.0
Α	Larus delawarensis	Ring-billed Gull				S2S3B,S4N,S5M	18	3.0 ± 2.0
Α	Calcarius Iapponicus	Lapland Longspur				S2S3N,SUM	1	3.1 ± 9.0
Α	Larus marinus	Great Black-backed Gull				S3	2	3.4 ± 0.0
Α	Spatula clypeata	Northern Shoveler				S3B	12	1.0 ± 7.0
Α	Charadrius vociferus	Killdeer				S3B	4	1.0 ± 7.0
Α	Piranga olivacea	Scarlet Tanager				S3B	2	1.0 ± 7.0
Α	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	2	1.0 ± 7.0
Α	Passerina cyanea	Indigo Bunting				S3B	1	3.3 ± 0.0

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Molothrus ater	Brown-headed Cowbird				S3B	1	2.6 ± 1.0
Α	Setophaga tigrina	Cape May Warbler				S3B,S4S5M	2	1.0 ± 7.0
Α	Anas acuta	Northern Pintail				S3B,S5M	1	1.0 ± 7.0
Α	Perisoreus canadensis	Canada Jay				S3S4	1	1.0 ± 7.0
Α	Tyrannus tyrannus	Eastern Kingbird				S3S4B	6	1.0 ± 7.0
Α	Vireo gilvus	Warbling Vireo				S3S4B	17	1.0 ± 7.0
Α	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	10	1.0 ± 7.0
Α	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	2	1.0 ± 7.0
- 1	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	3	2.3 ± 0.0
- 1	Hippodamia parenthesis	Parenthesis Lady Beetle				S3	2	1.6 ± 0.0
- 1	Satyrium acadica	Acadian Hairstreak				S3	1	4.9 ± 0.0

Page 7 of 28 Data Report 7237: MID West Moncton, NB

4.3 LOCATION SENSITIVE SPECIES

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting your study area are indicated below with "YES".

New Brunswick

Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Chrysemys picta picta	Eastern Painted Turtle	Special Concern		No
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	YES
Haliaeetus leucocephalus	Bald Eagle		Endangered	YES
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.	Special Concern	Endangered	No
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat hibernaculum or bat spec	cies occurrence	[Endangered] ¹	[Endangered] ¹	No

¹ Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

4.4 SOURCE BIBLIOGRAPHY

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

# recs	CITATION
79	Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
45	Berrigan, L. 2019. Maritimes Marsh Monitoring Project 2013, 2014, 2016, 2017, and 2018 data. Bird Studies Canada, Sackville, NB.
27	eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
19	Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
11	iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.

- eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
- Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
- iNaturalist. 2018. iNaturalist Data Export 2018. iNaturalist.org and iNaturalist.ca, Web site: 11700 recs.
- Epworth, W. 2012. Species at Risk records, 2009-11. Fort Folly Habitat Recovery Program, 162 recs.
- Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca.
- Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
- Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- Dept of Fisheries & Oceans. 2001. Atlantic Salmon Maritime provinces overview for 2000. DFO.
- Ducks Unlimited Canada (DUC). 2020. DUC owned properties in Atlantic Canada (v. DUC_Lands_Sept2020). DUC.
- iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- Klymko, J. Univeriste de Moncton insect collection butterfly record dataset. Atlantic Canada Conservation Data Centre. 2017.
- Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.

5.0 RARE SPECIES WITHIN 100 KM

A 100 km buffer around the study area contains 61818 records of 153 vertebrate and 1099 records of 64 invertebrate fauna; 9496 records of 292 vascular, 2174 records of 204 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs (including "location-sensitive" species). All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Α	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	24	23.6 ± 1.0	NB
Α	Myotis septentrionalis	Northern Myotis	Endangered	Endangered	Endangered	S1	12	23.6 ± 1.0	NB
Α	Perimyotis subflavus	Tricolored Bat	Endangered	Endangered	Endangered	S1	17	13.3 ± 1.0	NB
Α	Charadrius melodus melodus	Piping Plover melodus subspecies	Endangered	Endangered	Endangered	S1B	1556	31.1 ± 0.0	NB
Α	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1B	1	94.4 ± 0.0	NS
Α	Dermochelys coriacea pop. 2	Leatherback Sea Turtle - Atlantic population	Endangered	Endangered	Endangered	S1S2N	5	55.2 ± 1.0	NB
Α	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy population	Endangered	Endangered	Endangered	S2	645	4.9 ± 1.0	NB
Α	Salmo salar pop. 7	Atlantic Salmon - Outer Bay of Fundy population	Endangered		Endangered	SNR	403	11.2 ± 0.0	NB
Α	Rangifer tarandus pop. 2	Caribou - Atlantic- Gasp - sie population	Endangered	Endangered	Extirpated	SX	2	24.2 ± 1.0	NB
Α	Lanius Iudovicianus	Loggerhead Shrike	Endangered	Endangered		SXB	1	6.4 ± 0.0	NB
Α	Sturnella magna	Eastern Meadowlark	Threatened	Threatened	Threatened	S1B	50	6.5 ± 7.0	NB
Α	Asio flammeus	Short-eared Owl	Threatened	Special Concern	Special Concern	S1S2B	47	11.8 ± 64.0	NB
Α	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	19	1.0 ± 7.0	NB
A	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B	99	6.5 ± 7.0	NB
A	Hvdrobates leucorhous	Leach's Storm-Petrel	Threatened			S1S2B	1	40.2 ± 0.0	NB
A	Antrostomus vociferus	Eastern Whip-Poor-Will	Threatened	Threatened	Threatened	S2B	27	1.0 ± 7.0	NB
A	Catharus bicknelli	Bicknell's Thrush	Threatened	Threatened	Threatened	S2B	11	11.2 ± 2.0	NB
A	Riparia riparia	Bank Swallow	Threatened	Threatened		S2B	1571	1.0 ± 7.0	NB
A	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S2S3	719	4.4 ± 0.0	NB
A	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B.S2M	283	6.0 ± 0.0	NB
A	Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	Threatened	S3B	2140	1.0 ± 7.0	NB
A	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened		Threatened	S3B,S3N	3	13.9 ± 1.0	NB
A	Tringa flavipes	Lesser Yellowlegs	Threatened			S3M	1743	8.1 ± 0.0	NB
A	Limosa haemastica	Hudsonian Godwit	Threatened			S3M	438	33.7 ± 0.0	NB
A	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	7018	4.9 ± 1.0	NB
A	Coturnicops noveboracensis	Yellow Rail	Special Concern	Special Concern	Special Concern	S1?B,SUM	5	37.0 ± 3.0	NB
	Histrionicus histrionicus pop.	Harlequin Duck - Eastern	•	•	•	*			NB
A	1	population	Special Concern	Special Concern	Endangered	S1B,S1S2N,S2M	6	43.8 ± 0.0	
Α	Hirundo rustica	Barn Swallow Atlantic Salmon - Gaspe -	Special Concern	Threatened	Threatened	S2B	1637	1.0 ± 7.0	NB NB
Α	Salmo salar pop. 12	Southern Gulf of St. Lawrence population	Special Concern		Special Concern	S2S3	12	29.3 ± 50.0	
Α	Balaenoptera physalus	Fin Whale	Special Concern	Special Concern		S2S3	1	52.3 ± 1.0	NB
A	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S2S3B,S3M	124	6.4 ± 0.0	NB
A	Bucephala islandica	Barrow's Goldeneve	Special Concern	Special Concern	Special Concern	S2S3N.S3M	112	3.1 ± 11.0	NB
A	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S3	2	93.5 ± 10.0	NB
A	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	22	21.2 ± 1.0	NB
A	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	837	1.0 ± 7.0	NB
A	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	604	6.4 ± 0.0	NB
A	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern	modicinou	S3B,S3S4N,SUM	377	9.0 ± 7.0	NB
A	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	262	1.0 ± 7.0	NB
**	Chordonos minor	Common ragnatawa	Special Concern	modicino	modicinou	335,04W	202	1.0 ± 1.0	. 10

Taxonomic	
I axononio	

Taxonomic									_
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Phalaropus lobatus	Red-necked Phalarope	Special Concern	Special Concern		S3M	23	13.2 ± 0.0	NB
Α	Podiceps auritus	Horned Grebe	Special Concern	Special Concern	Special Concern	S3N	54	31.1 ± 1.0	NB
Α	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	803	1.0 ± 7.0	NB
Α	Phocoena phocoena	Harbour Porpoise	Special Concern		Spec.Concern	S4	3	36.8 ± 0.0	NB
Α	Chrysemys picta picta	Eastern Painted Turtle	Special Concern	Special Concern		S4	31	32.2 ± 0.0	NB
Α	Hemidactylium scutatum	Four-toed Salamander	Not At Risk	•		S1?	5	59.7 ± 0.0	NB
Α	Fulica americana	American Coot	Not At Risk			S1B	65	1.0 ± 7.0	NB
		Peregrine Falcon -							NB
Α	Falco peregrinus pop. 1	anatum/tundrius	Not At Risk	Special Concern	Endangered	S1B,S3M	382	6.2 ± 1.0	
Α	Falco peregrinus	Peregrine Falcon	Not At Risk	Special Concern		S1B,S3M	1	77.1 ± 0.0	NB
A	Bubo scandiacus	Snowy Owl	Not At Risk	opoolal collecti		S1N,S2S3M	50	5.7 ± 0.0	NB
A	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B	10	10.1 ± 0.0	NB
A	Buteo lineatus	Red-shouldered Hawk	Not At Risk			S1S2B	26	6.4 ± 0.0	NB
A	Aegolius funereus	Boreal Owl	Not At Risk			S1S2B,SUM	11	45.0 ± 0.0	NB
			Not At Risk			\$132B,30W	3		NB
A	Sorex dispar	Long-tailed Shrew						32.6 ± 1.0	
A	Chlidonias niger	Black Tern	Not At Risk			S2B	191	1.0 ± 7.0	NB
A	Podiceps grisegena	Red-necked Grebe	Not At Risk			S2N,S3M	58	31.1 ± 1.0	NB
	Desmognathus fuscus pop.	Northern Dusky Salamander							NB
Α	2	 Quebec / New Brunswick 	Not At Risk			S3	1	56.3 ± 0.0	
	_	population							
Α	Sterna hirundo	Common Tern	Not At Risk			S3B,SUM	681	6.2 ± 1.0	NB
Α	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4	2	35.6 ± 1.0	NB
Α	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered	S4	1385	1.0 ± 7.0	NB
Α	Lynx canadensis	Canada Lynx	Not At Risk		Endangered	S4	23	14.5 ± 10.0	NB
Α	Canis lupus	Grey Wolf	Not At Risk		Extirpated	SX	2	64.2 ± 1.0	NB
A	Puma concolor pop. 1	Cougar - Eastern population	Data Deficient		Endangered	SU	121	8.7 ± 1.0	NB
	, ama comesie, pep	Red Knot rufa subspecies -	Data Donoton		2			0 =	NB
Α	Calidris canutus rufa	Tierra del Fuego / Patagonia	E,SC	Endangered	Endangered	S2M	726	25.9 ± 44.0	110
^	Canano Canatao Fara	wintering population	2,00	Lindarigorod	Endangorod	02.01	720	20.0 2 11.0	
۸	Marana aquatilia		E,SC			COCAD COCAN	0040	120.00	NB
A	Morone saxatilis	Striped Bass Atlantic Salmon				S3S4B,S3S4N S2S3	8640	13.9 ± 0.0 97.8 ± 0.0	NB
A	Salmo salar		E,T,SC				1		
A	Thryothorus Iudovicianus	Carolina Wren				S1	10	6.7 ± 0.0	NB
A	Salvelinus alpinus	Arctic Char				S1	3	62.9 ± 1.0	NB
Α	Vireo flavifrons	Yellow-throated Vireo				S1?B	4	1.0 ± 7.0	NB
Α	Tringa melanoleuca	Greater Yellowlegs				S1?B,S4S5M	2542	3.5 ± 0.0	NB
Α	Aythya americana	Redhead				S1B	10	18.4 ± 0.0	NB
Α	Gallinula galeata	Common Gallinule				S1B	53	3.4 ± 0.0	NB
Α	Grus canadensis	Sandhill Crane				S1B	24	33.7 ± 0.0	NB
Α	Bartramia longicauda	Upland Sandpiper				S1B	55	7.6 ± 0.0	NB
Α	Phalaropus tricolor	Wilson's Phalarope				S1B	34	13.0 ± 1.0	NB
Α	Leucophaeus atricilla	Laughing Gull				S1B	11	7.5 ± 1.0	NB
A	Rissa tridactyla	Black-legged Kittiwake				S1B	4	40.9 ± 0.0	NB
A	Fratercula arctica	Atlantic Puffin				S1B	3	54.6 ± 11.0	NB
A	Progne subis	Purple Martin				S1B	141	6.5 ± 7.0	NB
A	Aythya marila	Greater Scaup				S1B,S2N,S4M	11	33.6 ± 1.0	NB
A	, ,					S1B,S2N,S4M S1B,S2S3M	113	5.4 ± 0.0	NB NB
	Oxyura jamaicensis	Ruddy Duck							
A	Aythya affinis	Lesser Scaup				S1B,S4M	178	3.3 ± 0.0	NB
A	Eremophila alpestris	Horned Lark				S1B,S4N,S5M	70	1.2 ± 1.0	NB
A	Sterna paradisaea	Arctic Tern				S1B,SUM	25	27.5 ± 7.0	NB
A	Chroicocephalus ridibundus	Black-headed Gull				S1N,S2M	17	6.6 ± 0.0	NB
A	Branta bernicla	Brant				S1N,S2S3M	39	28.7 ± 0.0	NB
Α	Calidris alba	Sanderling				S1N,S3S4M	1624	28.7 ± 0.0	NB
Α	Butorides virescens	Green Heron				S1S2B	8	1.0 ± 7.0	NB
Α	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B	6	6.4 ± 0.0	NB
A	Empidonax traillii	Willow Flycatcher				S1S2B	86	1.0 ± 7.0	NB
	•	Northern Rough-winged							NB
Α	Stelgidopteryx serripennis	Swallow				S1S2B	6	11.7 ± 0.0	
Α	Troglodytes aedon	House Wren				S1S2B	14	9.0 ± 7.0	NB
**	1. ogrodytos acaom	LIGUGO VVICII				31025		J.U ± 1.U	ואט

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Calidris bairdii	Baird's Sandpiper				S1S2M	51	15.8 ± 0.0	NB
4	Melanitta americana	American Scoter				S1S2N,S3M	275	5.9 ± 119.0	NB
A	Petrochelidon pyrrhonota	Cliff Swallow				S2B	644	1.0 ± 7.0	NB
Ą	Cistothorus palustris	Marsh Wren				S2B	82	1.0 ± 7.0	NB
A	Mimus polyglottos	Northern Mockingbird				S2B	147	1.0 ± 7.0	NB
4	Pooecetes gramineus	Vesper Sparrow				S2B	131	6.2 ± 1.0	NB
A	Mareca strepera	Gadwall				S2B,S3M	359	1.0 ± 7.0	NB
A	Tringa solitaria	Solitary Sandpiper				S2B,S4S5M	189	2.6 ± 3.0	NB
A	Pinicola enucleator	Pine Grosbeak				S2B,S4S5N,S4S5 M	43	9.2 ± 7.0	NB
A	Phalacrocorax carbo	Great Cormorant				S2N	53	5.3 ± 2.0	NB
A	Somateria spectabilis	King Eider				S2N	5	31.5 ± 0.0	NB
١.	Larus hyperboreus	Glaucous Gull				S2N	95	2.8 ± 0.0	NB
A	Melanitta perspicillata	Surf Scoter				S2N,S4M	35	43.6 ± 0.0	NB
A	Melanitta deglandi	White-winged Scoter				S2N,S4M	22	34.0 ± 1.0	NB
4	Asio otus	Long-eared Owl				S2S3	26	9.0 ± 7.0	NB
A	Picoides dorsalis	American Three-toed				S2S3	15	21.0 ± 7.0	NB
		Woodpecker							
Ą	Toxostoma rufum	Brown Thrasher				S2S3B	30	29.0 ± 7.0	NB
Ą	lcterus galbula	Baltimore Oriole				S2S3B	144	1.0 ± 7.0	NB
Ą	Cometario mellicolmo	Common Eider				S2S3B,S2S3N,S4	228	12.1 . 00.0	NB
	Somateria mollissima					M COCOD CAN CEM		13.1 ± 80.0	ND
Ą	Larus delawarensis	Ring-billed Gull				S2S3B,S4N,S5M	466	3.0 ± 2.0	NB
A	Pluvialis dominica	American Golden-Plover				S2S3M	224	26.0 ± 0.0	NB
Ą	Calcarius Iapponicus	Lapland Longspur				S2S3N,SUM	44	3.1 ± 9.0	NB
Ą	Larus marinus	Great Black-backed Gull				S3	456	3.4 ± 0.0	NB
A	Picoides arcticus	Black-backed Woodpecker				S3	80	9.0 ± 7.0	NB
A	Loxia curvirostra	Red Crossbill				S3	174	9.0 ± 7.0	NB
A	Spinus pinus	Pine Siskin				S3	459	8.4 ± 0.0	NB
A	Salvelinus namaycush	Lake Trout				S3	1	25.3 ± 0.0	NB
A	Sorex maritimensis	Maritime Shrew				S3	142	47.4 ± 1.0	NB
A	Spatula clypeata	Northern Shoveler				S3B	475	1.0 ± 7.0	NB
4	Charadrius vociferus	Killdeer				S3B	1018	1.0 ± 7.0	NB
Ą	Tringa semipalmata	Willet				S3B	1122	5.2 ± 0.0	NB
Ą	Cepphus grylle	Black Guillemot				S3B	69	41.1 ± 5.0	NB
Ą	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B	149	6.4 ± 0.0	NB
4	Myiarchus crinitus	Great Crested Flycatcher				S3B	99	9.0 ± 7.0	NB
Ą	Piranga olivacea	Scarlet Tanager				S3B	65	1.0 ± 7.0	NB
A	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	790	1.0 ± 7.0	NB
Ą	Passerina cyanea	Indigo Bunting				S3B	60	3.3 ± 0.0	NB
4	Molothrus ater	Brown-headed Cowbird				S3B	318	2.6 ± 1.0	NB
4	Setophaga tigrina	Cape May Warbler				S3B,S4S5M	318	1.0 ± 7.0	NB
Ą	Mergus serrator	Red-breasted Merganser				S3B,S4S5N,S5M	320	9.7 ± 0.0	NB
A	Anas acuta	Northern Pintail				S3B,S5M	164	1.0 ± 7.0	NB
Ä	Anser caerulescens	Snow Goose				S3M	25	5.9 ± 5.0	NB
Α	Numenius phaeopus hudsonicus	Whimbrel				S3M	256	26.5 ± 0.0	NB
A	Arenaria interpres	Ruddy Turnstone				S3M	1057	8.1 ± 0.0	NB
٦ 4	Calidris pusilla	Semipalmated Sandpiper				S3M	2706	7.8 ± 0.0	NB
						S3M			NB
A A	Calidris melanotos	Pectoral Sandpiper Short-billed Dowitcher				S3M	476 1435	5.7 ± 18.0 8.1 ± 0.0	NB NB
	Limnodromus griseus								
Α	Phalaropus fulicarius	Red Phalarope				S3M	5	43.3 ± 0.0	NB
Α	Bucephala albeola	Bufflehead				S3N	131	11.8 ± 64.0	NB
A	Calidris maritima	Purple Sandpiper				S3N	107	13.7 ± 0.0	NB
Ą	Uria Iomvia	Thick-billed Murre				S3N,S3M	2	69.5 ± 0.0	NS
A	Perisoreus canadensis	Canada Jay				S3S4	582	1.0 ± 7.0	NB
A	Poecile hudsonicus	Boreal Chickadee				S3S4	410	9.0 ± 7.0	NB
A	Eptesicus fuscus	Big Brown Bat				S3S4	12	5.8 ± 10.0	NB

_		
- 1	axono	mic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Synaptomys cooperi	Southern Bog Lemming	30020	2	Jgai i i ot	S3S4	94	37.4 ± 1.0	NB
A	Tyrannus tyrannus	Eastern Kingbird				S3S4B	634	1.0 ± 7.0	NB
Ä	Vireo gilvus	Warbling Vireo				S3S4B	99	1.0 ± 7.0	NB
A	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	1027	1.0 ± 7.0	NB
A	Melospiza lincolnii	Lincoln's Sparrow				S3S4B,S4M	428	9.9 ± 7.0	NB
A	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	1189	1.0 ± 7.0	NB
A	Setophaga striata	Blackpoll Warbler				S3S4B,S5M	72	10.2 ± 7.0	NB
A	Pluvialis squatarola	Black-bellied Plover				S3S4M	2070	11.5 ± 0.0	NB
A	Morus bassanus	Northern Gannet				SHB	189	25.9 ± 44.0	NB
Ī	Bombus bohemicus	Ashton Cuckoo Bumble Bee	Endangered	Endangered		S1	6	17.8 ± 5.0	NB
I	Gomphurus ventricosus	Skillet Clubtail	Endangered	Endangered	Endangered	S2	2	52.3 ± 0.0	NB
i İ	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	246	2.3 ± 0.0	NB
I	Cicindela marginipennis	Cobblestone Tiger Beetle	Special Concern	Endangered	Endangered	S2S3	92	87.4 ± 0.0	NB
I	Ophiogomphus howei	Pygmy Snaketail	Special Concern	Special Concern	Special Concern	S2S3	11	77.9 ± 0.0	NB
i	Alasmidonta varicosa	Brook Floater	Special Concern	Special Concern	Special Concern	S3	34	12.9 ± 1.0	NB
İ	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S3	25	62.4 ± 0.0	NB
i	Bombus terricola	Yellow-banded Bumble Bee	Special Concern	Special Concern	Opodiai Concom	S4	169	22.4 ± 0.0	NB
	Coccinella transversoguttata		•	Opcolal Collectii					NB
I	richardsoni	Transverse Lady Beetle	Special Concern			SH	31	5.9 ± 0.0	
] •	Appalachina sayana sayana Erora laeta	Spike-lip Crater Snail	Not At Risk			S3? S1	1 1	79.4 ± 1.0 9.1 ± 1.0	NB NB
1		Early Hairstreak				S1 S1	10	79.7 ± 1.0	NB
! !	Leucorrhinia patricia	Canada Whiteface Greenish Blue				S1 S1S2	2	79.7 ± 1.0 23.3 ± 7.0	NB NB
!	Icaricia saepiolus					\$152 \$2	2	23.3 ± 7.0 71.3 ± 0.0	NB NB
1	Cicindela ancocisconensis	Appalachian Tiger Beetle				S2 S2	2	17.3 ± 0.0 17.1 ± 2.0	NB NB
!	Strymon melinus	Gray Hairstreak				S2 S2	2	17.1 ± 2.0 17.2 ± 0.0	NB NB
!	Somatochlora brevicincta	Quebec Emerald				S2 S2S3	1	93.4 ± 1.0	NB NB
ı	Chrysops delicatulus	Delicate Deer Fly Unicoloured Long-horned							NB NB
I	Psyrassa unicolor	Beetle				S3	1	38.7 ± 0.0	
I	Elaphrus americanus	Boreal Elaphrus Beetle Scalloped Harp Ground				S3	1	42.9 ± 0.0	NB NB
I	Agonum crenistriatum	Beetle				S3	1	7.2 ± 1.0	
I	Agonum consimile	Consimile Ground Beetle				S3	1	7.2 ± 1.0	NB
I	Lachnocrepis parallela	Swamp Harp Ground Beetle				S3	1	41.8 ± 0.0	NB
ı	Dyschirius setosus	Bristly Pedunculate Ground				S3	3	41.8 ± 0.0	NB
	Harpalus fulvilabris	Beetle Fulvia Harpaline Beetle				S3	1	42.5 ± 0.0	NB
1	•	Tawny-bordered Harp							NB
I	Olisthopus parmatus	Ground Beetle				S3	1	45.8 ± 0.0	ND
I	Amara pallipes	Pale-footed Sun Beetle				S3	2	7.2 ± 1.0	NB
I	Carabus maeander	Meander Ground Beetle				S3	1	7.2 ± 1.0	NB
1	Carabus serratus	Serrated Ground Beetle				S3	2	5.9 ± 1.0	NB
I	Hippodamia parenthesis	Parenthesis Lady Beetle				S3	15	1.6 ± 0.0	NB
I	Xylotrechus undulatus	Spruce Zebra Beetle				S3	2	25.5 ± 1.0	NB
	Calathus gregarius	Gregarious Harp Ground				S3	1	53.8 ± 1.0	NB
		Beetle							
!	Gonioctena americana	American Aspen Beetle				S3	1	42.6 ± 0.0	NB
I	Naemia seriata	Seaside Lady Beetle				S3	9	37.0 ± 0.0	NB
l	Beckerus appressus	Compressed Click Beetle				S3	1	53.9 ± 0.0	NB
I	Saperda lateralis	Red-edged Long-horned Beetle				S3	1	63.9 ± 0.0	NS
	Trachyoida canara	Rough Flower Longhorn				62	4	46.7 . 0.0	NB
	Trachysida aspera	Beetle				S3	1	46.7 ± 0.0	
	Dicerca caudata	Tailed Jewel Borer Muttkowski's Checkered				S3	1	56.5 ± 0.0	NB NB
I	Enoclerus muttkowskii	Beetle				S3	2	6.3 ± 0.0	
I	Epargyreus clarus	Silver-spotted Skipper				S3	8	32.9 ± 0.0	NB
1	Hesperia sassacus	Indian Skipper				S3	4	38.1 ± 0.0	NB

'nх	n	ഹ	m	10

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
1	Euphyes bimacula	Two-spotted Skipper				S3	19	10.7 ± 1.0	NB
1	Papilio brevicauda	Short-tailed Swallowtail				S3	14	47.1 ± 0.0	NB
	bretonensis								ND
-	Tharsalea dospassosi	Maritime Copper				S3	108	31.2 ± 0.0	NB
1	Satyrium acadica Plebejus idas	Acadian Hairstreak Northern Blue				S3 S3	17 6	4.9 ± 0.0 68.5 ± 0.0	NB NS
i .	Plebejus idas empetri	Crowberry Blue				S3	25	41.9 ± 7.0	NB
i	Argynnis aphrodite	Aphrodite Fritillary				S3	20	5.9 ± 0.0	NB
i	Boloria bellona	Meadow Fritillary				S3	10	87.3 ± 0.0	NB
i	Boloria chariclea	Arctic Fritillary				S3	9	35.4 ± 7.0	NB
1	Nymphalis I-album	Compton Tortoiseshell				S3	9	5.8 ± 10.0	NB
1	Gomphurus vastus	Cobra Clubtail				S3	8	89.1 ± 0.0	NB
1	Ladona exusta	White Corporal				S3	1	67.4 ± 0.0	NB
1	Arigomphus furcifer	Lilypad Clubtail				S3	1	90.2 ± 0.0	NB
!	Alasmidonta undulata	Triangle Floater				S3	54	14.2 ± 1.0	NB
!	Atlanticoncha ochracea	Tidewater Mucket				S3	66	41.9 ± 1.0	NB
!	Neohelix albolabris	Whitelip Snail				S3	1	81.4 ± 0.0	NB
1	Pantala hymenaea	Spot-Winged Glider Banded Soft-winged Flower				S3B	6	31.2 ± 0.0	NB NB
I	Collops vittatus	Beetle				S3S4	1	18.4 ± 3.0	IND
1	Hemicrepidius memnonius	Memnon's Click Beetle				S3S4	3	38.7 ± 0.0	NB
i	Bolitophagus corticola	Corticolous Darkling Beetle				S3S4	1	38.7 ± 0.0	NB
i	Bombus griseocollis	Brown-belted Bumble Bee				S3S4	4	5.4 ± 0.0	NB
1	Lanthus vernalis	Southern Pygmy Clubtail				S3S4	1	42.4 ± 0.0	NB
1	Somatochlora forcipata	Forcipate Emerald				S3S4	9	35.6 ± 0.0	NB
1	Somatochlora tenebrosa	Clamp-Tipped Emerald				S3S4	8	29.3 ± 1.0	NB
N	Erioderma mollissimum	Graceful Felt Lichen	Endangered	Endangered	Endangered	SH	2	63.1 ± 1.0	NB
N	Erioderma pedicellatum	Boreal Felt Lichen - Atlantic	Endangered	Endangered	Endangered	SH	2	78.1 ± 0.0	NS
	(Atlantic pop.)	pop.	J	-	Endangoroa				
N	Pannaria lurida	Wrinkled Shingle Lichen	Threatened	Threatened		S1?	4	33.7 ± 1.0	NB
N	Anzia colpodes	Black-foam Lichen	Threatened	Threatened		S1S2	15	23.6 ± 0.0	NB
N	Fuscopannaria leucosticta	White-rimmed Shingle Lichen	Threatened			S2	66	51.9 ± 0.0	NB
N	Peltigera hydrothyria	Eastern Waterfan	Threatened	Threatened		S2S3	789	25.3 ± 0.0	NB
N	Pectenia plumbea	Blue Felt Lichen	Special Concern	Special Concern	Special Concern	S1	15	75.1 ± 1.0	NS
N	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk	opoolal collociti	opeoidi concom	S2S3	13	54.5 ± 0.0	NB
N	Aloina rigida	Aloe-Like Rigid Screw Moss				S1	1	46.0 ± 0.0	NB
	Arrhenopterum	<u> </u>				04	4		NB
N	heterostichum	One-sided Groove Moss				S1	1	83.6 ± 0.0	
N	Campylostelium saxicola	a Moss				S1	1	86.0 ± 0.0	NB
N	Dicranoweisia crispula	Mountain Thatch Moss				S1	1	53.8 ± 0.0	NB
N	Didymodon rigidulus var.	a moss				S1	1	61.1 ± 1.0	NB
	gracilis	a moss				01	•	01.1 = 1.0	
N	Zygodon viridissimus var.	a Moss				S1	1	84.4 ± 0.0	NB
	viridissimus								ND
N N	Syntrichia ruralis	a Moss Peppered Moon Lichen				S1 S1	1 14	62.0 ± 0.0 78.0 ± 0.0	NB NS
N N	Sticta fuliginosa Cladonia straminea	Reptilian Pixie-cup Lichen				S1 S1	5 5	47.2 ± 1.0	NB
N	Coccocarpia palmicola	Salted Shell Lichen				S1	1	47.2 ± 1.0 47.2 ± 1.0	NB
N	Peltigera malacea	Veinless Pelt Lichen				S1	2	58.4 ± 1.0	NB
N	Bryoria bicolor	Electrified Horsehair Lichen				S1	1	58.4 ± 1.0	NB
N	Hygrobiella laxifolia	Lax Notchwort				S1?	1	59.1 ± 1.0	NB
N	Bartramia ithyphylla	Straight-leaved Apple Moss				S1?	2	54.7 ± 1.0	NB
N	Dicranum bonjeanii	Bonjean's Broom Moss				S1?	1	98.8 ± 0.0	NS
N	Dicranum condensatum	Condensed Broom Moss				S1?	1	53.8 ± 0.0	NB
N	Entodon brevisetus	a Moss				S1?	1	53.2 ± 10.0	NB
N	Oxyrrhynchium hians	Light Beaked Moss				S1?	1	65.1 ± 0.0	NB
N	Homomallium adnatum	Adnate Hairy-gray Moss				S1?	4	30.0 ± 1.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
	Plagiothecium latebricola	Alder Silk Moss				S1?	3	60.2 ± 1.0	NB
	Rhytidium rugosum	Wrinkle-leaved Moss				S1?	2	61.1 ± 1.0	NB
l	Timmia megapolitana	Metropolitan Timmia Moss				S1?	1	99.0 ± 1.0	NS
١	Rhizomnium pseudopunctatum	Felted Leafy Moss				S1?	1	82.0 ± 0.0	NB
I	Enchylium tenax	Soil Tarpaper Lichen				S1?	2	84.8 ± 0.0	PE
I	Heterodermia squamulosa	Scaly Fringe Lichen				S1?	75	79.1 ± 1.0	NS
I	Pertusaria propingua	a Lichen				S1?	2	58.4 ± 1.0	NB
١	Rhizocarpon umbilicatum	a Lichen				S1?	2	46.3 ± 1.0	NB
Ī	Cephaloziella spinigera	Spiny Threadwort				S1S2	2	50.0 ± 0.0	NB
i	Odontoschisma francisci	Holt's Notchwort				S1S2	4	44.9 ± 0.0	NB
i	Harpanthus flotovianus	Great Mountain Flapwort				S1S2	2	46.8 ± 1.0	NB
i	Odontoschisma sphagni	Bog-Moss Flapwort				S1S2	1	94.3 ± 0.0	NB
Ī	Pallavicinia Iyellii	Lyell's Ribbonwort				S1S2	2	53.2 ± 1.0	NB
i	Radula tenax	Tenacious Scalewort				S1S2	1	56.3 ± 0.0	NB
i	Reboulia hemisphaerica	Purple-margined Liverwort				S1S2	1	61.2 ± 0.0	NB
I	Solenostoma obovatum	Egg Flapwort				S1S2	1	56.3 ± 0.0	NB
1		Acuminate Ragged Moss				S1S2 S1S2	3	56.3 ± 0.0 56.4 ± 2.0	NB
	Brachythecium acuminatum					S1S2 S1S2	1		NB
	Ptychostomum salinum	Saltmarsh Bryum						60.2 ± 1.0	
	Tortula obtusifolia	a Moss				S1S2	1	95.7 ± 0.0	NB
!	Distichium inclinatum	Inclined Iris Moss				S1S2	5	61.1 ± 1.0	NB
!	Ditrichum pallidum	Pale Cow-hair Moss				S1S2	1	51.3 ± 1.0	NB
l	Drummondia prorepens	a Moss				S1S2	1	86.1 ± 0.0	NB
l	Timmia norvegica	a moss				S1S2	3	61.3 ± 0.0	NB
1	Timmia norvegica var. excurrens	a moss				S1S2	1	61.3 ± 0.0	NB
l	Tortella humilis Pseudotaxiphyllum	Small Crisp Moss				S1S2	7	52.2 ± 1.0	NB NB
	distichaceum	a Moss				S1S2	2	29.7 ± 1.0	
N.	Umbilicaria vellea	Grizzled Rocktripe Lichen				S1S2	1	60.7 ± 1.0	NB
1	Pilophorus cereolus	Powdered Matchstick Lichen				S1S2	1	32.2 ± 5.0	NB
	Peltigera scabrosa	Greater Toad Pelt Lichen				S1S2	4	45.4 ± 1.0	NB
	Tritomaria scitula	Mountain Notchwort				S1S3	1	52.5 ± 1.0	NB
l	Amphidium mougeotii	a Moss				S2	11	50.7 ± 0.0	NB
	Anomodon viticulosus	a Moss				S2	2	36.3 ± 10.0	NB
I	Cirriphyllum piliferum	Hair-pointed Moss				S2	4	33.4 ± 1.0	NB
1	Dicranella palustris	Drooping-Leaved Fork Moss				S2	9	46.8 ± 1.0	NB
	Didymodon ferrugineus	Rusty Beard Moss				S2	1	60.9 ± 0.0	NB
	Anomodon tristis	a Moss				S2	10	53.7 ± 10.0	NB
l	Hygrohypnum bestii	Best's Brook Moss				S2	5	49.9 ± 0.0	NB
l	Hypnum pratense	Meadow Plait Moss				S2	1	89.5 ± 0.0	PE
I	Isothecium myosuroides	Slender Mouse-tail Moss				S2	2	90.2 ± 3.0	NS
١	Meesia triquetra	Three-ranked Cold Moss				S2	1	89.3 ± 100.0	NB
1	Platydictya jungermannioides	False Willow Moss				S2	4	26.2 ± 15.0	NB
1	Pohlia elongata	Long-necked Nodding Moss				S2	14	53.9 ± 0.0	NB
1	Seligeria calcarea	Chalk Brittle Moss				S2 S2	2	46.8 ± 0.0	NB
1		a Moss				S2 S2	3	26.2 ± 15.0	NB
J	Seligeria recurvata	a Moss					3 4		NB NB
-	Seligeria brevifolia					S2		84.1 ± 0.0	
1	Sphagnum flexuosum	Flexuous Peatmoss				S2	4	50.2 ± 0.0	NB
1	Tayloria serrata	Serrate Trumpet Moss				S2	7	30.8 ± 100.0	NB
1	Tetrodontium brownianum	Little Georgia				S2	13	53.7 ± 10.0	NB
l	Thamnobryum alleghaniense	a Moss				S2	25	24.8 ± 0.0	NB
I	Tortula mucronifolia	Mucronate Screw Moss				S2	1	98.9 ± 3.0	NS
1	Ulota phyllantha	a Moss				S2	4	61.1 ± 0.0	NB
١	Anomobryum julaceum	Slender Silver Moss				S2	4	61.1 ± 1.0	NB
1	Cladonia macrophylla	Fig-leaved Lichen				S2	3	53.1 ± 1.0	NB
	Leptogium milligranum	Stretched Jellyskin Lichen				S2	21	31.8 ± 0.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Nephroma laevigatum	Mustard Kidney Lichen				S2	31	70.7 ± 0.0	NS
N	Anacamptodon splachnoides	a Moss				S2?	3	61.3 ± 1.0	NB
N	Andreaea rothii	Dusky Rock Moss				S2?	5	50.7 ± 0.0	NB
N	Anomodon minor	Blunt-leaved Anomodon Moss				S2?	1	35.9 ± 1.0	NB
N	Ptychostomum pallescens	Tall Clustered Bryum				S2?	1	68.0 ± 100.0	NB
N	Dichelyma capillaceum	Hairlike Dichelyma Moss				S2?	1	53.1 ± 3.0	NB
N	Hygrohypnum montanum	a Moss				S2?	2	50.1 ± 1.0	NB
N	Schistostega pennata	Luminous Moss				S2?	1	85.9 ± 100.0	NB
N	Seligeria diversifolia	a Moss				S2?	2	88.8 ± 0.0	NB
N	Sphagnum angermanicum	a Peatmoss				S2?	2	53.1 ± 10.0	NB
N	Trichodon cylindricus	Cylindric Hairy-teeth Moss				S2?	2	26.2 ± 15.0	NB
N	Plagiomnium rostratum	Long-beaked Leafy Moss				S2?	5	56.8 ± 0.0	NB
N	Ramalina labiosorediata	Chalky Ramalina Lichen				S2?	1	58.3 ± 1.0	NB
N	Collema leptaleum	Crumpled Bat's Wing Lichen				S2?	11	83.5 ± 0.0	PE
N	Imshaugia placorodia	Eyed Starburst Lichen				S2?	1	85.0 ± 0.0	PE
N	Nephroma arcticum	Arctic Kidney Lichen				S2?	2	56.6 ± 1.0	NB
N	Ptychostomum cernuum	Swamp Bryum				S2S3	1	61.1 ± 0.0	NB
N	Buxbaumia aphylla	Brown Shield Moss				S2S3	1	80.9 ± 0.0	NB
IN.	Бихраиппа арпупа					3233	'	00.9 ± 0.0	NB
N	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	4	39.0 ± 5.0	NB
N	Drepanocladus polygamus	Polygamous Hook Moss				S2S3	2	53.4 ± 0.0	NB
N	Palustriella falcata	Curled Hook Moss				S2S3	2	58.3 ± 0.0	NB
N	Didymodon rigidulus	Rigid Screw Moss				S2S3	8	56.4 ± 2.0	NB
N	Ephemerum serratum	a Moss				S2S3	3	60.8 ± 0.0	NB
N	Isopterygiopsis pulchella	Neat Silk Moss				S2S3	7	51.5 ± 1.0	NB
N	Orthotrichum elegans	Showy Bristle Moss				S2S3	2	32.8 ± 0.0	NB
N	Pohlia proligera	Cottony Nodding Moss				S2S3	13	26.2 ± 15.0	NB
N	Codriophorus fascicularis	Clustered Rock Moss				S2S3	3	53.8 ± 0.0	NB
N	Bucklandiella affinis	Lesser Rock Moss				S2S3	11	45.1 ± 0.0	NB
N	Saelania glaucescens	Blue Dew Moss				S2S3	2	53.8 ± 0.0	NB
N	Sphagnum centrale	Central Peat Moss				S2S3	8	47.7 ± 1.0	NB
N	Sphagnum subfulvum	a Peatmoss				S2S3	3	79.7 ± 0.0	NB
N	Taxiphyllum deplanatum	Imbricate Yew-leaved Moss				S2S3	2	56.3 ± 1.0	NB
N	Zygodon viridissimus	a Moss				S2S3	3	56.3 ± 1.0	NB
N	Schistidium agassizii	Elf Bloom Moss				S2S3	3	47.9 ± 1.0	NB
N	Loeskeobryum brevirostre	a Moss				S2S3	13	50.7 ± 0.0	NB
N	Cyrtomnium	a MOSS				3233	13	30.7 ± 0.0	NB
N	•	Short-pointed Lantern Moss				S2S3	7	47.0 ± 0.0	IND
N I	hymenophylloides	Northern Coral Lichen				S2S3	13	46.4 . 0.0	NB
N	Sphaerophorus globosus					5253	13	46.4 ± 0.0	NB NB
N	Cetrariella delisei	Snowbed Icelandmoss Lichen				S2S3	2	40.2 ± 0.0	
N	Cladonia acuminata	Scantily Clad Pixie Lichen				S2S3	2	60.7 ± 1.0	NB
N	Cladonia ramulosa	Bran Lichen				S2S3	4	55.2 ± 1.0	NB
N	Cladonia sulphurina	Greater Sulphur-cup Lichen				S2S3	5	45.2 ± 1.0	NB
N	Dendriscocaulon umhausense	a lichen				S2S3	1	86.4 ± 0.0	NB
N	Parmeliopsis ambigua	Green Starburst Lichen				S2S3	1	63.7 ± 1.0	NB
N	Polychidium muscicola	Eyed Mossthorns Woollybear Lichen				S2S3	4	41.3 ± 0.0	NB
N	Hypnum curvifolium	Curved-leaved Plait Moss				S3	8	50.7 ± 0.0	NB
N	Tortella fragilis	Fragile Twisted Moss				S3	1	61.3 ± 0.0	NB
N	Schistidium maritimum	a Moss				S3	6	57.6 ± 0.0	NB
	Hymenostylium								NB
N	recurvirostrum	Curve-beak Beardless Moss				S3	6	61.6 ± 1.0	
N	Collema nigrescens	Blistered Tarpaper Lichen				S3	6	78.3 ± 3.0	NS
	0-1	Mondland Oul Linhan				CO	6	60.7 ± 1.0	NB
N	Solorina saccata	Woodland Owl Lichen				S3 S3	O	00.7 ± 1.0	ND

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Normandina pulchella	Rimmed Elf-ear Lichen				S3	23	55.2 ± 1.0	NB
1	Cladonia farinacea	Farinose Pixie Lichen				S3	5	54.3 ± 1.0	NB
٧	Cladonia strepsilis	Olive Cladonia Lichen				S3	1	99.6 ± 0.0	NB
٧	Hypotrachyna catawbiensis	Powder-tipped Antler Lichen				S3	17	60.2 ± 0.0	NB
N	Scytinium lichenoides	Tattered Jellyskin Lichen				S3	6	60.7 ± 1.0	NB
١	Nephroma bellum	Naked Kidney Lichen				S3	5	52.9 ± 1.0	NB
١	Peltigera degenii	Lustrous Pelt Lichen				S3	3	55.2 ± 1.0	NB
I	Leptogium laceroides	Short-bearded Jellyskin				S3	14	48.0 ± 1.0	NB
	, •	Lichen				S3			NB
1	Peltigera membranacea	Membranous Pelt Lichen					24	24.6 ± 0.0	
ļ	Cladonia botrytes	Wooden Soldiers Lichen				S3	3	41.4 ± 0.0	NB
1	Cladonia carneola	Crowned Pixie-cup Lichen				S3	2	54.5 ± 0.0	NB
	Cladonia deformis	Lesser Sulphur-cup Lichen				S3	9	51.7 ± 0.0	NB
1	Aulacomnium androgynum	Little Groove Moss				S3?	10	26.2 ± 15.0	NB
l	Ptychostomum inclinatum	Blunt-tooth Thread Moss				S3?	3	60.9 ± 0.0	NB
1	Dicranella rufescens	Red Forklet Moss				S3?	1	61.3 ± 0.0	NB
1	Rhytidiadelphus loreus	Lanky Moss				S3?	3	60.8 ± 0.0	NB
1	Sphagnum lescurii	a Peatmoss				S3?	8	47.2 ± 1.0	NB
1	Rostania occultata	Crusted Tarpaper Lichen				S3?	4	75.7 ± 2.0	NS
1	Scytinium subtile	Appressed Jellyskin Lichen				S3?	12	69.7 ± 0.0	PE
1	Peltigera neckeri	Black-saddle Pelt Lichen				S3?	1	57.0 ± 5.0	NB
١	Stereocaulon subcoralloides	Coralloid Foam Lichen				S3?	1	58.3 ± 1.0	NB
١	Anomodon rugelii	Rugel's Anomodon Moss				S3S4	1	100.0 ± 0.0	NS
I	Barbula convoluta	Lesser Bird's-claw Beard Moss				S3S4	1	49.5 ± 15.0	NB
N	Brachytheciastrum velutinum	Velvet Ragged Moss				S3S4	2	53.8 ± 1.0	NB
Ĭ	Calliergon giganteum	Giant Spear Moss				S3S4	1	86.2 ± 0.0	PE
Ĭ	Dicranella cerviculata	a Moss				S3S4	3	50.6 ± 2.0	NB
I	Dicranella varia	a Moss				S3S4	2	78.8 ± 0.0	PE
J	Dicraniella varia Dicranum majus	Greater Broom Moss				S3S4	23	47.0 ± 0.0	NB
-		a Dicranum Moss				S3S4	23	47.0 ± 0.0 31.6 ± 0.0	NB
N	Dicranum leioneuron								
	Encalypta ciliata	Fringed Extinguisher Moss				S3S4	3	60.9 ± 0.0	NB
1	Fissidens bryoides	Lesser Pocket Moss				S3S4	5	57.6 ± 0.0	NB
l	Elodium blandowii	Blandow's Bog Moss				S3S4	1	85.2 ± 0.0	PE
1	Heterocladium dimorphum	Dimorphous Tangle Moss				S3S4	6	32.8 ± 0.0	NB
l	Isopterygiopsis muelleriana	a Moss				S3S4	19	47.0 ± 0.0	NB
١	Myurella julacea	Small Mouse-tail Moss				S3S4	2	61.3 ± 0.0	NB
١	Orthotrichum speciosum	Showy Bristle Moss				S3S4	6	62.7 ± 4.0	NB
	Physcomitrium pyriforme	Pear-shaped Urn Moss				S3S4	3	40.0 ± 0.0	NB
	Pogonatum dentatum	Mountain Hair Moss				S3S4	4	58.8 ± 0.0	NS
1	Sphagnum compactum	Compact Peat Moss				S3S4	6	39.4 ± 0.0	NB
1	Sphagnum torreyanum	a Peatmoss				S3S4	2	67.4 ± 0.0	NB
1	Sphagnum austinii	Austin's Peat Moss				S3S4	1	56.7 ± 0.0	NS
1	Sphagnum contortum	Twisted Peat Moss				S3S4	1	67.4 ± 0.0	NB
1	Sphagnum quinquefarium	Five-ranked Peat Moss				S3S4	2	32.8 ± 0.0	NB
1	Tetraphis geniculata	Geniculate Four-tooth Moss				S3S4	14	47.9 ± 1.0	NB
١	Tetraplodon angustatus	Toothed-leaved Nitrogen Moss				S3S4	2	76.0 ± 0.0	NS
١	Weissia controversa	Green-Cushioned Weissia				S3S4	1	61.6 ± 1.0	NB
Ĭ	Abietinella abietina	Wiry Fern Moss				S3S4	1	61.3 ± 0.0	NB
N	Trichostomum tenuirostre	Acid-Soil Moss				S3S4	5	53.8 ± 0.0	NB
1	Rauiella scita	Smaller Fern Moss				S3S4	1	78.6 ± 0.0	NB
1	Pannaria rubiginosa	Brown-eyed Shingle Lichen				S3S4	22	60.9 ± 1.0	NB
!	Pseudocyphellaria holarctica	Yellow Specklebelly Lichen				S3S4	88	19.2 ± 0.0	NB
١	Ramalina thrausta	Angelhair Ramalina Lichen				S3S4	13	45.4 ± 1.0	NB
٧	Hypogymnia vittata	Slender Monk's Hood Lichen				S3S4	29	45.4 ± 1.0	NB
N	Scytinium teretiusculum	Curly Jellyskin Lichen				S3S4	12	78.4 ± 0.0	PE
N	Montanelia panniformis	Shingled Camouflage Lichen				S3S4	5	47.4 ± 1.0	NB

			mic	
a_{Λ}	vı	v	1110	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Cladonia floerkeana	Gritty British Soldiers Lichen				S3S4	5	54.5 ± 1.0	NB
N	Xylopsora friesii	a Lichen				S3S4	1	60.7 ± 1.0	NB
N	Nephroma parile	Powdery Kidney Lichen				S3S4	18	18.3 ± 0.0	NB
N	Protopannaria pezizoides	Brown-gray Moss-shingle				S3S4	27	24.1 ± 0.0	NB
N		Lichen				S3S4	35	24.0 ± 0.0	NB
	Usnea strigosa	Bushy Beard Lichen							
N	Stereocaulon condensatum	Granular Soil Foam Lichen				S3S4	9	25.2 ± 0.0	NB
N	Stereocaulon paschale	Easter Foam Lichen				S3S4	2	43.7 ± 1.0	NB
N	Pannaria conoplea	Mealy-rimmed Shingle Lichen				S3S4	39	56.3 ± 0.0	NB
N	Physcia tenella	Fringed Rosette Lichen				S3S4	6	55.2 ± 0.0	NB
N	Anaptychia palmulata	Shaggy Fringed Lichen				S3S4	81	36.3 ± 0.0	NB
N	Peltigera neopolydactyla	Undulating Pelt Lichen				S3S4	10	47.2 ± 1.0	NB
N	Cladonia cariosa	Lesser Ribbed Pixie Lichen				S3S4	4	42.7 ± 0.0	NB
N	Hypocenomyce scalaris	Common Clam Lichen				S3S4	1	58.3 ± 1.0	NB
N	Leucodon brachypus	a Moss				SH	13	49.4 ± 1.0	NB
N	Splachnum luteum	Yellow Collar Moss				SH	1	68.0 ± 100.0	NB
N	[.] helia hirtella	a Moss				SH	1	89.3 ± 100.0	NB
V	Cyrto-hypnum minutulum	Tiny Cedar Moss				SH	3	58.6 ± 10.0	NB
P	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	62	35.2 ± 1.0	NB
Р	Symphyotrichum	Gulf of St Lawrence Aster	Threatened	Threatened	Endangered	S1	50	76.0 ± 0.0	NB
Р	laurentianum	Black Ash	Threatened		-	S3S4	407	4.9 ± 0.0	NB
P P	Fraxinus nigra			0	Endonesia d		407		
Р	Isoetes prototypus	Prototype Quillwort	Special Concern	Special Concern	Endangered	S1	3	95.3 ± 0.0	NS
Р	Lechea maritima var. subcylindrica	Beach Pinweed	Special Concern	Special Concern	Special Concern	S2	2638	46.2 ± 0.0	NB
P	Symphyotrichum subulatum	Bathurst Aster - Bathurst	Not At Risk		Endangered	S2	20	60.2 ± 0.0	NB
	(Bathurst pop)	pop.							
P	Cryptotaenia canadensis	Canada Honewort				S1	1	64.3 ± 1.0	NB
P	Antennaria parlinii ssp. fallax	Parlin's Pussytoes				S1	5	96.1 ± 1.0	NB
D	Bidens discoidea	Swamp Beggarticks				S1	1	79.9 ± 0.0	NB
>	Pseudognaphalium obtusifolium	Eastern Cudweed				S1	28	50.8 ± 5.0	NB
Р	Hieracium paniculatum	Panicled Hawkweed				S1	2	91.8 ± 0.0	NB
P	Solidago multiradiata	Multi-rayed Goldenrod				S1	19	28.1 ± 0.0	NB
	Symphyotrichum subulatum	·				_			NB
P	(non-Bathurst pop)	Annual Saltmarsh Aster				S1	12	80.3 ± 0.0	ND
P	Barbarea orthoceras	American Yellow Rocket				S1	1	73.4 ± 1.0	NB
Р	Cardamine parviflora	Small-flowered Bittercress				S1	11	88.3 ± 0.0	NS
Р	Draba arabisans	Rock Whitlow-Grass				S1	39	54.4 ± 0.0	NB
P	Draba glabella	Rock Whitlow-Grass				S1	8	61.0 ± 0.0	NB
P	Stellaria crassifolia	Fleshy Stitchwort				S1	3	30.1 ± 5.0	NB
Р	Chenopodiastrum simplex	Maple-leaved Goosefoot				S1	6	29.6 ± 5.0	NB
Р	Blitum capitatum	Strawberry-Blite				S1	2	89.6 ± 1.0	NB
Р	Suaeda rolandii	Roland's Sea-Blite				S1	17	23.5 ± 1.0	NB
r P	Hypericum virginicum	Virginia St. John's-wort				S1	1	60.0 ± 0.0	NS
P	Corema conradii	Broom Crowberry				S1	13	99.0 ± 0.0	PE
r P	Vaccinium boreale	Northern Blueberry				S1	5	40.1 ± 1.0	NB
r P	Vaccinium corymbosum	Highbush Blueberry				S1	1	58.6 ± 0.0	NS
P	Euphorbia polygonifolia	Seaside Spurge				S1	15	73.5 ± 0.0	NB
r P	Lespedeza capitata	Round-headed Bush-clover				S1	11	73.5 ± 0.0 89.9 ± 0.0	NB
r P	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1	2	75.4 ± 5.0	NS
P P						S1 S1	1	75.4 ± 5.0 61.9 ± 0.0	NS NB
P	Polygonum douglasii	Douglas Knotweed							NB NB
P P	Lysimachia quadrifolia	Whorled Yellow Loosestrife				S1	4	90.9 ± 0.0	
	Primula laurentiana	Laurentian Primrose				S1	48	54.3 ± 3.0	NB
P	Amelanchier fernaldii	Fernald's Serviceberry				S1	2	22.6 ± 1.0	NB
P	Crataegus jonesiae	Jones' Hawthorn				S1	1	70.3 ± 1.0	NB
P	Dryas integrifolia	Entire-leaved Mountain				S1	15	28.0 ± 3.0	NB

Taxono	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Potentilla canadensis	Avens Canada Cinquefoil				S1	1	79.7 ± 0.0	NB
r P									
	Rubus flagellaris	Northern Dewberry				S1	3	52.2 ± 1.0	NB
Р	Salix myrtillifolia	Blueberry Willow				S1	25	28.7 ± 0.0	NB
Р	Saxifraga paniculata ssp. laestadii	Laestadius' Saxifrage				S1	42	58.4 ± 0.0	NB
Р	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	1	96.8 ± 2.0	NS
Р	Carex annectens	Yellow-Fruited Sedge				S1	3	37.3 ± 0.0	NB
P	Carex atlantica ssp. atlantica	Atlantic Sedge				S1	8	52.1 ± 0.0	NB
P	Carex backii	Rocky Mountain Sedge				S1	3	32.4 ± 0.0	NB
Р	Carex merritt-fernaldii	Merritt Fernald's Sedge				S1	1	32.9 ± 0.0	NB
Р	Carex scirpoidea	Scirpuslike Sedge				S1	6	65.9 ± 0.0	NB
Р	Carex sterilis	Sterile Sedge				S1	1	35.5 ± 2.0	NB
Р	Carex grisea	Inflated Narrow-leaved				S1	12	65.4 ± 5.0	NB
Р	Scirpus pendulus	Sedge Hanging Bulrush				S1	9	35.0 ± 0.0	NB
Р	Sisyrinchium angustifolium	Narrow-leaved Blue-eyed-				S1	1	68.3 ± 5.0	NS
P	Juncus greenei	grass Greene's Rush				S1	9	50.6 ± 0.0	NB
r P	Juncus stygius ssp.	Moor Rush				S1	17	54.4 ± 5.0	NB
Г Р	americanus								ND
•	Goodyera pubescens Malaxis monophyllos var.	Downy Rattlesnake-Plantain North American White				S1	12	28.9 ± 5.0	NB NB
Р	brachypoda	Adder's-mouth				S1	7	30.0 ± 0.0	
Р	Platanthera flava var. herbiola	Pale Green Orchid				S1	1	30.0 ± 0.0	NB
Р	Platanthera macrophylla	Large Round-Leaved Orchid				S1	12	33.3 ± 0.0	NB
P	Bromus pubescens	Hairy Wood Brome Grass				S1	1	79.8 ± 0.0	NB
Р	Calamagrostis stricta ssp. inexpansa	Slim-stemmed Reed Grass				S1	3	49.5 ± 1.0	NB
Р	Cinna arundinacea	Sweet Wood Reed Grass				S1	3	91.7 ± 1.0	NB
Р	Danthonia compressa	Flattened Oat Grass				S1	18	36.3 ± 0.0	NB
Р	Potamogeton friesii	Fries' Pondweed				S1	7	42.8 ± 0.0	NB
P	Potamogeton nodosus	Long-leaved Pondweed				S1	1	98.2 ± 0.0	NB
Р	Potamogeton strictifolius	Straight-leaved Pondweed				S1	1	96.1 ± 2.0	NB
P	Cystopteris laurentiana	Laurentian Bladder Fern				S1	i	64.5 ± 1.0	NB
Р	Dryopteris filix-mas ssp.	Britton's Male Fern				S1	2	25.0 ± 1.0	NB
P	brittonii					S1	1		NC
P P	Huperzia selago	Northern Firmoss						93.4 ± 1.0	NS
•	Selaginella rupestris	Rock Spikemoss				S1	9	58.1 ± 1.0	NB
Р	Cuscuta campestris Polygonum aviculare ssp.	Field Dodder				S1?	3	91.6 ± 5.0	NB NB
Р	neglectum	Narrow-leaved Knotweed				S1?	4	39.0 ± 0.0	
P	Carex laxiflora	Loose-Flowered Sedge				S1?	1	93.3 ± 7.0	NS
P	Spiranthes ochroleuca	Yellow Ladies'-tresses				S1S2	17	1.6 ± 0.0	NB
Р	Eriophorum russeolum ssp. albidum	Smooth-fruited Russet Cottongrass				S1S3	13	17.9 ± 0.0	NB
Р	Spiranthes cernua	Nodding Ladies'-Tresses				S1S3	21	33.6 ± 0.0	NB
Р	Spiranthes arcisepala	Appalachian Ladies'-tresses				S1S3	7	41.9 ± 0.0	NB
P	Spiranthes incurva	Sphinx Ladies'-tresses				S1S3	1	4.8 ± 0.0	NB
Г Р	Neottia bifolia	Southern Twayblade			Endangered	S2	50	4.6 ± 0.0 17.4 ± 0.0	NB
F P	Sanicula trifoliata	Large-Fruited Sanicle			Lindaligered	S2	1	97.0 ± 5.0	NB
P P	Hieracium robinsonii	Robinson's Hawkweed				S2 S2	12	97.0 ± 5.0 47.9 ± 0.0	NB NB
1	Atriplex glabriuscula var.	Nobili30113 Hawkweed				02	12	71.3 I U.U	NB
Р	franktonii	Frankton's Saltbush				S2	6	38.4 ± 0.0	טאו
Р	Hypericum x dissimulatum	Disguised St. John's-wort				S2	3	64.4 ± 1.0	NB
P	Viburnum dentatum	Southern Arrow-Wood				S2	2	42.9 ± 0.0	NB
P	Viburnum dentatum var.	Northern Arrow-Wood				S2	1	35.3 ± 0.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
	lucidum								
P	Quercus macrocarpa	Bur Oak				S2	26	64.3 ± 0.0	NB
P	Nuphar x rubrodisca	Red-disk Yellow Pond-lily				S2	15	10.0 ± 0.0	NB
P	Polygaloides paucifolia	Fringed Milkwort				S2	8	59.1 ± 1.0	NB
Р	Persicaria amphibia var. emersa	Long-root Smartweed				S2	18	78.9 ± 0.0	NB
Р	Anemone parviflora	Small-flowered Anemone				S2	9	28.9 ± 0.0	NB
P	Geum fragarioides	Barren Strawberry				S2	1	45.8 ± 1.0	NB
P	Scrophularia lanceolata	Lance-leaved Figwort				S2	2	62.0 ± 1.0	NB
Р	Carex albicans var. emmonsii	White-tinged Sedge				S2	12	14.9 ± 0.0	NB
Р	Cyperus lupulinus ssp. macilentus	Hop Flatsedge				S2	18	91.9 ± 0.0	NB
Р	Galearis rotundifolia	Small Round-leaved Orchid				S2	3	56.1 ± 0.0	NB
Р	Calypso bulbosa var. americana	Calypso				S2	3	29.6 ± 5.0	NB
Р	Coeloglossum viride	Long-bracted Frog Orchid				S2	7	21.9 ± 10.0	NB
Р	Cypripedium parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	2	26.6 ± 0.0	NB
Р	Platanthera huronensis	Fragrant Green Orchid				S2	4	54.7 ± 0.0	NB
P	Festuca subverticillata	Nodding Fescue				S2	8	81.2 ± 0.0	NS
P	Puccinellia nutkaensis	Alaska Alkaligrass				S2	2	35.9 ± 1.0	NB
P	Diphasiastrum sitchense	Sitka Ground-cedar				S2	4	34.3 ± 0.0	NB
P	Schizaea pusilla	Little Curlygrass Fern				S2	9	54.1 ± 0.0	NB
P	Coryphopteris simulata	Bog Fern				S2	16	37.7 ± 0.0	NB
Р	Toxicodendron radicans var. radicans	Eastern Poison Ivy				S2?	12	46.7 ± 0.0	NB
Р	Symphyotrichum novi-belgii var. crenifolium	New York Aster				S2?	5	50.7 ± 1.0	NB
Р	Humulus lupulus var. Iupuloides	Common Hop				S2?	2	56.1 ± 5.0	NB
P	Crataegus macrosperma	Big-Fruit Hawthorn				S2?	2	12.2 ± 0.0	NB
P	Rubus x recurvicaulis	arching dewberry				S2?	6	26.1 ± 1.0	NB
P	Osmorhiza longistylis	Smooth Sweet Cicely				S2S3	8	73.4 ± 1.0	NS
P	Bidens heterodoxa	Connecticut Beggar-Ticks				S2S3	2	89.5 ± 0.0	NB
Р	Symphyotrichum racemosum	Small White Aster				S2S3	4	79.2 ± 0.0	NB
Р	Alnus serrulata	Smooth Alder				S2S3	1	98.2 ± 0.0	NB
Р	Cuscuta cephalanthi	Buttonbush Dodder				S2S3	6	31.7 ± 0.0	NB
Р	Gentiana linearis	Narrow-Leaved Gentian				S2S3	1	51.5 ± 50.0	NB
Р	Hedeoma pulegioides	American False Pennyroyal				S2S3	5	62.2 ± 0.0	NB
P	Aphyllon uniflorum	One-flowered Broomrape				S2S3	1	99.0 ± 0.0	NS
P	Persicaria careyi	Carey's Smartweed				S2S3	11	39.1 ± 2.0	NB
P	Hepatica americana	Round-lobed Hepatica				S2S3	1	80.1 ± 1.0	NB
P	Cephalanthus occidentalis	Common Buttonbush				S2S3	1	99.3 ± 0.0	NB
P	Galium obtusum	Blunt-leaved Bedstraw				S2S3	10	31.8 ± 10.0	NB
P	Euphrasia randii	Rand's Eyebright				S2S3	8	62.5 ± 0.0	NB
P	Dirca palustris	Eastern Leatherwood				S2S3	1	19.8 ± 1.0	NB
Р	Carex comosa	Bearded Sedge				S2S3	7	49.6 ± 0.0	NB
Р	Carex rostrata	Narrow-leaved Beaked Sedge				S2S3	3	52.3 ± 0.0	NB
P	Carex vacillans	Estuarine Sedge				S2S3	4	50.8 ± 7.0	NB
P	Scirpus atrovirens	Dark-green Bulrush				S2S3	2	75.2 ± 0.0	PE
P	Juncus ranarius	Seaside Rush				S2S3	4	91.2 ± 0.0	NB
P	Allium tricoccum	Wild Leek				S2S3	34	24.8 ± 0.0	NB
Р	Corallorhiza maculata var. occidentalis	Spotted Coralroot				S2S3	14	13.7 ± 10.0	NB
P	Corallorhiza maculata var.	Spotted Coralroot				S2S3	4	53.2 ± 0.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
	maculata							,	
Р	Elymus canadensis	Canada Wild Rye				S2S3	1	4.8 ± 1.0	NB
Р	Piptatheropsis canadensis	Canada Ricegrass				S2S3	4	16.5 ± 10.0	NB
•	Puccinellia phryganodes	ŭ							NB
P	ssp. neoarctica	Creeping Alkali Grass				S2S3	2	46.7 ± 1.0	ND
P	Poa glauca	Glaucous Blue Grass				S2S3	24	56.7 ± 0.0	NB
r P						S2S3			
P P	Piptatheropsis pungens	Slender Ricegrass					5	32.1 ± 0.0	NB
•	Potamogeton vaseyi	Vasey's Pondweed				S2S3	1	73.7 ± 0.0	PE
Р	Panax trifolius	Dwarf Ginseng				S3	35	16.5 ± 0.0	NB
Р	Artemisia campestris ssp. caudata	Tall Wormwood				S3	89	49.9 ± 0.0	NB
Р	Artemisia campestris	Field Wormwood				S3	4	62.5 ± 0.0	NB
Р	Nabalus racemosus	Glaucous Rattlesnakeroot				S3	26	79.6 ± 0.0	NB
	Tanacetum bipinnatum ssp.								NB
Р	huronense	Lake Huron Tansy				S3	11	99.1 ± 0.0	
P	Ionactis linariifolia	Flax-leaved Aster				S3	22	74.4 ± 5.0	NB
P	Pseudognaphalium macounii	Macoun's Cudweed				S3	41	28.9 ± 5.0	NB
P	Impatiens pallida	Pale Jewelweed				S3	10	65.5 ± 0.0	NB
Р	Boechera stricta	Drummond's Rockcress				S3	21	32.1 ± 0.0	NB
Р	Turritis glabra	Tower Mustard				S3	1	70.9 ± 0.0	NB
P	Arabis pycnocarpa	Cream-flowered Rockcress				S3	13	30.8 ± 0.0	NB
Р	Cardamine maxima	Large Toothwort				S3	31	70.9 ± 0.0	NB
Р	Sagina nodosa	Knotted Pearlwort				S3	2	98.8 ± 0.0	PE
ı P	Sagina nodosa ssp. borealis	Knotted Pearlwort				S3	2	98.5 ± 0.0	PE
P P	Stellaria humifusa	Saltmarsh Starwort				S3	∠ 17	98.5 ± 0.0 30.3 ± 5.0	NB
P	Stellaria longifolia	Long-leaved Starwort				S3	10	39.1 ± 2.0	NB
P	Oxybasis rubra	Red Goosefoot				S3	9	35.7 ± 0.0	NB
P	Hudsonia tomentosa	Woolly Beach-heath				S3	530	40.1 ± 0.0	NB
P	Cornus obliqua	Silky Dogwood				S3	71	53.9 ± 0.0	NB
Р	Triosteum aurantiacum	Orange-fruited Tinker's Weed				S3	7	21.4 ± 0.0	NB
P	Viburnum lentago	Nannyberry				S3	1	53.3 ± 0.0	NB
Р	Rhodiola rosea	Roseroot				S3	94	53.0 ± 0.0	NB
Р	Shepherdia canadensis	Soapberry				S3	42	24.4 ± 0.0	NB
	Oxytropis campestris var.					00	72	24.4 1 0.0	NS
P		Field Locoweed				S3	27	87.1 ± 1.0	INO
P	johannensis	D 1 1D 1 1				00	•	04.4.00	NO
Р	Bartonia paniculata	Branched Bartonia				S3	2	61.1 ± 0.0	NS
Р	Bartonia paniculata ssp. iodandra	Branched Bartonia				S3	24	50.3 ± 0.0	NB
P	Geranium bicknellii	Bicknell's Crane's-bill				S3	27	5.5 ± 5.0	NB
Р	Myriophyllum farwellii	Farwell's Water Milfoil				S3	9	43.7 ± 0.0	NB
P	Myriophyllum humile	Low Water Milfoil				S3	1	50.9 ± 1.0	NB
Р	Myriophyllum quitense	Andean Water Milfoil				S3	12	96.1 ± 0.0	NB
Р	Proserpinaca palustris	Marsh Mermaidweed				S3	1	81.1 ± 0.0	NB
ı P	Fraxinus pennsylvanica	Red Ash				S3	33	17.1 ± 0.0	NB
r P	Rumex pallidus	Seabeach Dock				S3	33 7	51.0 ± 0.0	NB
P P									
•	Pyrola minor	Lesser Pyrola				S3	6	47.8 ± 1.0	NB
Р	Clematis occidentalis	Purple Clematis				S3	16	31.7 ± 0.0	NB
P	Ranunculus flabellaris	Yellow Water Buttercup				S3	1	19.6 ± 0.0	NB
P	Amelanchier canadensis	Canada Serviceberry				S3	20	32.0 ± 0.0	NB
P	Crataegus scabrida	Rough Hawthorn				S3	7	48.4 ± 0.0	NB
P	Rubus occidentalis	Black Raspberry				S3	5	37.2 ± 0.0	NB
Р	Salix myricoides	Bayberry Willow				S3	2	28.6 ± 1.0	NB
P	Salix nigra	Black Willow				S3	52	62.7 ± 0.0	NB
Р	Salix Interior	Sandbar Willow				S3	1	22.5 ± 1.0	NB
r P	Comandra umbellata	Bastard's Toadflax				S3	44	31.4 ± 0.0	NB
-	Agalinis purpurea var.	Small-flowered Purple False					74	J1.7 1 U.U	NB
P	parviflora	Foxglove				S3	58	29.4 ± 0.0	ואט
	parvillula	I UXUIUVE							

Taxono	mic

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Viola adunca	Hooked Violet		<u>-</u>	g	S3	7	32.8 ± 0.0	NB
Р	Sagittaria montevidensis ssp. spongiosa	Spongy Arrowhead				S3	68	49.5 ± 0.0	NB
Р	Symplocarpus foetidus	Eastern Skunk Cabbage				S3	128	55.1 ± 18.0	NB
P	Carex adusta	Lesser Brown Sedge				S3	14	6.0 ± 10.0	NB
Р	Carex arcta	Northern Clustered Sedge				S3	14	29.6 ± 5.0	NB
Р	Carex conoidea	Field Sedge				S3	10	37.4 ± 0.0	NB
Р	Carex conoidea Carex garberi	Garber's Sedge				S3	1	35.5 ± 0.0	NB
r P		Limestone Meadow Sedge				S3	11	37.3 ± 0.0	NB
r P	Carex granularis					S3			
	Carex gynocrates	Northern Bog Sedge				S3	1	62.0 ± 1.0	NB
P P	Carex hirtifolia	Pubescent Sedge					8	21.5 ± 0.0	NB
	Carex livida	Livid Sedge				S3	9	56.0 ± 0.0	NS
P	Carex ormostachya	Necklace Spike Sedge				S3	6	20.5 ± 1.0	NB
P	Carex plantaginea	Plantain-Leaved Sedge				S3	3	62.1 ± 0.0	NB
P	Carex rosea	Rosy Sedge				S3	26	59.3 ± 0.0	NB
P	Carex sprengelii	Longbeak Sedge				S3	2	68.9 ± 0.0	NB
P	Carex tenuiflora	Sparse-Flowered Sedge				S3	9	32.1 ± 10.0	NB
P	Cyperus esculentus var. leptostachyus	Perennial Yellow Nutsedge				S3	27	39.6 ± 0.0	NB
>	Cyperus squarrosus	Awned Flatsedge				S3	16	87.0 ± 0.0	NB
P	Eriophorum gracile	Slender Cottongrass				S3	52	31.7 ± 0.0	NB
Р	Blysmopsis rufa	Red Bulrush				S3	32	67.7 ± 0.0	NB
Р	Juncus vaseyi	Vasey Rush				S3	12	7.5 ± 0.0	NB
P	Cypripedium reginae	Showy Lady's-Slipper				S3	39	22.1 ± 0.0	NB
		Menzies' Rattlesnake-							PE
P -	Goodyera oblongifolia	plantain				S3	2	86.7 ± 0.0	
P	Neottia auriculata	Auricled Twayblade				S3	1	58.3 ± 0.0	NB
P	Platanthera grandiflora	Large Purple Fringed Orchid				S3	50	20.0 ± 0.0	NB
P	Platanthera orbiculata	Small Round-leaved Orchid				S3	21	34.6 ± 0.0	NB
>	Spiranthes lucida	Shining Ladies'-Tresses				S3	4	29.7 ± 1.0	NB
P	Bromus latiglumis	Broad-Glumed Brome				S3	28	15.8 ± 0.0	NB
P	Dichanthelium linearifolium	Narrow-leaved Panic Grass				S3	1	73.6 ± 0.0	NB
•	Schizachyrium scoparium Zizania aquatica var.	Little Bluestem				S3	31	80.0 ± 0.0	NB NB
Р	aquatica [°]	Eastern Wild Rice				S3	7	51.7 ± 0.0	
P	Adiantum pedatum	Northern Maidenhair Fern				S3	1	80.1 ± 1.0	NB
P	Asplenium trichomanes	Maidenhair Spleenwort				S3	18	32.6 ± 1.0	NB
P	Anchistea virginica	Virginia chain fern				S3	25	58.9 ± 0.0	NS
P	Woodsia alpina	Alpine Cliff Fern				S3	5	47.9 ± 0.0	NB
P	Woodsia glabella	Smooth Cliff Fern				S3	67	46.8 ± 0.0	NB
Р	Isoetes tuckermanii ssp. tuckermanii	Tuckerman's Quillwort				S3	4	50.3 ± 0.0	NB
Р	Diphasiastrum x sabinifolium	Savin-leaved Ground-cedar				S3	16	32.8 ± 1.0	NB
r P	Huperzia appressa	Mountain Firmoss				S3	48	58.2 ± 0.0	NB
P	Sceptridium dissectum	Dissected Moonwort				S3	9	28.5 ± 1.0	NB
P	Botrychium lanceolatum ssp.	Narrow Triangle Moonwort				S3	17	24.5 ± 5.0	NB
D	angustisegmentum	Lacat Manager				00	0	40.0 . 0.0	ND
P	Botrychium simplex	Least Moonwort				S3	6	43.0 ± 0.0	NB
P	Ophioglossum pusillum	Northern Adder's-tongue				S3	5	52.4 ± 1.0	NB
P	Selaginella selaginoides	Low Spikemoss				S3	8	56.7 ± 0.0	NB
P	Crataegus submollis	Quebec Hawthorn				S3?	5	91.2 ± 1.0	NB
P	Crataegus succulenta	Fleshy Hawthorn				S3?	2	79.5 ± 0.0	PE
>	Platanthera hookeri	Hooker's Orchid				S3?	38	22.1 ± 0.0	NB
P	Bidens hyperborea	Estuary Beggarticks				S3S4	33	31.8 ± 1.0	NB
P	Solidago altissima	Tall Goldenrod				S3S4	3	43.7 ± 0.0	NB
P	Symphyotrichum boreale	Boreal Aster				S3S4	14	22.4 ± 0.0	NB
Р	Betula pumila	Bog Birch				S3S4	112	17.4 ± 0.0	NB
Р	Mertensia maritima	Sea Lungwort				S3S4	11	45.8 ± 0.0	NB
		-							

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Subularia aquatica ssp. americana	American Water Awlwort				S3S4	2	51.8 ± 0.0	NB
P	Callitriche hermaphroditica	Northern Water-starwort				S3S4	8	43.0 ± 0.0	NB
Р	Viburnum edule [']	Squashberry				S3S4	14	44.9 ± 0.0	NB
Р	Crassula aquatica	Water Pygmyweed				S3S4	6	51.1 ± 0.0	NB
Р	Penthorum sedoides	Ditch Stonecrop				S3S4	36	18.4 ± 0.0	NB
Р	Elatine americana	American Waterwort				S3S4	7	49.4 ± 0.0	NB
P	Fagus grandifolia	American Beech				S3S4	204	16.6 ± 0.0	NB
Р	Geranium robertianum	Herb Robert				S3S4	98	46.7 ± 0.0	NB
P	Stachys pilosa	Hairy Hedge-Nettle				S3S4	2	95.4 ± 1.0	NB
P	Teucrium canadense	Canada Germander				S3S4	145	30.5 ± 0.0	NB
P	Utricularia gibba	Humped Bladderwort				S3S4	3	47.3 ± 0.0	NB
P	Fraxinus americana	White Ash				S3S4	223	19.4 ± 0.0	NB
Р	Epilobium strictum	Downy Willowherb				S3S4	29	21.3 ± 0.0	NB
P	Fallopia scandens	Climbing False Buckwheat				S3S4	80	15.8 ± 0.0	NB
P	Rumex persicarioides	Peach-leaved Dock				S3S4	3	4.2 ± 1.0	NB
P	Littorella americana	American Shoreweed				S3S4	4	94.1 ± 1.0	NB
P	Samolus parviflorus	Seaside Brookweed				S3S4	117	25.9 ± 0.0	NB
P	Thalictrum confine	Northern Meadow-rue				S3S4	8	84.5 ± 0.0	NB
P	Rosa palustris	Swamp Rose				S3S4 S3S4	9	49.4 ± 0.0	NB
P	Rubus pensilvanicus	Pennsylvania Blackberry				S3S4 S3S4	31	19.5 ± 0.0	NB
P									
P	Sanguisorba canadensis	Canada Burnet				S3S4	20	54.3 ± 0.0	NB
	Galium boreale	Northern Bedstraw				S3S4	8	58.3 ± 0.0	NB
P	Galium labradoricum	Labrador Bedstraw				S3S4	14	22.5 ± 0.0	NB
P	Salix pedicellaris	Bog Willow				S3S4	66	25.8 ± 0.0	NB
P	Geocaulon lividum	Northern Comandra				S3S4	42	16.9 ± 0.0	NB
P	Agalinis neoscotica	Nova Scotia Agalinis				S3S4	1	55.2 ± 0.0	NS
P	Limosella australis	Southern Mudwort				S3S4	68	25.9 ± 0.0	NB
P	Ulmus americana	White Elm				S3S4	311	7.5 ± 1.0	NB
P	Juniperus horizontalis	Creeping Juniper				S3S4	21	22.7 ± 1.0	NB
P	Carex capillaris	Hairlike Sedge				S3S4	20	56.6 ± 0.0	NB
Р	Carex eburnea	Bristle-leaved Sedge				S3S4	18	30.8 ± 100.0	NB
P	Carex exilis	Coastal Sedge				S3S4	6	62.6 ± 0.0	NS
P	Carex haydenii	Hayden's Sedge				S3S4	21	14.1 ± 0.0	NB
P	Carex lupulina	Hop Sedge				S3S4	27	18.4 ± 0.0	NB
P	Carex tenera	Tender Sedge				S3S4	25	5.9 ± 0.0	NB
P	Carex wiegandii	Wiegand's Sedge				S3S4	177	9.9 ± 0.0	NB
P	Carex recta	Estuary Sedge				S3S4	16	28.1 ± 0.0	NB
P	Carex atratiformis	Scabrous Black Sedge				S3S4	3	86.4 ± 0.0	NS
P	Cladium mariscoides	Smooth Twigrush				S3S4	7	48.2 ± 0.0	NB
Р	Cyperus dentatus	Toothed Flatsedge				S3S4	125	57.3 ± 1.0	NB
P	Rhynchospora capitellata	Small-headed Beakrush				S3S4	2	71.8 ± 0.0	NB
P	Trichophorum clintonii	Clinton's Clubrush				S3S4	25	57.9 ± 0.0	NB
P	Bolboschoenus fluviatilis	River Bulrush				S3S4	17	27.0 ± 1.0	NB
Р	Triglochin gaspensis	Gasp - Arrowgrass				S3S4	69	38.2 ± 0.0	NB
Р	Lilium canadense	Canada Lily				S3S4	43	3.7 ± 0.0	NB
P	Corallorhiza maculata	Spotted Coralroot				S3S4	25	28.4 ± 0.0	NB
P	Liparis loeselii	Loesel's Twavblade				S3S4	35	6.0 ± 0.0	NB
P	Neottia cordata	Heart-leaved Twayblade				S3S4 S3S4	16	13.7 ± 10.0	NB
P	Platanthera obtusata	Blunt-leaved Orchid				S3S4	22	29.6 ± 2.0	NB
P						S3S4 S3S4		29.0 ± 2.0 20.9 ± 0.0	NB
P	Calamagrostis pickeringii	Pickering's Reed Grass					32		
•	Calamagrostis stricta Calamagrostis stricta ssp.	Slim-stemmed Reed Grass				S3S4	32	29.4 ± 2.0	NB NB
P	stricta	Slim-stemmed Reed Grass				S3S4	15	50.2 ± 0.0	NID
P	Eragrostis pectinacea	Tufted Love Grass				S3S4	6	5.9 ± 1.0	NB
P	Stuckenia filiformis	Thread-leaved Pondweed				S3S4	2	36.5 ± 1.0	NB
P	Potamogeton praelongus	White-stemmed Pondweed				S3S4	12	55.4 ± 0.0	NS
P	Potamogeton richardsonii	Richardson's Pondweed				S3S4	6	88.6 ± 0.0	NB

Taxonomic										
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov	
Р	Xyris montana	Northern Yellow-Eyed-Grass				S3S4	262	14.1 ± 0.0	NB	
Р	Cryptogramma stelleri	Steller's Rockbrake				S3S4	1	89.0 ± 0.0	NB	
Р	Asplenium viride	Green Spleenwort				S3S4	18	32.5 ± 1.0	NB	
Р	Dryopteris fragrans	Fragrant Wood Fern				S3S4	81	46.4 ± 0.0	NB	
Р	Polypodium appalachianum	Appalachian Polypody				S3S4	31	28.7 ± 1.0	NB	
Р	Montia fontana	Water Blinks				SH	4	29.4 ± 1.0	NB	
Р	Brachyelytrum erectum	Bearded Shorthusk				SH	2	39.1 ± 2.0	NB	
Р	Agalinis maritima	Saltmarsh Agalinis				SX	2	71.1 ± 50.0	NB	
P P							2 2			

5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

# recs	CITATION
16411	Epworth, W. 2016. Species at Risk records, 2014-2016. Fort Folly Habitat Recovery Program, 38 recs.
12707	Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.
7059	Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
6298	eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
3836	Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R. 2020. North American Breeding Bird Survey Dataset 1966 - 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9J6QUF6
3778	Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
2177	Paquet, Julie. 2018. Atlantic Canada Shorebird Survey (ACSS) database 2012-2018. Environment Canada, Canadian Wildlife Service.
2145	Mazerolle, David. 2021. Botanical fieldwork 2019-20200. Parks Canada.
1797	iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
1643	Berrigan, L. 2019. Maritimes Marsh Monitoring Project 2013, 2014, 2016, 2017, and 2018 data. Bird Studies Canada, Sackville, NB.
747	eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
672	Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2015. Atlantic Canada Conservation Data Centre Fieldwork 2015. Atlantic Canada Conservation Data Centre, # recs.
610	Chapman, C.J. 2019. Atlantic Canada Conservation Data Centre 2019 botanical fieldwork. Atlantic Canada Conservation Data Centre, 11729 recs.
556	Chapman-Lam, C.J. 2021. Atlantic Canada Conservation Data Centre 2020 botanical fieldwork. Atlantic Canada Conservation Data Centre, 17309 recs.
464	Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
452	Gravel, Mireille. 2010. Coordonnées GPS et suivi des tortues marquées, 2005-07. Kouchibouguac National Park, 480 recs.
435	Beaudet, A. 2007. Piping Plover Records in Kouchibouguac NP, 1982-2005. Kouchibouguac National Park, 435 recs.
410	Stantec. 2014. Energy East Pipeline Corridor Species Occurrence Data. Stantec Inc., 4934 records.
374	Mazerolle, D.M. 2021. South Richibucto Dune Beach pinweed observations from 2019. Parks Canada, 387 records.
357	Blaney, C.S. 2020. Sean Blaney 2020 field data. Atlantic Canada Conservation Data Centre, 4407 records.
338	Amirault, D.L. & Stewart, J. 2007. Piping Plover Database 1894-2006. Canadian Wildlife Service, Sackville, 3344 recs, 1228 new.
292	Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
291	Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
287	Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
270	Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
260	Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2013. Atlantic Canada Conservation Data Centre Fieldwork 2013. Atlantic Canada Conservation Data Centre, 9000+ recs.
237	Belliveau, A.G. 2020. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2019, 2020. E.C. Smith Herbarium.
225	Belliveau, A.G. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
214	Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
190	Paquet, Julie. 2019. Atlantic Canada Shorebird Survey ACSS database for 2019. Environment Canada, Canadian Wildlife Service.
185	Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.
184	Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
177	Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).
175	Blaney, C.S. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
174	Benedict, B. Connell Herbarium Specimens (Data) . University New Brunswick, Fredericton. 2003.
171	Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
170	Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.
168	Mazerolle, D.M. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
167	Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
164	Parks Canada. 2010. Specimens in or near National Parks in Atlantic Canada. Canadian National Museum, 3925 recs.

CITATION # recs Epworth, W. 2012. Species at Risk records, 2009-11. Fort Folly Habitat Recovery Program, 162 recs. 162 157 152 iNaturalist. 2018. iNaturalist Data Export 2018. iNaturalist.org and iNaturalist.ca, Web site: 11700 recs. 143

- Blaney, C.S. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 6719 recs.
- MacDonald, E.C. 2018. Piping Plover nest records from 2010-2017. Canadian Wildlife Service.
- Porter, Caitlin. 2021. Field data for 2020 in various locations across the Maritimes. Atlantic Canada Conservation Data Centre, 3977 records. 140
- 138 Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero). 135
 - Belliveau, A.G. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 10695 recs.
- Churchill, J.L.; Klymko, J.D. 2015. Chignecto and Tintamarre National Wildlife Area Bird Surveys 2015. Atlantic Canada Conservation Data Centre, 2238 recs. 135
- 134 Churchill, J.L. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre. 907 recs.
- 133 Stewart, J.I. 2010, Peregrine Falcon Surveys in New Brunswick, 2002-09, Canadian Wildlife Service, Sackville, 58 recs.
- 123 Benjamin, L.K. (compiler). 2012. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 4965 recs.
- Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs. 122
- 120 Blaney, C.S. & Mazerolle, D.M. 2011, Field data from NCC properties at Musquash Harbour NB & Goose Lake NS, Atlantic Canada Conservation Data Centre, 1739 recs.
- 119 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 111 Clayden, S. Digitization of Wolfgang Maass Nova Scotia forest lichen collections, 1964-2004. New Brunswick Museum. 2018.
- 111 Sollows, M.C., 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
- 109 Klymko, J. 2018. Maritimes Butterfly Atlas database. Atlantic Canada Conservation Data Centre.
- 108 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
- 103 Klymko, J. 2019. Atlantic Canada Conservation Data Centre zoological fieldwork 2018. Atlantic Canada Conservation Data Centre.
- 99 Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
- 98 Amirault, D.L. & McKnight, J. 2003. Piping Plover Database 1991-2003. Canadian Wildlife Service, Sackville, unpublished data. 7 recs.
- 98 Blaney, C.S. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre.
- Tremblay, E. 2006. Kouchibouquac National Park Digital Database. Parks Canada, 105 recs. 94
- 91 Mazerolle, D.M. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 13515 recs.
- Sollows, M.C,. 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada). 90
- 88 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- 80 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 78 Klymko, J.J.D. 2016. 2015 field data. Atlantic Canada Conservation Data Centre.
- Patrick, A.; Horne, D.; Noseworthy, J. et. al. 2017. Field data for Nova Scotia and New Brunswick, 2015 and 2017. Nature Conservancy of Canada. 76
- 74 MacDonald, E.C. 2018. CWS Piping Plover Census, 2010-2017. Canadian Wildlife Service, 672 recs.
- 73 Blaney, C.S.: Mazerolle, D.M. 2011, Fieldwork 2011, Atlantic Canada Conservation Data Centre, Sackville NB.
- 73 Mazerolle, D.M. 2005, Bouctouche Irving Eco-Centre rare coastal plant fieldwork results 2004-05, Irving Eco-centre, la Dune du Bouctouche, 174 recs.
- 72 Hinds, H.R. 1986, Notes on New Brunswick plant collections, Connell Memorial Herbarium, unpubl. 739 recs.
- 71 Churchill, J.L.; Walker, J. 2017. Species at Risk Surveys at Correctional Services Canada Properties in Nova Scotia and New Brunswick. Atlantic Canada Conservation Data Centre.
- 71 Neily, T.H. 2017. Maritmes Lichen and Bryophyte records. Atlantic Canada Conservation Data Centre, 1015 recs.
- 66 Richardson, Leif. 2018. Maritimes Bombus records from various sources. Richardson, Leif.
- 65 Glen, W. 1991. 1991 Prince Edward Island Forest Biomass Inventory Data. PEI Dept of Energy and Forestry, 10059 recs.
- 65 Klymko, J. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre.
- 64 Belliveau, A.G., Churchill, J.L. 2019. Compilation of flora and fauna observation records from Isle Haute, Nova Scotia. Acadia University; Atlantic Canada Conservation Data Centre, 522 recs.
- 64 Honeyman, K. 2019. Unique Areas Database, 2018. J.D. Irving Ltd.
- 63 Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs.
- 63 Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.
- 58 MacDonald, M. 2008. PEI Power Corridor Floral Surveys, 2004-08. Jacques Whitford Ltd, 2238 recs (979 rare).
- 56 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 56 iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- 55 Neily, Tom. 2020. Lichen surveys for PEI Forested Landscapes Priority Place. Chapman, C.J. (ed.) Atlantic Canada Conservation Data Centre, 158 records.
- 54 Askanas, H. 2016, New Brunswick Wood Turtle Database, New Brunswick Department of Energy and Resource Development.
- 54 Haughian, S.R. 2018. Description of Fuscopannaria leucosticta field work in 2017. New Brunswick Museum, 314 recs.
- 54 Klymko, J. 2020, Atlantic Canada Conservation Data Centre zoological fieldwork 2019, Atlantic Canada Conservation Data Centre.
- 53 Spicer, C.D. & Harries, H. 2001, Mount Allison Herbarium Specimens, Mount Allison University, 128 recs.
- 52 e-Butterfly, 2016, Export of Maritimes records and photos, Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 51 Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.
- 50 Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
- 49 NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca.
- Blaney, C.S. 2019. Sean Blaney 2019 field data. Atlantic Canada Conservation Data Centre, 4407 records. 48
- 46 Belliveau, A.G. 2018. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2018. E.C. Smith Herbarium, 6226 recs.
- 44 Mazerolle, David. 2020. Botanical fieldwork 2020. Parks Canada.
- Nussey, Pat & NCC staff. 2019. AEI tracked species records, 2016-2019. Chapman, C.J. (ed.) Atlantic Canada Conservation Data Centre, 333. 44
- Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.

- 42 Klymko, J.J.D.; Robinson, S.L. 2014. 2013 field data. Atlantic Canada Conservation Data Centre.
- 41 Wissink, R. 2006. Fundy National Park Digital Database. Parks Canada, 41 recs.
- 40 Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs.
- 40 Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs.
- 40 Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
- 39 Majka, C. 2009. Université de Moncton Insect Collection: Carabidae, Cerambycidae, Coccinellidae. Université de Moncton, 540 recs.
- 38 Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- 38 Mazerolle, D.M. 2020. Atlantic Canada Conservation Data Centre botanical fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 38 Thomas, P. 2018. CSC Dorchester Bobolink Survey. Environment Canada, Canadian Wildlife Service.
- 34 Canadian Wildlife Service, Dartmouth, 2010, Piping Ployer censuses 2007-09, 304 recs.
- Pronych, G. & Wilson, A. 1993. Atlas of Rare Vascular Plants in Nova Scotia. Nova Scotia Museum, Halifax NS, I:1-168, II:169-331. 1446 recs.
- Robinson, S.L. 2010. Fieldwork 2009 (dune ecology). Atlantic Canada Conservation Data Centre. Sackville NB, 408 recs.
- Catling, P.M., Erskine, D.S. & MacLaren, R.B. 1985. The Plants of Prince Edward Island with new records, nomenclatural changes & corrections & deletions, 1st Ed. Research Branch, Agriculture Canada, Ottawa, Publication 1798. 22pp.
- 33 Scott, F.W. 2002. Nova Scotia Herpetofauna Atlas Database. Acadia University, Wolfville NS, 8856 recs.
- 32 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 32 Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.
- Jobin, C. & Clow, A., Van Dijk, J. 2019. Eastern Waterfan data, Mount Allison Fundy Field Camp 2019. Chapman, C.J. (ed.) Fundy National Park and Mount Allison University, 31 recs.
- 30 Cowie, F. 2007. Electrofishing Population Estimates 1979-98. Canadian Rivers Institute, 2698 recs.
- 29 Churchill, J.L., Klymko, J.D.D. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre.
- 29 Island Nature Trust. 2016. Farmland birds project. Mader, Shannon (ed.) .
- Munro, Marian K. Nova Scotia Provincial Museum of Natural History, Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013.
- 26 Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
- Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
- 26 Klymko, J. 2021. Atlantic Canada Conservation Data Centre zoological fieldwork 2020. Atlantic Canada Conservation Data Centre.
- 26 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 24 Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
- Blaney, C.S. & Spicer, C.D.: Popma, T.M.: Basquill, S.P. 2003, Vascular Plant Surveys of Northumberland Strait Rivers & Amherst Area Peatlands, Nova Scotia Museum Research Grant, 501 recs.
- Donell, R. 2008. Rare plant records from rare coastal plant project. Bouctouche Dune Irving Eco-centre. Pers. comm. to D.M. Mazerolle, 50 recs.
- 23 Epworth, W. 2013. Species at Risk records, 2013. Fort Folly Habitat Recovery Program, 27 recs.
- 23 Erskine, D. 1960. The plants of Prince Edward Island, 1st Ed. Research Branch, Agriculture Canada, Ottawa., Publication 1088. 1238 recs.
- 22 Chiasson, R. 2018. Breeding bird observations from NBWTF project. pers. comm. to S. Blaney.
- 22 Coursol, F. 2005. Dataset from New Brunswick fieldwork for Eriocaulon parkeri COSEWIC report. Coursol, Pers. comm. to C.S. Blaney, Aug 26. 110 recs.
- 22 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 21 Tingley, S. (compiler). 2001. Butterflies of New Brunswick., Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.
- 20 Beardmore, T. 2017. 2017 Butternut observations. Natural Resources Canada.
- 20 Kouchibouguac National Park, Natural Resource Conservation Sec. 1988. The Resources of Kouchibouguac National Park, Beach, H. (ed.), 90 recs.
- 20 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.
- 19 Godbout, V. 2002. SAR Inventory: Birds in Fort Beauséjour NHS. Parks Canada, Atlantic, SARINV02-01. 202 recs.
- 19 Patrick, Allison. 2021. Animal and plant records from NCC properties from 2019 and 2020. Nature Conservancy Canada.
- Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
- 18 Mazerolle, M.J., Drolet, B., & Desrochers, A. 2001. Small Mammal Responses to Peat Mining of Southeastern Canadian Bogs. Can. J. Zool., 79:296-302. 21 recs.
- 18 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 17 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.
- 17 Mazerolle, D. 2003. Assessment of Seaside Pinweed (Lechea maritima var. subcylindrica) in Southeastern New Brunswick. Irving Eco-centre, la Dune du Bouctouche, 18 recs.
- 17 Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp.
- 17 Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
- 17 Walker, J. 2017. Bird inventories at French River, NS, and Memramcook, NB, for Nature Conservancy of Canada. Pers. comm. to AC CDC.
 - Wood Turtle (Glyptemys insculpta) Miramichi Watershed Synopsis 2013
- 17 Compiled by: Vladimir King Trajkovic, EPt
 - Miramichi River Environmental Assessment Committee
- Allen, K. 2012. Rare plant spatial data from Pleasant Ridge cranberry farm. NB Department of Environment, Environmental Assessment Section, 39 recs.
- Arsenault, M. 2019. Cormorant colony nest counts. PE Department of Communities, Land, and Environment.
- 15 Belland, R.J. 1992. The Bryophytes of Kouchibouguac National Park. Parks Canada, Kouchibouguac NP, 101 pp. + map.
- 15 Caissie, A. Herbarium Records. Fundy National Park, Alma NB. 1961-1993.
- 15 Manthorne, A. 2019. Incidental aerial insectivore observations. Birds Canada.
- Morton, L.D. & Savoie, M. 1983. The Mammals of Kouchibouquac National Park. Parks Canada Report prep. by Canadian Wildlife Service, Sackville, NB, Vols 1-4. 14 recs.
- 13 Thomas, A.W. 1996. A preliminary atlas of the butterflies of New Brunswick. New Brunswick Museum.
- 13 Zinck, M. & Roland, A.E. 1998. Roland's Flora of Nova Scotia. Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp.

- 12 Chapman, C.J. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 11171 recs.
- 12 McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick. New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
- 12 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
- 12 Wilhelm, S.I. et al. 2019. Colonial Waterbird Database. Canadian Wildlife Service.
- 11 Bredin, K.A. 2001. WTF Project: Freshwater Mussel Fieldwork in Freshwater Species data. Atlantic Canada Conservation Data Centere, 101 recs.
- 11 Canadian Wildlife Service, Atlantic Region. 2010. Piping Plover censuses 2006-09., 35 recs.
- 11 Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs.
- 11 Eaton, S. 2014. Nova Scotia Wood Turtle Database. Environment and Climate Change Canada, 4843 recs.
- 11 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99., Pers. comm. to K.A. Bredin. 91 recs.
- 11 Holder, M.L.; Kingsley, A.L. 2000. Kinglsey and Holder observations from 2000 field work.
- 11 Klymko, J. Dataset of butterfly records at the New Brunswick Museum not yet accessioned by the museum. Atlantic Canada Conservation Data Centre. 2016.
- 11 Klymko, J.J.D. 2018. 2017 field data. Atlantic Canada Conservation Data Centre.
- 11 Wissink, R. 2000. Rare Plants of Fundy; maps. Parks Canada. 20 recs.
- Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000
- . Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
- 10 Curley, F.R. 2005. PEF&W Collection 2003-04. PEI Fish & Wildlife Div., 716 recs.
- 10 Doucet, D.A. & Edsall, J. 2007. Ophiogomphus howei records. Atlantic Canada Conservation Data Centre, Sackville NB, 21 recs.
- 10 Gagnon, J. 2004. Specimen data from 2002 visit to Prince Edward Island. , 104 recs.
- Hall, R.A. 2003. NS Freshwater Mussel Fieldwork. Nova Scotia Dept Natural Resources, 189 recs.
- 10 Hinds, H.R. 1997. Vascular Plants of Cocagne Island. Connell Herbarium, UNB.
- 10 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2009. New Brunswick Dept Natural Resources, 19 recs (14 active).
- McMullin, R.T. 2015. Prince Edward Island's lichen biodiversity and proposed conservation status in a report prepared for the province of PEI. Biodiversity Institute of Ontario Herbarium, University of Guelph, 776
- 10 Richardson, D., Anderson, F., Cameron, R, McMullin, T., Clayden, S. 2014. Field Work Report on Black Foam Lichen (Anzia colpodes). COSEWIC.
- 10 Shortt, R. UNB specimen data for various tracked species formerly considered secure. Connell Memorial Herbarium, UNB, Fredericton NB. 2019.
- 10 Tremblay, E. 2001. Kouchibouquacis River Freshwater Mussel Data. Parks Canada, Kouchibouquac NP, 45 recs.
- 9 Amirault, D.L. 2000. Piping Plover Surveys, 1983-2000. Canadian Wildlife Service, Sackville, unpublished data. 70 recs.
- 9 Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08.
- 9 Hall, R.A. 2001. S., NS Freshwater Mussel Fieldwork, Nova Scotia Dept Natural Resources, 178 recs.
 - Mawhinney, K. & Seutin, G. 2001. Lepidoptera Survey of the Salt Marshes of of Kouchibouguac National Park. Parks Canada Unpublished Report, 5p. 9 recs.
- 9 Munro, Marian K. Tracked lichen specimens, Nova Scotia Provincial Museum of Natural History Herbarium. Atlantic Canada Conservation Data Centre. 2019.
- 9 NatureServe Canada. 2018. iNaturalist Butterfly Data Export . iNaturalist.org and iNaturalist.ca.
- 9 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 9 Webster, R.P. 2004. Lepidopteran Records for National Wildlife Areas in New Brunswick. Webster, 1101 recs.
- 8 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- 8 Hinds, H.R. 1992. Rare Vascular Plants of Fundy National Park., 10 recs.
- 8 King, Amelia. 2020. Belleisle Watershed Coalition Turtle Watch Data. Belleisle Watershed Coalition.
- 8 Native Council of Prince Edward Island. 2019. Bat species and Bank Swallow observations at St. Chrysostome Wildlife Management Area, PEI. Native Council of Prince Edward Island.
- 8 Staicer, C. & Bliss, S.; Achenbach, L. 2017. Occurrences of tracked breeding birds in forested wetlands., 303 records.
- 8 Trajkovic, V.K. 2017. Wood turtles inventroy miramichi watershed 2017. Miramichi River Environmental Action Committee, 22 records.
- 8 Webster, R.P. 2006. Survey for Suitable Salt Marshes for the Maritime Ringlet, New Populations of the Cobblestone Tiger Beetle, & New Localities of Three Rare Butterfly Species. New Brunswick WTF Report, 28 recs.
- 8 Westwood, A., Staicer, C. 2016. Nova Scotia landbird Species at Risk observations. Dalhousie University.
- 7 Churchill, J.L. 2019. Atlantic Canada Conservation Data Centre Fieldwork 2019. Atlantic Canada Conservation Data Centre.
- LaPaix, R.W.; Crowell, M.J.; MacDonald, M.; Neily, T.D.; Quinn, G. 2017. Stantec Nova Scotia rare plant records, 2012-2016. Stantec Consulting.
- 7 Plissner, J.H. & Haig, S.M. 1997. 1996 International piping plover census. US Geological Survey, Corvallis OR, 231 pp.
- 7 Shortt, R. Connell Herbarium Black Ash specimens. University New Brunswick, Fredericton. 2019.
- 6 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- 6 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000.
- 6 Elward, D. 2017, 2015-2016 Freshwater Mussel Inventories in the Bouctouche Watershed. Southeastern Anglers Association, 6 recs.
- 6 Gowan, S. 1980. The Lichens of Kouchibouguac National Park, Parts I (Macrolichens) & II (Microlichens). National Museum of Natural Sciences. Ottawa, ON, 7 recs.
- 6 Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998, The Butterflies of Canada, University of Toronto Press, 280 pp+plates.
- 6 Munro, Marian K. Nova Scotia Provincial Museum of Natural History, Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2014.
- 6 Neily, T.H. & Pepper, C.; Toms, B. 2018. Nova Scotia lichen database [as of 2018-03]. Mersey Tobeatic Research Institute.
- 6 Neily, T.H. 2019. Tom Neily NS Bryophyte records (2009-2013). T.H. Neily, Atlantic Canada Conservation Data Centre, 1029 specimen records.
- 6 Oldham, M.J. 2000. Oldham database records from Maritime provinces. Oldham, M.J; ONHIC, 487 recs.
- 6 Webster, R.P. & Edsall, J. 2007. 2005 New Brunswick Rare Butterfly Survey. Environmental Trust Fund, unpublished report, 232 recs.
- 5 Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
- Basset, I.J. & Crompton, C.W. 1978. The Genus Suaeda (Chenopodiaceae) in Canada. Canadian Journal of Botany, 56: 581-591.
- 5 Bastien, D. 2017. Rare Peatland plant observations. Pers. comm. to H. Askanas, New Brunswick Department of Energy and Resource Development.

Data Report 7237: MID West Moncton, NB Page 26 of 28

- 5 Carter, Jeff; Churchill, J.; Churchill, L.; Churchill, L. 2020. Bank Swallow colony Scots Bay, NS. Atlantic Canada Conservation Data Centre.
- Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.
- 5 Clayden, S.R. 2005. Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia). Committee on the Status of Endangered Wildlife in Canada, 27 recs.
- 5 e-Butterfly. 2019. Export of Maritimes records and photos. McFarland, K. (ed.) e-butterfly.org.
- McLelland, Don. 2020. Orchid observations at Enmore River, PEI. Don McLelland. Pers. comm. to C.S. Blaney.
- Morrison, Annie. 2010. NCC Properties Fieldwork: June-August 2010. Nature Conservancy Canada, 508 recs.
- 5 Robinson, S.L. 2015. 2014 field data.
- 4 Burns, L. 2013. Personal communication concerning bat occurrence on PEI. Winter 2013. Pers. comm.
- 4 Daury, R.W. & Bateman, M.C. 1996. The Barrow's Goldeneye (Bucephala islandica) in the Atlantic Provinces and Maine. Canadian Wildlife Service, Sackville, 47pp.
- Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces. , Science Stock Status Report D3-22. 13 recs.
- 4 Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs.
- 4 Gravel, Mireille. 2010. Coordonnées des tortues des bois Salmon River Road, 2005. Kouchibouguac National Park, 4 recs.
- 4 Harris, P. 2004. Plant records from 1997-2003. Island Nature Trust, Charlottetown PE, 71 recs.
- 4 Hicklin, P.W. 1995. The Maritime Shorebird Survey Newsletter. Calidris, No. 3. 6 recs.
- 4 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active).
- 4 Klymko, J.J.D. 2012. Insect fieldwork & submissions, 2011. Atlantic Canada Conservation Data Centre. Sackville NB, 760 recs.
 - McNeil, J.A. 2016. Blandings Turtle (Emydoidea blandingii), Eastern Ribbonsnake (Thamnophis sauritus), Wood Turtle (Glyptemys insculpta), and Snapping Turtle (Chelydra serpentina) sightings, 2016. Mersey Tobeatic Research Institute, 774 records.
- 4 Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
- 4 Phillips, B. 2017. Emails to John Klymko regarding Eastern Waterfan (Peltigera hydrothyria) occurrences in Fundy National Park. Fundy Biosphere Reserve, 3 recs.
- 4 Popma, K. 2001. Phalarope & other bird observations in Westmorland Co., Pers. comm. to K.A. Bredin. 5 recs.
- Powell, B.C. 1967. Female sexual cycles of Chrysemy spicta & Clemmys insculpta in Nova Scotia. Can. Field-Nat., 81:134-139. 26 recs.
- 4 Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier.
- 4 Toms, B. 2018. Bat Species data from www.batconservation.ca for Nova Scotia. Mersey Tobeatic Research Institute, 547 Records.
- Wisniowski, C. & Dowding, A. 2020. NB species occurrence data for 2020. Nature Trust of New Brunswick.
- 3 Doucet, D.A. 2009. Census of Globally Rare, Endemic Butterflies of Nova Scotia Gulf of St Lawrence Salt Marshes. Nova Scotia Dept of Natural Resources, Species at Risk, 155 recs.
- Ferguson, D.C. 1954. The Lepidoptera of Nova Scotia. Part I, macrolepidoptera. Proceedings of the Nova Scotian Institute of Science, 23(3), 161-375.
- 3 Godbout, Valerié. 2010. Étude de l'Aster du Saint-Laurent dans le parc national Kouchibouguac, 2000-04. Parks Canada, 3 recs.
- 3 Golder Associates. 2018. Dorchester wind turbine bat detections. Owens, Luke, Firman, Mitch, Melcher, Heather (ed.) Golder Associates Ltd.
- 3 Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- 3 Grondin, P. & Blouin, J-L., Bouchard, D.; et al. 1981. Description et cartographie de la vegetation du cordon littoral. Parc National de Kouchibouquac. Le Groupe Dryade, 57 pp.
- Klymko, J.J.D. 2012. Insect field work & submissions. Atlantic Canada Conservation Data Centre. 852 recs.
- 3 Klymko, J.J.D. 2016. 2014 field data. Atlantic Canada Conservation Data Centre.
- 3 LaPaix, R.W. 2014. Trans-Canada Energy East Pipeline Environmental Assessment, Records from 2013-14. Stantec Consulting, 5 recs.
- Neily, T.H. Tom Neily NS Sphagnum records (2009-2014). T.H. Neily, Atlantic Canada Conservation Data Centre. 2019.
- 3 NS DNR. 2017. Black Ash records from NS DNR Permanent Sample Plots (PSPs), 1965-2016. NS Dept of Natural Resources.
- 3 Nye, T. 2002. Wood Turtle observations in Westmorland, Queens Cos., Pers. com. to S.H. Gerriets, Dec. 3. 3 recs.
- 3 Ogden, K. Nova Scotia Museum butterfly specimen database. Nova Scotia Museum. 2017.
- 3 Sabine, M. 2016. Black Ash records from NB DNR permanent forest sampling Plots. New Brunswick Department of Natural Resources, 39 recs.
- 3 Sabine, M. 2016. Black Ash records from the NB DNR Forest Development Survey. New Brunswick Department of Natural Resources.
- 3 Sabine, M. 2016. NB DNR staff incidental Black Ash observations. New Brunswick Department of Natural Resources.
- 3 Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- 3 Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs.
- 2 Amirault, D.L. 2003. 2003 Peregrine Falcon Survey. Canadian Wildlife Service, Sackville, unpublished data. 7 recs.
- Belliveau, A.G. 2014. Plant Records from Southern and Central Nova Scotia. Atlantic Canada Conservation Data Centre, 919 recs.
- Belliveau, A.G. E.C. Smith Herbarium Specimen Database 2019. E.C. Smith Herbarium, Acadia University. 2019.
- 2 Boyne, A.W. 2000. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 168 recs.
 - Clayden, S.R.; Goltz, J.P. 2018. Emails to Sean Blaney on occurrence of Polygonum douglasii at Big Bluff, Kings Co., New Brunswick, pers. comm., 1 record.
- 2 Curley, F.R. 2007. PEF&W Collection. PEI Fish & Wildlife Div., 199 recs.
- 2 Donelle, R. 2007. Bouctouche Dune Rare Coastal Plant Data. Irving Eco-centre, la Dune du Bouctouche, 2 recs.
- 2 Doucet, D.A. 2008, Wood Turtle Records 2002-07, Pers. comm. to S. Gerriets, 7 recs. 7 recs.
- 2 eBird. 2021. eBird Basic Dataset. Version: EBD_relOct-2020. Ithaca, New York. Oct 2020, Prince Edward Island Bird SAR subset. Cornell Lab of Ornithology.
- 2 Gagnon, E. Herbarium from 2017 Plant Systematics class. Université de Moncton. 2017.
- Godbout, V. 2000. Recherche de l'Aster du St-Laurent (Aster laurentianus) et du Satyre des Maritimes (Coenonympha nepisiquit) au Parc national Kouchibouguac et a Dune du Bouctouche, N-B. Irving Eco-centre, 23 np.
- 2 Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs.
- 2 Kelly, G. 2005. Fraxinus nigra. Dept of Agricuture, Fisheries, Aquaculture & Forestry. Pers. comm. to C.S. Blaney, Mar. 2, 11 recs.
- 2 Klymko, J.J.D. 2010. Miscellaneous observations reported to ACCDC (zoology). Pers. comm. from various persons, 3 recs.
- 2 Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.

Page 27 of 28

CITATION # recs MacQuarrie, K. 1991-1999. Site survey files, maps. Island Nature Trust, Charlottetown PE, 60 recs. 2 Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs. Mazerolle, D. 2003. Assessment and Rehabilitation of the Gulf of St Lawrence Aster (Symphyotrichum laurentianum) in Southeastern New Brunswick. Irving Eco-centre, la Dune du Bouctouche, 13 recs. Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012. NatureServe Canada. 2018. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca. 2 Neily, T.H. & Pepper, C.; Toms, B. 2020. Nova Scotia lichen database [as of 2020-03-18]. Mersey Tobeatic Research Institute. 2 Ogden, J. NS DNR Butterfly Collection Dataset. Nova Scotia Department of Natural Resources. 2014. Parker, M. 2016. Wood turtle (Glyptemys insculpta) Visual Surveys at Black, Wallace, Musquodobit and Sackville Rivers, Nova Scotia. East Coast Aquatics Inc., 3 records. 2 2 Phinney, Lori; Toms, Brad; et. al. 2016. Bank Swallows (Riparia riparia) in Nova Scotia: inventory and assessment of colonies. Merset Tobeiatc Research Institute, 25 recs. 2 Richardson, D., Anderson, F., Cameron, R, Pepper, C., Clayden, S. 2015. Field Work Report on the Wrinkled Shingle lichen (Pannaria Iurida). COSEWIC. 2 Thompson, R. 2018. Williamsdale Quarry Expansion Project, NS, Environmental Assessment rare plants. Dexter Construction Company Limited. Vladimir King Trajkovic. 2018. Brook Floater (Alasmidonta varicosa) records from MREAC surveys 2010-2017. Miramichi River Environmental Assessment Committee. Zahavich, J. 2018. Canada Warbler and Olive-sided Flycatcher records 2018. Island Nature Trust. 14 recs. Adams, J. & Herman, T.B. 1998. Thesis, Unpublished map of C. insculpta sightings. Acadia University, Wolfville NS, 88 recs. Amirault, D.L. 2005. 2005 Peregrine Falcon Survey. Canadian Wildlife Service, Sackville, unpublished data. 27 recs. Amiro, Peter G. 1998. Atlantic Salmon: Inner Bay of Fundy SFA 22 & part of SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-12. 4 recs. Bagnell, B.A. 2003. Update to New Brunswick Rare Bryophyte Occurrences. B&B Botanical, Sussex, 5 recs. Barney, T. 2020. Text message to Sean Blaney from Ted Barney with photograph of large Snapping Turtle at White Birch Impoundment, Westmorland Co., NB. pers. comm., 1 record. Basquill, S.P., Porter, C. 2019. Bryophyte and lichen specimens submitted to the E.C. Smith Herbarium. NS Department of Lands and Forestry. Belland, R.J. 2012. PEI moss records from Devonian Botanical Garden. DBG Cryptogam Database, Web site: https://secure.devonian.ualberta.ca/bryo_search.php 748 recs. Belland, R.J. 2012. PEI moss records from New York Botanical Garden. NYBG Virtual Herbarium, Web site: http://sciweb.nybg.org/science2/vii2.asp 135 recs. Belliveau, A.G. 2020. Email to Colin Chapman on new NS locations for Allium tricoccum. Chapman, C.J. (ed.) Acadia University. Bishop, G. & Papoulias, M.; Arnold (Chaplin), M. 2005. Grand Lake Meadows field notes, Summer 2005. New Brunswick Federation of Naturalists, 1638 recs. Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip., 135 rec. Blaney, C.S. 1999. Fieldwork 1999. Atlantic Canada Conservation Data Centre. Sackville NB, 292 recs. Blaney, C.S. 2014. 2014 Bank Swallow colony observation, Westcock, NB. Atlantic Canada Conservation Data Centre. Blaney, C.S. 2019. Atlantic Canada Conservation Data Centre Fieldwork 2019. Atlantic Canada Conservation Data Centre. Bouchard, A. Herbier Marie-Victorin, Universite de Montreal, Montreal QC, 1999. Boyne, A.W. & Grecian, V.D. 1999. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 23 recs. Bredin, K.A. 2000. NB & NS Bog Project, fieldwork. Atlantic Canada Conservation Data Centre, Sackville, 1 rec. Bredin, K.A. 2001, NB Freshwater Mussel Fieldwork, Atlantic Canada Conservation Data Centere, 16 recs. Bredin, K.A. 2002. NB Freshwater Mussel Fieldwork, Atlantic Canada Conservation Data Centere, 30 recs. Buchanan, Jean, 2021, Email to Sean Blanev regarding Wood Turtle, Chipman, NB, pers. comm. Cameron, R.P. 2009. Cyanolichen database. Nova Scotia Environment & Labour, 1724 recs. Cameron, R.P. 2009. Erioderma pedicellatum database, 1979-2008. Dept Environment & Labour, 103 recs. Cameron, R.P. 2012. Rob Cameron 2012 vascular plant data. NS Department of Environment, 30 recs. Cameron, R.P. 2014. 2013-14 rare species field data. Nova Scotia Department of Environment, 35 recs. Cameron, R.P. 2018. Degelia plumbea records. Nova Scotia Environment. Chaput, G. 1999. Atlantic Salmon: Miramichi & SFA 16 Rivers. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-05. 6 recs. Christie, D.S. 2000. Christmas Bird Count Data, 1997-2000. Nature NB, 54 recs. Clark, R. 2021. Email to S. Blaney, re: Wood Turtle observation from near Hunters Home, Queens Co., NB., May 20 2021. Rosemarie Clark <rsmr clrk.luvsfam@hotmail.ca>, 1 record. Clavette, A., and others. 2013. Peregrine Falcon nesting information from NatureNB listserv. NatureNB. Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs. Clayden, S.R. 2020. Email to Sean Blaney regarding Pilophorus cereus and P. fibula at Fidele Lake area, Charlotte County, NB. pers. comm., 2 records. Cormier, R. 2019. Wood Turtle observation. pers. comm. to J.L. Churchill. COSEWIC (Committee on the Status of Wildlife in Canada). 2013. COSEWIC Assessment and Status Report on the Eastern Waterfan Peltigera hydrothyria in Canada. COSEWIC, 46 pp. Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp. DeMerchant, A. 2019. Bank Swallow colony observation. NB Department of Energy and Resource Development, Pers. comm. to J.L. Churchill. Desilets-Starrak, J. 2015. Wood Turtle record. Pers. comm. to E. Tremblay, Parks Canada. Dibblee, R.L. 1999, PEI Cormorant Survey, Prince Edward Island Fisheries, Aquaculture & Environment, 1p. 21 recs. Doucet, D.A. 2007. Fieldwork 2007: Insects (minus Odonata), ACCDC Staff, 1 rec. Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs. e-Butterfly. 2018. Selected Maritimes butterfly records from 2016 and 2017. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org. Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs. Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs. Elizabeth Spence. 2020. Email from Elizabeth Spence to John Klymko about the occurrence of a Wood Turtle in Westmorland County, New Brunswick. Pers. comm. Freudenstein, John V. 1997. A Monograph of Corallorhiza (Orchidaceae). Harvard Papers in Botany, 1:5-51. Gautreau-Daigle, H. 2007. Rare plant records from peatland surveys. Coastal Zones Research Institute, Shippagan NB. Pers. comm. to D.M. Mazerolle, 39 recs. 1

Gilhen, J. 1984. Amphibians & Reptiles of Nova Scotia, 1st Ed. Nova Scotia Museum, 164pp.

- Godbout, V. 2001. Recherche de l'Aster du St-Laurent (Symphyotrichum laurentianum) dans les marais sales du sud-est du Nouveau-Brunswick. Irving Eco-centre, la Dune du Bouctouche, 23 pp.
- Goltz, J.P. 2007. Field Notes: Listera australis at Kouchibouguac National Park., 7 recs.
- Hill, N.M. 1994. Status report on the Long's bulrush Scirpus longii in Canada. Committee on the Status of Endangered Wildlife in Canada, 7 recs.
- Hinds, H.R. 2000. Rare plants of Fundy in Rare Plants of Fundy: maps. Wissink, R. (ed.) Parks Canada, 2 recs.
- Kelly, Glen 2004. Botanical records from 2004 PEI Forestry fieldwork. Dept of Environment, Energy & Forestry, 71 recs.
- 1 Kirkland, G.L. Jr. & Schmidt, D.F. 1982. Abundance, habitat, reproduction & morphology of forest-dwelling small mammals of NS & south-eastern NB. Can. Field-Nat., 96(2): 156-162. 1 rec.
- Kirkland, G.L. Jr., Schmidt, D.F. & Kirkland, C.J. 1979. First record of the long-tailed shrew (Sorex dispar) in New Brunswick. Can. Field-Nat., 93: 195-198. 1 rec.
- Klymko, J. Univeriste de Moncton insect collection butterfly record dataset. Atlantic Canada Conservation Data Centre. 2017.
- 1 LaFlamme, C. 2008. Disovery of Goodyera pubescens at Springdale, NB. Amec Earth and Environmental. Pers. comm. to D.M. Mazerolle, 1 rec.
- Lantz, Joan; Lantz, Keith
 - . 2015. eBird record of Sandhill Crane from Chapman Settlement, NS. eBirg.org.
- Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
- Loo, J. & MacDougall, A. 1994, GAP analysis: Summary Report, Fundy Model Forest, 2 recs.
- MacKinnon, D.S. 2013. Email report of Peregrine Falcon nest E of St. Martins NB. NS Department of Environment and Labour, 1 record.
- Madden, A. 1998. Wood Turtle records in northern NB. New Brunswick Dept of Natural Resources & Energy, Campbellton, Pers. comm. to S.H. Gerriets. 16 recs.
- 1 Martin, Alyssa. 2021. Email to Sean Blaney regarding Wood Turtle sighting, NB. pers. comm.
- 1 McAlpine, D.F. & Collingwood, L. 1989. Rare Salamander Survey in Fundy National Park. Fundy National Park, Internal Documents, 1 rec.
- McAlpine, D.F. 1983. Species Record Cards. Fundy National Park, Library, 1 rec.
- McLellan, N. 2013. Discovery of extensive Nuphar lutea ssp. rubrodisca population at Tyne Valley. Ducks Unlimited, 1 record.
- Miller, D.G. 2013. Peregrine Falcon nesting information from birdingnewbrunswick.ca. birdingnewbrunswick.ca.
- Mills, Elizabeth and Bishop, Gart. 2020. Cuscuta cephalanthi record, Grand-Barachois, NB. Chapman-Lam, Colin J. (ed.) pers. comm., 1.
- Munro, Marian C., Newell, R.E, & Hill, Nicholas M. 2014. Nova Scotia Plants. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia, First edition.
- 1 Neily, T.H. & Pepper, C.; Toms, B. 2013. Nova Scotia lichen location database. Mersey Tobeatic Research Institute, 1301 records.
- 1 Novak, Pam. 2017. Email to John Klymko regarding Chelydra serpentina record.
 - O'Neil, S. 1998. Atlantic Salmon: Northumberland Strait Nova Scotia part of SFA 18. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-08. 9 recs.
- 1 Parker, M. 2018. East Coast Aquatics ACCDC 2018 Report. East Coast Aquatics, 12 records.
- Poirier, Nelson. 2012. Geranium robertianum record for NB. Pers. comm. to S. Blaney, Sep. 6, 1 rec.
- 1 Porter, C.J.M. 2014. Field work data 2007-2014. Nova Scotia Nature Trust. 96 recs.
- 1 Rankin, Andrew. 2017. Second-ever N.S. sighting: Big brown bat turns up in Oxford. The Chronicle Herald online edition (Herald News).
- Simpson, D. Collection sites for Black Ash seed lots preserved at the National Tree Seed Centre in Fredericton NB. National Tree Seed Centre, Canadian Forest Service, 2016.
- Smith, M. 2013. Email to Sean Blaney regarding Schizaea pusilla at Caribou Plain Bog, Fundy NP. pers. comm., 1 rec.
- Sollows, M.C., 2009, NBM Science Collections databases; Coccinellid & Cerambycid Beetles, New Brunswick Museum, Saint John NB, download Feb, 2009, 569 recs.
- Spicer, C.D. 2004. Specimens from CWS Herbarium, Mount Allison Herbarium Database. Mount Allison University, 5939 recs.
- 1 Standley, L.A. 2002. Carex haydenii in Nova Scotia., Pers. comm. to C.S. Blaney. 4 recs.
- Steeves, R. 2004. Goodyera pubescens occurrence from Colpitts Brook, Albert Co., Pers. comm. to C.S. Blaney. 1 rec.
- Stevens, C. 1999. Cam Stevens field data from PEI vegetation plots. Sent along with specimens to C.S. Blaney. UNB masters research project, 732 recs.
- Toner, M. 2005. Lynx Records 1996-2005. NB Dept of Natural Resources, 48 recs.
- 1 Tremblay, E., Craik, S.R., Titman, R.D., Rousseau, A. & Richardson, M.J. 2006. First Report of Black Terns Breeding on a Coastal Barrier Island. Wilson Journal of Ornithology, 118(1):104-106. 1 rec.
- 1 Vinison, Neil. 2018. Record of Saxifraga paniculata from Fundy NP, emailed to S. Blaney 19 July 2018. Pers. comm.
- 1 Vinson, N. 2018. Email to S. Blaney regarding new occurrence of Saxifraga paniculata on Point Wolfe River. Parks Canada, 1 record.
- 1 Vinson, N. 2019. Eastern Waterfan record from Long Reach Brook, Fundy National Park, June 12, 2019. Parks Canada Agency, Fundy National Park, 1 record.
- 1 Vinson, Neil. 2016. Emails to Sean Blaney regarding yellow flower (Primula veris) and coastal habitat leaf rosettes (Primula laurentiana) in Fundy National Park. pers. comm., 2 rec.
- 1 White, S. 2019. Notable species sightings, 2018. East Coast Aquatics.
- 1 Wissink, R. 2000. Four-toed Salamander Survey results, 2000. Fundy National Park, Internal Documents, 1 rec.
- 1 Young, A.D., Titman, R.D. 1986. Costs and benefits to Red-breasted Mergansers nesting in tern and gull colonies. Can. J. Zool., 64: 2339-2343.
- 1 Zahavich, J. 2017. Canada Warbler and Olive-sided Flycatcher records 2017. Island Nature Trust, 14 recs.
- Zahavich, J.L. 2017. Locations of Round-leaved Orchid (Platanthera orbiculata) at Townshend Woodlot and Bird Island. Island Nature Trust, 2 records.

Appendix E Fauna, Flora and Habitat Description

englobe

englobe

1. Flora

An ACCDC search was requested by Englobe in April 2022. Species at Risk (SAR) appearing on the federal SARA Schedule 1 benefit from all the legal protection afforded and the mandatory recovery planning required under SARA (ECCC, 2022). The ACCDC reported one floral SAR listed as 'Threatened' under COSEWIC described below within 5 km of the site.

1.1 Black Ash (Fraxinus nigra)

The Black Ash is predominantly a wetland species of swamps, floodplains and fens. It has an intermediate light requirement and a tendency toward greater abundance in more alkaline sites. Most sites in which it is dominant are flood prone, where its high tolerance of seasonal flooding appears to offer a competitive advantage. Black Ash also occurs widely in moist upland forests, but generally at lower densities than in wet areas. There is potential favorable habitat for this species on or near the site; however the field survey confirmed this species is not present at the site.

2. SARA Birds

Species at Risk (SAR) appearing on the federal SARA Schedule 1 benefit from all the legal protection afforded and the mandatory recovery planning required under SARA (ECCC, 2022). The ACCDC search revealed the following 13 faunal SAR on Schedule 1 of SARA having been identified within 5 km of the site or within the study area (i.e. location sensitive species). Habitat descriptions are outlined in the following paragraphs.

2.1 Bank Swallow (Riparia riparia)

Bank Swallows are insectivorous birds that nest in colonies dug into the sides of sandy cliffs or banks. They also nest in gravel and sand piles in construction sites and freight yards (ECCC, 2022). There is negligible favourable habitat at the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.2 Bobolink (*Dolichonyx oryzivorus*)

Bobolinks nest in grassland and herbaceous habitats (such as wetlands), including forage fields. Fall migration begins in mid-July and they return to their Canadian nesting grounds in mid-May, after which time the males establish territories and court females. Females construct nests directly on the ground, often at the base of large herbaceous plants. Bobolinks feed on both insects and plant matter during the breeding period, though nestlings are fed only insects (mostly butterflies, moths, grasshoppers, and crickets) (Cornell University, 2022). There is potential favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.3 Barn Swallow (*Hirundo rustica*)

Barn Swallows are insectivorous birds feeding predominantly on flying insects. They largely nest in or on an artificial structure, including barns and other outbuildings, garages, houses, bridges and road culverts.

Barn swallows prefer various types of open habitats for foraging, including grassy fields, pastures, various kinds of agricultural crops, lake and river shorelines, cleared rights-of-way, cottage areas and farmyards, islands, wetlands and subarctic tundra. (NatureServe Explorer, 2022). There is negligible favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.4 Common Nighthawk (Chordeiles minor)

The breeding habitat includes moist thickets of woodland undergrowth (especially aspen-poplar), bogs, tall shrubbery along streams or near swamps, and deciduous second growth. Nests are on or near the ground, among roots of fallen trees, in cavities in banks, or on ledges, sides of rocks, hummocks, stumps, or fallen logs, or on the ground under shrubbery. In migration, this warbler uses various forest, woodland, scrub, and thicket habitats, mostly in humid areas. In winter, it occurs in forested areas of foothills and mountains. (NatureServe Explorer, 2022). There is potential favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.5 Canada Warbler (Cardellina canadensis)

The Canada Warbler habitat includes moist thickets of woodland undergrowth (especially aspen poplar), bogs, tall shrubbery along streams or near swamps, and deciduous second growth. Nests are on or near the ground, among roots of fallen trees, in cavities in banks, or on ledges, sides of rocks, hummocks, stumps, or fallen logs, or on the ground under shrubbery. In migration, this warbler uses various forest, woodland, scrub, and thicket habitats, mostly in humid areas. In winter, it occurs in forested areas of foothills and mountains. (NatureServe Explorer, 2022). There is potential favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.6 Eastern Wood-Pewee (Contopus virens)

The Eastern Wood-Pewee inhabits a wide variety of wooded upland and lowland habitats including deciduous, coniferous, or mixed forests and occurs most frequently in forests with some degree of openness, whether it be the result of forest structure, natural disturbance, or human alteration. Intermediate-aged forests with a relatively sparse midstory are preferred. Also occurs in anthropogenic habitats providing an open forested aspect such as parks and suburban neighborhoods. Nests are constructed atop a horizontal branch, 1.2-21.4 meters above the ground, in a wide variety of deciduous and coniferous trees (NatureServe Explorer, 2022). There is potential favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.7 Barrow's Goldeneye (Bucephala islandica)

The Barrow's Goldeneye prefers freshwater habitats, winters on lakes, rivers, estuaries, and bays. Usually nests near lakes or ponds surrounded by dense vegetation, but may nest in wooded or open country. Usually nests in a natural tree cavity, abandoned woodpecker hole, rock cavity, or stream bank. Often nests in same area in successive years. Forages in fresh water for aquatic insects, crustaceans, some plant food, small fishes, and fish eggs. In salt water, this species feeds on mollusks (especially blue mussels), some sea stars, and marine worms (NatureServe Explorer 2022). There is negligible favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

englobecorp.com 2 of 4

2.8 Eastern Whip-Poor-Will (Antrostomus vociferus)

The Eastern Whip-Poor-Will breeding habitat includes forest and open woodland, from lowland moist and deciduous forest to montane forest and pine-oak association. In open woodlands with well spaced trees and a low canopy. Lays eggs on ground in open site under trees or under bush, usually on a bed of dead leaves at woods edge or in open woodland. There is potential favorable habitat for this species on or near the site; however a field survey is required to confirm the presence/absence of this species at the site.

2.13 Bald Eagle (Haliaeetus leucocephalus)

The Bald eagle breeding habitat most commonly includes areas close to (within 4 km) coastal areas, bays, rivers, lakes, reservoirs, or other bodies of water that reflect the general availability of primary food sources including fish, waterfowl, or seabirds. Nests usually are in tall trees or on pinnacles or cliffs near water (NatureServe Explorer, 2022). This species may occasionally occur on or near the site, however a field survey is required to confirm the presence/absence of this species at the site.

3. SARA Invertebrate Fauna

Species at Risk (SAR) appearing on the federal SARA Schedule 1 benefit from all the legal protection afforded and the mandatory recovery planning required under SARA (ECCC, 2022). The ACCDC reported one invertebrate fauna SAR listed as 'Endangered' under COSEWIC and 'Special Concern' under SARA and NB SARA described below within 5 km of the site.

3.1 Monarch (Danaus plexippus)

The Monarch habitat is a complex issue for this species. In general, breeding areas are virtually all patches of milkweed in North America and some other regions. Coastal regions are important flyways and so nectar (wild or in gardens) is an important resource in such places (NatureServe Explorer, 2022). This species may occasionally occur on or near the site, however a field survey is required to confirm the presence/absence of this species at the site.

4. Provincial Rarity Rank Birds

The ACCDC reported the following eighteen bird species listed below within 5 km of the site that, although are not protected under SARA, are identified provincially as very rare (S1) or rare (S2).

Common Name Scientific Name Yellow-throated Vireo Vireo flavifrons Greater Yellowlegs Tringa melanoleuca American Coot Fulica americana Common Gallinule Gallinula galeata Lesser Scaup Aythya affinis Horned Lark Eremophila alpestris Green Heron Butorides virescens Willow Flycatcher Empidonax traillii Black Tern Chlidonias niger Cliff Swallow Petrochelidon pyrrhonota

englobecorp.com 3 of 4

Marsh Wren Cistothorus palustris Northern Mockingbird Mimus polyglottos Gadwall Mareca strepera Solitary Sandpiper Tringa solitaria Glaucous Gull Larus hyperboreus **Baltimore Oriole** Icterus galbula Ring-billed Gull Larus delawarensis Lapland Longspur Calcarius Iapponicus

5. References

Atlantic Canada Conservation Data Centre (ACCDC). 2022. Data Report 7237: MID West Moncton, NB.

Bird Studies Canada. 2022. Important Bird Areas of Canada Database. http://www.ibacanada.org.

Cornell University. 2022. All About Birds. www.allaboutbirds.org

Environment and Climate Change Canada. 2022. Species at Risk Act. https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry.html

NatureServe Explorer. 2022. https://explorer.natureserve.org/.

englobecorp.com 4 of 4

Common Name	Scientific Name	AC CDC S-Rank	X Coord	Y Coord
Alleghaney Blackberry	Rubus allegheniensis	S5	46.086129	-64.854798
Alternate-leaved Dogwood	Cornus alternifolia	S5	46.083364	-64.850869
American Burreed	Sparganium americanum	S5	46.086677	-64.850202
American Mountain Ash	Sorbus americana	S5	46.087029	-64.854525
Autumn Hawkbit	Scorzoneroides autumnalis	SNA	46.085674	-64.854568
Awl-fruited Sedge	Carex stipata	S5	46.088865	-64.853489
Balsam Fir	Abies balsamea	S5	46.087191	-64.854926
Balsam Poplar	Populus balsamifera	S5	46.086175	-64.854781
Bartram's Serviceberry	Amelanchier bartramiana	S5	46.086216	-64.851946
Beaked Hazel	Corylus cornuta	S5	46.087867	-64.853412
Bebb's Willow	Salix bebbiana	S5	46.086179	-64.854789
Black Chokeberry	Aronia melanocarpa	S5	46.085844	-64.855315
Black Huckleberry	Gaylussacia baccata	S5	46.089568	-64.864295
Black Sedge	Carex arctata	S5	46.087307	-64.850327
Black Spruce	Picea mariana	S5	46.087103	-64.854603
Bladder Sedge	Carex intumescens	S5	46.087173	-64.854917
Bluejoint Reed Grass	Calamagrostis canadensis	S5	46.087283	-64.855040
Blunt Broom Sedge	Carex tribuloides	S4S5	46.083243	-64.852808
Blunt Spikerush	Eleocharis obtusa	S5	46.089718	-64.856397
Boreal Bog Sedge	Carex magellanica	S5	46.088280	-64.861375
Bracken Fern	Pteridium aquilinum	S5	46.086107	-64.854756
Bristly Dewberry	Rubus hispidus	S5	46.086918	-64.854525
Bristly Sarsaparilla	· .	S5		
,	Aralia hispida	S5	46.087744	-64.853826
Bristly-stalked Sedge	Carex leptalea	S5	46.087200	-64.853631
Broom Sedge	Carex scoparia		46.086120	-64.854779
Brownish Sedge	Carex brunnescens	S5	46.088349	-64.852997
Calico Aster	Symphyotrichum lateriflorum	S5	46.086125	-64.854738
Canada Fly Honeysuckle	Lonicera canadensis	S5	46.088891	-64.854953
Canada Goldenrod	Solidago canadensis	S5	46.087247	-64.853650
Canada Horseweed	Erigeron canadensis	S5	46.084643	-64.863930
Canada Manna Grass	Glyceria canadensis	S5	46.087285	-64.855058
Cinnamon Fern	Osmundastrum cinnamomeum	S5	46.087136	-64.854757
Coltsfoot	Tussilago farfara	SNA	46.087247	-64.853650
Common Boneset	Eupatorium perfoliatum	S5	46.086859	-64.855015
Common Dandelion	Taraxacum officinale	SNA	46.086071	-64.854736
Common Lady Fern	Athyrium filix-femina	S5	46.088101	-64.853396
Common Marsh Bedstraw	Galium palustre	S5	46.089953	-64.864957
Common Milkweed	Asclepias syriaca	S4S5	46.082113	-64.863860
Common Mullein	Verbascum thapsus	SNA	46.089691	-64.856668
Common Oak Fern	Gymnocarpium dryopteris	S5	46.089634	-64.858444
Common Plantain	Plantago major	SNA	46.085674	-64.854564
Common Self-heal	Prunella vulgaris	S5	46.089652	-64.857490
Common Speedwell	Veronica officinalis	SNA	46.086144	-64.854762
Common Tansy	Tanacetum vulgare	SNA	46.086579	-64.854914
Common Winterberry	llex verticillata	S5	46.087259	-64.854939
Common Wood Sorrel	Oxalis montana	S5	46.087769	-64.853375
Common Woolly Bulrush	Scirpus cyperinus	S5	46.085674	-64.854565
Crawford's Sedge	Carex crawfordii	S5	46.089630	-64.857527
Creeping Snowberry	Gaultheria hispidula	S5	46.088073	-64.854067
Crested Wood Fern	Dryopteris cristata	S5	46.087123	-64.853738
Cyperuslike Sedge	Carex pseudocyperus	S5	46.086821	-64.850042
Devil's Beggarticks	Bidens frondosa	S5	46.087345	-64.852956
Dwarf Red Raspberry	Rubus pubescens	S5	46.086872	-64.854482
Early Goldenrod	Solidago juncea	S5	46.091216	-64.864424
Eastern Burnweed	Erechtites hieraciifolius	S5	46.087763	-64.864945

Eastern Marsh Fern Theypteris palustris S5 46.088795 -64.853151 Eastern Teabrerry Gautheria procumbens S5 46.088906 -64.863167 Eastern White Pine Pinus strobus S5 46.088912 -64.853267 Eastern White Pine Pinus strobus S5 46.08812 -64.853823 Ebrorus-Root Sedge Carex communis S5 46.088353 -64.853823 Filed Horsetail Equisetum arvense S5 46.087172 -64.855318 Filed Horsetail Equisetum arvense S5 46.087172 -64.855138 Filed Horsetail Equisetum arvense S5 46.087172 -64.855138 -64.85514 -60.85749 -64.855138 -64.85514 -60.85749 -64.855138 -64.85514 -60.85749 -64.855138 -60.85749 -64.85514 -60.856749 -64.85514 -60.856749	Common Name	Scientific Name	AC CDC S-Rank	X Coord	Y Coord
Eastern White Pine	Eastern Marsh Fern	Thelypteris palustris	S5	46.088795	-64.853151
Eastem White Pine	Eastern Teaberry		S5	46.088906	-64.862560
Fibrous-Root Sedge		Pinus strobus	S5	46.088812	-64.853321
Fibrous-Root Sedge	Evergreen Wood Fern	Dryopteris intermedia	S5	46.089126	-64.853823
Feld Horsetall			S5		
Fireweed	<u> </u>				
Fowl Manna Grass					
FowManna Grass					
Fraser's St. John's-wort					
Fringed Black Bindweed Fallopia cilinodis \$5 46.087590 -64.857266 Fringed Sedge Carex crinita \$5 46.087590 -64.853406 Garden Bird's-foot Trefoil Lotus corniculatus SNA 46.086079 -64.853406 Goldthread Coptis tirfoila \$5 46.086179 -64.8543308 Grass-leaved Goldernod Euthamia graminifoila \$5 46.086167 -64.85453308 Hairy Willowherb Epilobium hirusutum SNA 46.085678 -64.854582 Harlequin Blue Flag Inis versicolor \$5 46.085678 -64.854592 Herb Robert Geranium robertianum \$384 46.086734 -64.855700 Herb Robert Geranium robertianum \$384 46.086778 -64.85492 Inded Ladies'-Tresses Spiranthes romanzofffiana \$4 46.086784 -64.85489 Interrupted Fern Claytosmunda claytoniana \$5 46.087884 -64.85489 Interrupted Fern Claytosmunda claytoniana \$5 46.087848 -64.855478 Jack Pine					
Fringed Sedge		* .			
Garden Bird's-foot Trefoil					
Goldthread					
Grass-leaved Goldenrod					
Hairy Flat-top White Aster		_ ·			
Hairy Willowherb					
Harfequin Blue Flag					
Herb Robert Geranium robertianum \$3\$4 46.087384 -64.853212 Hooded Ladies'-Tresses Spiranthes romanzoffiana \$4		·			
Hooded Ladies'-Tresses					
Inflated Lobelia Lobelia inflata \$5 46.087884 -64.865489 Interrupted Fern Claytosmunda claytoniana \$5 46.087183 -64.854708 Jack Pine Pinus banksiana \$5 46.086762 -64.850286 Large-leaved Goldenrod Solidago macrophylla \$4 46.088646 -64.853153 Late Lowbush Blueberry Vaccinium angustifolium \$5 46.087139 -64.8547150 Leatherleaf Chamaedaphne calyculata \$5 46.08622 -64.857250 Lesser Duckweed Lemna minor SNA 46.086681 -64.853610 Low Hop Clover Trifolium campestre SNA 46.087247 -64.853650 Low Rough Aster Eurybia radula \$5 46.087216 -64.853650 Marsh Blue Violet Viola cucullata \$5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata \$5 46.087206 -64.853640 Marsh Speedwell Veronica soutellata \$5 46.087226 -64.853640 Morsh Speedwell Veronica soutellata					
Interrupted Fern		·			
Jack Pine					
Large-leaved Goldenrod Solidago macrophylla S4 46.088646 -64.853153 Late Lowbush Blueberry Vaccinium angustifolium S5 46.084622 -64.8577250 Lesser Duckweed Lemna minor SNA 46.086681 -64.8577250 Lesser Duckweed Lemna minor SNA 46.086881 -64.850195 Low Hop Clover Trifolium campestre SNA 46.087247 -64.853650 Low Rough Aster Eurybia radula S5 46.082117 -64.853650 Low Rough Aster Eurybia radula S5 46.087216 -64.853650 Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087216 -64.853640 Marsh Speedwell Veronica scutellata S5 46.087281 -64.853640 Marsh Speedwell Veronica scutellata S5 46.083361 -64.851049 Mosquito Bultrush Scirpus hattorianus S5 46.083361 -64.851049 Mountain Holly Ilex mucronata	·				
Late Lowbush Blueberry Vaccinium angustifolium S5 46.087139 -64.854741 Leatherleaf Chamaedaphne calyculata S5 46.084622 -64.857250 Lesser Duckweed Lemna minor SNA 46.08681 -64.850195 Low Hop Clover Trifolium campestre SNA 46.087247 -64.853650 Low Rough Aster Eurybia radula S5 46.088217 -64.854536 Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.083361 -64.853640 Marsh Speedwell Veronica scutellata S5 46.087282 -64.853640 Mosquito Bulrush Scirpus hattorianus S5 46.087282 -64.853640 Mosquito Bulrush Scirpus hattorianus S5 46.087282 -64.853060 Multiflora Rose Rosa multiflora S5 46.087282 -64.853060 Multiflora Rose Rosa multiflora					
Leatherleaf Chamaedaphne calyculata S5 46.084622 -64.857250 Lesser Duckweed Lemna minor SNA 46.086681 -64.850195 Low Hop Clover Trifolium campestre SNA 46.087247 -64.853650 Low Rough Aster Eurybia radula S5 46.088217 -64.853650 Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.08361 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.088694 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.087282 -64.850409 Mosquito Bulrush Scirpus hattorianus S5 46.087282 -64.850409 Mosquito Bulrush Scirpus hattorianus S5 46.087282 -64.850409 Mosquito Bulrush Scirpus hattorianus S5 46.087282 -64.850360 Mullifora Na 46.085944 <td></td> <td></td> <td></td> <td></td> <td></td>					
Lesser Duckweed Lemna minor SNA 46.086681 -64.850195 Low Hop Clover Trifolium campestre SNA 46.087247 -64.853650 Low Rough Aster Eurybia radula S5 46.087217 -64.854536 Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.083361 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.083361 -64.851049 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 New England Aster Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathelypteris					
Low Hop Clover Trifolium campestre SNA 46.087247 -64.853650 Low Rough Aster Eurybia radula S5 46.088217 -64.854536 Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.087206 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.088694 -64.855784 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rosa multiflora SNA 46.085408 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.8524491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863131 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathel		·			
Low Rough Aster Eurybia radula S5 46.088217 -64.85456 Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087216 -64.853640 Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.083361 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.088694 -64.85784 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphypotrichum novae-angliae SU 46.085914 -64.852086 New England Sedge Carex novae-angliae SU 46.087358 -64.853107 New York Aster Symphypotrichum novi-belgii S5 46.087358 -64.853401 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gy					
Mad-dog Skullcap Scutellaria lateriflora S5 46.087216 -64.853672 Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.083361 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.088694 -64.855784 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rose multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.087358 -64.853107 New York Fern Parathelypteris noveboracensis S5 46.081252 -64.863313 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Northern Beech Fern Phegopteris connectilis S5 46.086182 -64.854802 Northern Long Sedge Carex follic		·			
Marsh Blue Violet Viola cucullata S5 46.087206 -64.853640 Marsh Speedwell Veronica scutellata S5 46.083361 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.083694 -64.855784 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.087358 -64.853107 New York Fern Parathelypteris noveboracensis S5 46.081252 -64.853107 Northern Beech Fern Phagoteris connectilis S5 46.087610 -64.853491 Northern Beech Fern Phagoteris connectilis S5 46.087612 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853036 Northern Panic Grass<	<u> </u>				
Marsh Speedwell Veronica scutellata S5 46.083361 -64.851049 Mosquito Bulrush Scirpus hattorianus S5 46.088694 -64.855784 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.087358 -64.853107 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.086182 -64.853349 Northern Beech Fern Phegopteris connectilis S5 46.086182 -64.853349 Northern Long Sedge Carex folliculata S4 46.087125 -64.853036 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.853062 Northern Red Oak					
Mosquito Bulrush Scirpus hattorianus S5 46.088694 -64.855784 Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.087608 -64.852491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Ferm Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.087610 -64.853349 Northern Beech Fern Phegopteris connectilis S5 46.086182 -64.8534802 Northern Long Sedge Carex folliculata S4 46.087125 -64.853036 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.853736 Northern Red Oak Quercus rubra S5 46.087693 -64.853147 Northern Storthusk					
Mountain Holly Ilex mucronata S5 46.087282 -64.850360 Multiflora Rose Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.086182 -64.853349 Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853336 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.855804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.087346 -64.853062 Northern Starflower	·				
Multiflora Rose Rosa multiflora SNA 46.085914 -64.852086 New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.087610 -64.853349 Northern Beech Fern Phegopteris connectilis S5 46.086182 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853036 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.853360 Northern Red Oak Quercus rubra S5 46.087693 -64.853360 Northern Shorthusk Brachyelytrum aristosum S5 46.087346 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Wat					
New England Aster Symphyotrichum novae-angliae SU 46.085408 -64.854491 New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.086182 -64.8534802 Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853036 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.853736 Northern Red Oak Quercus rubra S5 46.087693 -64.853806 Northern Shorthusk Brachyelytrum aristosum S5 46.088647 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Water Horehound Lycopus uniflorus S5 46.087195 -64.854915 N					
New England Sedge Carex novae-angliae S5 46.087358 -64.853107 New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.086182 -64.854802 Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853036 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.855804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.087693 -64.853366 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853147 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.85401 Northern Water Plantain <td></td> <td></td> <td></td> <td></td> <td></td>					
New York Aster Symphyotrichum novi-belgii S5 46.081252 -64.863613 New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.086182 -64.854802 Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853736 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.855804 Northern Red Oak Quercus rubra S5 46.087693 -64.855804 Northern Shorthusk Brachyelytrum aristosum S5 46.087693 -64.853356 Northern St John's-Wort Hypericum boreale S5 46.088547 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Water Horehound Lycopus uniflorus S5 46.087195 -64.854915 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin </td <td><u> </u></td> <td>, , ,</td> <td></td> <td></td> <td></td>	<u> </u>	, , ,			
New York Fern Parathelypteris noveboracensis S5 46.087610 -64.853349 Nodding Sedge Carex gynandra S5 46.086182 -64.854802 Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853736 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.855804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.087693 -64.8533147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.85401 Northern Water Plantain Alisma triviale S5 46.087213 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.855284 Old Fie					
Nodding Sedge Carex gynandra S5 46.086182 -64.854802 Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853736 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.853804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.087693 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern W		. , , ,			
Northern Beech Fern Phegopteris connectilis S5 46.088351 -64.853036 Northern Long Sedge Carex folliculata S4 46.087125 -64.853736 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.853804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.088547 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854915 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.854871 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeber		· ·			
Northern Long Sedge Carex folliculata S4 46.087125 -64.853736 Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.855804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.088547 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854915 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.090682 -64.853650 Partridgeberry </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Northern Panic Grass Dichanthelium boreale S5 46.088672 -64.855804 Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.088547 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101					
Northern Red Oak Quercus rubra S5 46.087693 -64.853356 Northern Shorthusk Brachyelytrum aristosum S5 46.088547 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101					
Northern Shorthusk Brachyelytrum aristosum S5 46.088547 -64.853147 Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101					-64.855804
Northern St John's-Wort Hypericum boreale S5 46.087346 -64.853062 Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Red Oak	Quercus rubra		46.087693	-64.853356
Northern Starflower Lysimachia borealis S5 46.087195 -64.854915 Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Shorthusk	Brachyelytrum aristosum		46.088547	-64.853147
Northern Water Horehound Lycopus uniflorus S5 46.087103 -64.854133 Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern St John's-Wort	Hypericum boreale		46.087346	-64.853062
Northern Water Plantain Alisma triviale S5 46.086874 -64.855001 Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Starflower	Lysimachia borealis	S5	46.087195	-64.854915
Northern Wild Raisin Viburnum cassinoides S5 46.087213 -64.854871 Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Water Horehound	Lycopus uniflorus	S5	46.087103	-64.854133
Northern Willowherb Epilobium ciliatum S5 46.088703 -64.855284 Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Water Plantain	Alisma triviale	S5	46.086874	-64.855001
Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Wild Raisin	Viburnum cassinoides	S5	46.087213	-64.854871
Old Field Cinquefoil Potentilla simplex S5 46.086128 -64.854771 Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Northern Willowherb	Epilobium ciliatum	S5	46.088703	-64.855284
Paper Birch Betula papyrifera S5 46.087247 -64.853650 Partridgeberry Mitchella repens S5 46.090682 -64.862101	Old Field Cinquefoil	·			
Partridgeberry Mitchella repens S5 46.090682 -64.862101		·			
	<u> </u>				
	Pearly Everlasting	Anaphalis margaritacea	S5	46.086138	-64.854769

Common Name	Scientific Name	AC CDC S-Rank	X Coord	Y Coord
Pickerelweed	Pontederia cordata	S5	46.082867	-64.853375
Pin Cherry	Prunus pensylvanica	S5	46.088117	-64.855615
Pink Lady's-Slipper	Cypripedium acaule	S5	46.087226	-64.852553
Poverty Oat Grass	Danthonia spicata	S5	46.086064	-64.854736
Prostrate Knotweed	Polygonum aviculare	SNA	46.084428	-64.864107
Purple Loosestrife	Lythrum salicaria	SNA	46.085402	-64.854532
Pussy Willow	Salix discolor	S5	46.085907	-64.854653
Queen Anne's Lace	Daucus carota	SNA	46.084492	-64.854024
Rabbit's-foot Clover	Trifolium arvense	SNA	46.088112	-64.855676
Red Clover	Trifolium pratense	SNA	46.086078	-64.854715
Red Maple	Acer rubrum	S5	46.087247	-64.853650
Red Osier Dogwood	Cornus sericea	S5	46.082850	-64.853135
Red Raspberry	Rubus idaeus	S5	46.085742	-64.854593
Rhodora	Rhododendron canadense	S5	46.088812	-64.853325
Rice Cut Grass	Leersia oryzoides	S5	46.089792	-64.856331
Rough Bent Grass	Agrostis scabra	S5	46.088534	-64.855710
	Erigeron strigosus	S5	46.088133	-64.855654
Rough Fleabane	Dendrolycopodium dendroideur			
	Carex lurida	S5	46.087746	-64.853321
Sallow Sedge			46.086873	-64.854987
Sensitive Fern	Onoclea sensibilis	S5	46.087286	-64.855046
Sheep Laurel	Kalmia angustifolia	S5	46.086908	-64.854526
Shining Rose	Rosa nitida	S5	46.088981	-64.853581
Shining Willow	Salix lucida	S5	46.078213	-64.860245
Silvery Sedge	Carex canescens	S5	46.088454	-64.861989
Skunk Currant	Ribes glandulosum	S5	46.089630	-64.857521
Slender Manna Grass	Glyceria melicaria	S5	46.087281	-64.855035
Small-fruited Bulrush	Scirpus microcarpus	S5	46.086872	-64.854991
Soft Rush	Juncus effusus	S5	46.088341	-64.853043
Speckled Alder	Alnus incana	S5	46.085672	-64.854578
Spotted Jewelweed	Impatiens capensis	S5	46.089785	-64.856312
Star Sedge	Carex echinata	S5	46.089665	-64.856671
Steeplebush	Spiraea tomentosa	S5	46.087270	-64.855031
Swamp Yellow Loosestrife	Lysimachia terrestris	S5	46.088795	-64.853151
Sweet-fern	Comptonia peregrina	S5	46.087247	-64.853650
Tall Meadow-Rue	Thalictrum pubescens	S5	46.087873	-64.853427
Tamarack	Larix laricina	S5	46.086820	-64.850048
Tawny Cottongrass	Eriophorum virginicum	S5	46.085350	-64.855055
Three-leaved False Solomai	Maianthemum trifolium	S5	46.084620	-64.857351
Three-petaled Bedstraw	Galium trifidum	S5	46.088876	-64.853511
Three-seeded Sedge	Carex trisperma	S5	46.087184	-64.854894
Trailing Arbutus	Epigaea repens	S5	46.085350	-64.855136
Trembling Aspen	Populus tremuloides	S5	46.085672	-64.854555
Tufted Clubrush	Trichophorum cespitosum	S4	46.084627	-64.857056
Tussock Cottongrass	Eriophorum vaginatum	S5	46.088956	-64.862722
Tussock Sedge	Carex stricta	S5	46.079693	-64.860260
Twinflower	Linnaea borealis	S5	46.088369	-64.853094
Two-seeded Sedge	Carex disperma	S5	46.083558	-64.852437
Velvet-leaved Blueberry	Vaccinium myrtilloides	S5	46.088891	-64.853598
Wall Hawkweed	Hieracium murorum	SNA	46.078418	-64.860144
Water Avens	Geum rivale	S5	46.089422	-64.859507
White Clover	Trifolium repens	SNA	46.086118	-64.854745
White Goldenrod	Solidago bicolor	S5	46.087048	-64.850296
White Meadowsweet	Spiraea alba	S5	46.085676	-64.854571
White Spruce	Picea glauca	S5	46.087518	
·	ů.			-64.853479
White Sweet-clover	Melilotus albus	SNA	46.086123	-64.854748

Common Name	Scientific Name	AC CDC S-Rank	X Coord	Y Coord
White Turtlehead	Chelone glabra	S5	46.087213	-64.853628
Whorled Wood Aster	Oclemena acuminata	S5	46.087215	-64.854933
Wiegand's Sedge	Carex wiegandii	S3S4	46.085338	-64.855078
Wild Lily-of-The-Valley	Maianthemum canadense	S5	46.087207	-64.854942
Wild Sarsaparilla	Aralia nudicaulis	S5	46.087201	-64.854927
Wild Strawberry	Fragaria virginiana	S5	46.087247	-64.853650
Woodland Horsetail	Equisetum sylvaticum	S5	46.087276	-64.854943
Yellow Bluebead Lily	Clintonia borealis	S5	46.086884	-64.854494

