

REVISED Environmental Impact Assessment Registration Document Hylyne Estates Subdivision Lakeside, New Brunswick

GEMTEC Project: 101588.001

Submitted to:

Environment and Local Government Marysville Place, P.O. Box 6000 Fredericton, NB E3B 5H1

REVISED Environmental Impact Assessment Registration Document Hylyne Estates Subdivision Lakeside, New Brunswick

> October 12, 2022 GEMTEC Project: 101588.001

GEMTEC Consulting Engineers and Scientists Limited 191 Doak Road Fredericton, NB, Canada E3C 2E6

October 12, 2022

File: 101588.001- R02

Environment and Local Government Environmental Impact Assessment Branch Marysville Place, P.O. Box 6000 Fredericton, NB E3B 5H1

Attention: Justin Chase, Project Manager

Re: REVISED Environmental Impact Assessment Registration Document Hylyne Estates Subdivision, Lakeside, New Brunswick

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) is pleased to submit this electronic copy of the Environmental Impact Assessment (EIA) registration document and Water Supply Source Assessment (WSSA) Initial Application (Appendix B) on behalf of T. A. Raymond Environmental Services Limited. The proposed project involves the development of the Hylyne Estates Subdivision (consisting of 49 residential lots) along Robertson Road in Lakeside, New Brunswick, from the property identified by Service New Brunswick as Parcel Identifier (PID) 30344352.

Please do not hesitate to contact the undersigned if you have any questions or concerns about the registration document or the information presented herein.

Sincerely,

Paul Vanderlaan, P. Eng. Environmental Regulatory Specialist GEMTEC

Jennifer Hachey, B.Sc.

Senior Environmental Scientist GEMTEC

N:\Projects\101500\101588.001\Deliverables\EIA Registration Document\October 2022 Submission\101588.001_RPT_EIA Registration_Rev.1_2022-10-12.docx

ii

TABLE OF CONTENTS

1.0 INTRODUCTION1	1
1.1 Name of the Undertaking and Project Proponent 2 1.1.1 Name of the Undertaking 2 1.1.2 Project Proponent 2	4
2.0 PROJECT DESCRIPTION	5
2.1 Project Overview. 8 2.2 Purpose / Rationale / Need for the Undertaking. 8 2.3 Siting Considerations. 8 2.4 Physical Components and Dimensions of the Project 8 2.4.1 Construction Phase. 8 2.4.2 Operational Phase 7 2.5 Project Related Documents 7	5 5 6 7
3.0 ENVIRONMENTAL IMPACT ASSESSMENT METHODOLOGY	
3.1 Assessment Boundaries 8	3
4.0 DESCRIPTION OF THE EXISTING ENVIRONMENT	9
4.1 Atmospheric Environment 9 4.1.1 Climate Conditions 9 4.1.2 Air Quality 9 4.1.3 Sound and Vibration Sources 10 4.2 Groundwater Resources 10	9 9 0
4.3 Terrestrial Environment. 11 4.3.1 Desktop Study 11 4.3.1.1 Ecological Significant Areas (ESAs) 11 4.3.1.2 Flora Species at Risk 12 4.3.1.3 Fauna Species at Risk (SAR) 12 4.3.2 Biological Field Program 15 4.3.3 Ecological Land Classification 15 4.3.4 Wetland Delineation 16 4.3.5 Breeding Bird and Active Nesting Survey 19	1 1 2 2 5 5 8
4.4 Cultural Features 22 4.5 Socio-Economic Environment 22 4.5.1 Existing Land Use 22 4.5.2 Local Economy and Local Socio-economic Structure 24	2 2
5.0 IDENTIFICATION OF ENVIRONMENTAL IMPACTS	5
5.1 Atmospheric Environment Potential Effects	

iii

	5.1.2	Air Quality Potential Effects	
:	5.1.3	Sounds and Vibration Potential Effects	25
5.2		oundwater Resources Potential Effects	
5.3	3 Te	errestrial Environment Potential Effects	
	5.3.1	Terrestrial Wildlife and Associated Habitat	
	5.3.2	Wetlands	
:	5.3.3	Breeding Bird Potential Effects	
5.4		Itural Features Potential Effects	
5.5	5 So	ocio-Economic Environment	28
6.0	SUMM	MARY OF PROPOSED MITIGATION	28
7.0	PUBL	IC AND FIRST NATIONS INVOLVEMENT	33
7.1	l Fir	rst Nations Involvement	
7.2	2 Pu	ublic and Stakeholder Involvement	33
8.0	APPR	OVAL OF THE PROJECT	33
9.0	FUND	DING	33
10.0	REFE	RENCES	

LIST OF TABLES

Table 1.1: Proponent Information	4
Table 4.1: New Brunswick Air Quality Objectives	10
Table 4.2: Summary of ACCDC Identified Fauna Species at Risk	13
Table 4.3: Fieldwork Summary and Dates	15
Table 4.4: Adjoining Property Land Use	23
Table 6.1: Summary of Proposed Mitigation Measures	29

LIST OF FIGURES

Figure 1: Site Plan	2
Figure 2: Site Development Plan	3
Figure 3: Vegetation Communities and Wetland Delineation	16
Figure 4: Breeding Bird Survey Locations	21

LIST OF APPENDICES

APPENDIX A	NBDELG Correspondence
APPENDIX B	Water Supply Source Assessment (WSSA) Initial Application
APPENDIX C	Supporting Documents
APPENDIX D	Tentative Subdivision Plan
APPENDIX E	ACCDC 2022 Report and Summary Sheets
APPENDIX F	Wetland Delineation and WESP Data Sheets
APPENDIX G	Photo Log
APPENDIX H	Breeding Bird Survey Data

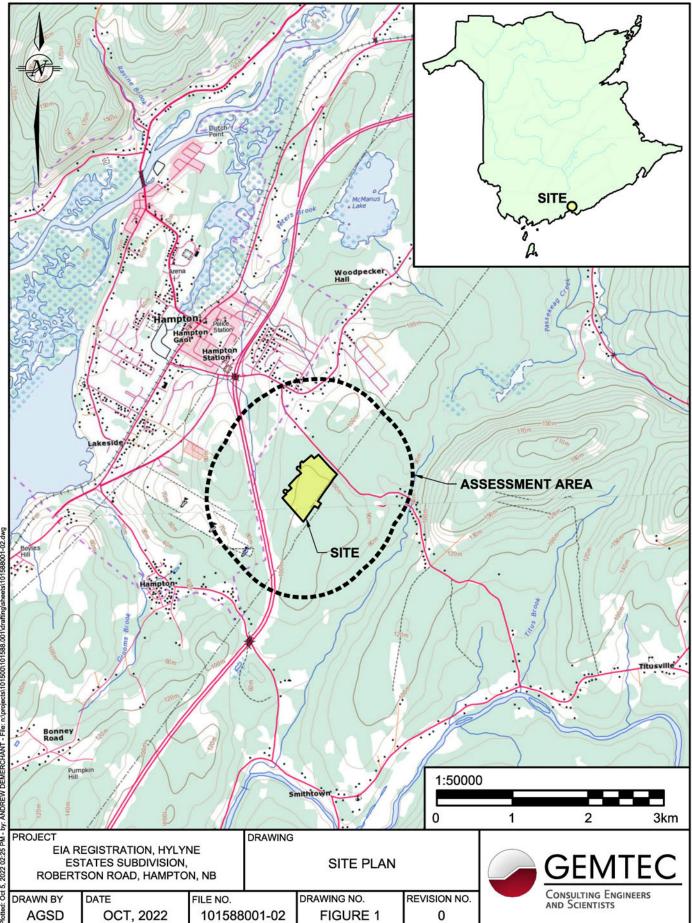
V

1.0 INTRODUCTION

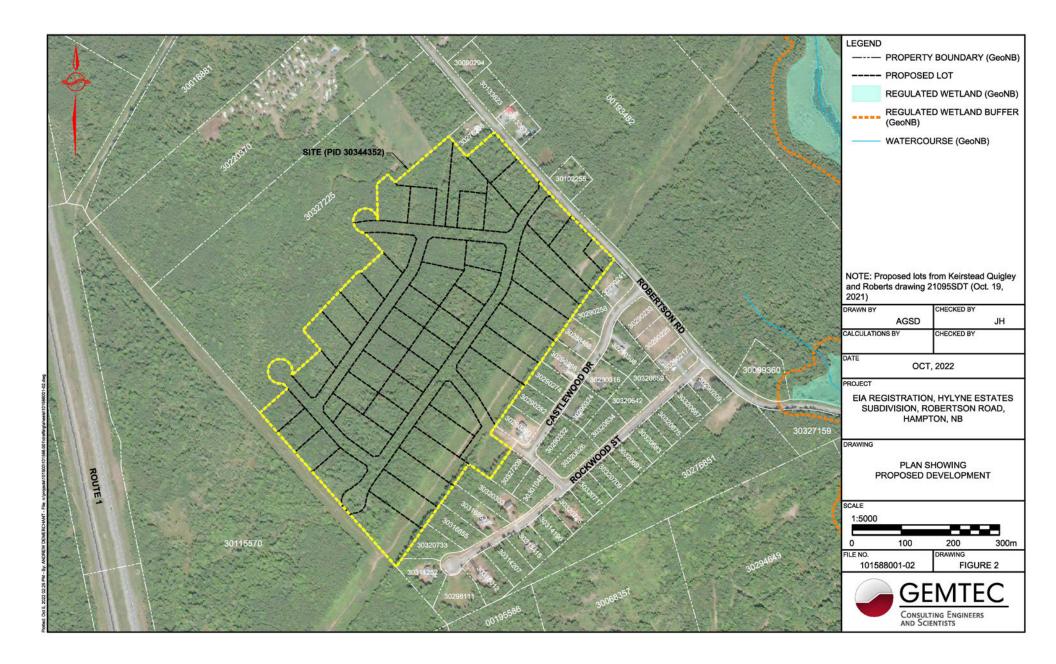
GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by T.A. Raymond Environmental Services Limited (the Proponent) to prepare a New Brunswick Environmental Impact Assessment (EIA) registration document for the proposed Hylyne Estates Subdivision in Lakeside, New Brunswick (the "Project").

The Project will subdivide Service New Brunswick (SNB) Property Identifier (PID) 30344352, which is located along Robertson Road, approximately 500 metres east of the Town of Hampton (Figures 1 and 2). The New Brunswick Department of Environment and Local Government (NBDELG) has confirmed (via a letter to Tony Raymond dated December 14, 2021) that the proposed 49-lot Hylyne Estates Subdivision is considered an expansion of the existing 39-lot Firefly Estates Subdivision, which has been developed immediately east of PID 30344352 (Appendix A). Therefore, the Project requires an EIA registration and review due to the following triggering condition:

Environmental Impact Assessment Regulation (87-83) - New Brunswick Clean Environment Act, Schedule "A" paragraph (t):


• all major residential developments outside incorporated areas.

This EIA registration document has been prepared according to NBDELG's 2018 "A Guide to Environmental Impact Assessment in New Brunswick".


GEMTEC and NBDELG have established that hydrogeological testing will be required. Therefore, a Water Supply Source Assessment (WSSA) Initial Application has been prepared and is provided in Appendix B.

This revised Registration Document has been prepared to present results from baseline investigations completed in 2022. The findings of these studies, and any potential Project impacts and associated proposed mitigations, are presented herein.

cts/101500/101588.001/dr ANDREW DEMERCHANT - File: n:\pro 2022 02:25 PM - by: : Oct 5,

1.1 Name of the Undertaking and Project Proponent

1.1.1 Name of the Undertaking

Hylyne Estates Subdivision, Lakeside, New Brunswick

1.1.2 **Project Proponent**

The name and contact information of the Proponent is presented in Table 1.1.

Table 1.1: Proponent Information

Name of Proponent	T. A. Raymond Environmental Services Ltd.
Address of Proponent	113 Route 875, Searsville, New Brunswick E5P 3S9
Principal Proponent Contact	Mr. Tony Raymond President Telephone: (506) 433-0254 Email: <u>talandenv@gmail.com</u>
Principal Contact Person for EIA	Paul Vanderlaan, P.Eng. GEMTEC Consulting Engineers and Scientists Limited 191 Doak Road, Fredericton, New Brunswick, E3C 2E6 Telephone: (506) 453-1025 Email: <u>paul.vanderlaan@gemtec.ca</u>
Property Ownership	The property is private land currently registered to New Brunswick. However, a Purchase and Sale agreement was registered with Service New Brunswick between the and the Proponent in July, 2021 (provided in Appendix C). The balance of the land purchase price is to be paid by the Proponent to the on or before December 31, 2023.

2.0 PROJECT DESCRIPTION

2.1 **Project Overview**

The Project consists of the development of a residential subdivision along the Robertson Road near the municipal boundary of the Town of Hampton on the property identified by SNB PID 30344352 (herein referred to as the "Site"). The Project will include the establishment of 49-lots for residential development and the construction of approximately 2 kilometres (km) of new public road (Figure 2). The lots will be serviced by individual domestic wells and septic systems; a WSSA initial application has been prepared and is included in Appendix B. Storm water and surface runoff will be managed through the installation of a network of ditches and stormwater retention ponds. The preliminary subdivision plan is presented in Appendix D (Tentative Plan Hylyne Estates Subdivision, Kierstead Quigley and Roberts, October 2021).

The Site is approximately 30 hectares (ha) in size and is currently forested. Robertson Road adjoins the Site to the north and is the proposed main access point for the Project. NB Power rights-of-ways (ROW) adjoin the Site to the east and south; the existing Firefly Estates Subdivision, developed previously by the Proponent, is located east of the NB Power ROW, and the associated Brasswood Drive will be extended into Hylyne Estates Subdivision as part of this Project (Figure 2; Appendix D). Residential and forested private lands adjoin the Site to the west.

The Project will include construction and operation phases; the timeline depends on housing demand and approvals. A decommissioning and abandonment phase of the Project is not anticipated as, once individual lots are purchased and developed, the area will presumably remain as a residential development for the reasonably foreseeable future.

2.2 Purpose / Rationale / Need for the Undertaking

The purpose of the Project is to continue to provide residential housing development opportunities in the greater Town of Hampton area. The proponent previously developed the successful neighbouring Firefly Estates Subdivision.

The Project is located near the Town of Hampton municipal boundary and is within a short distance of various amenities including schools, retail, fire protection services. Further, the nearby Route 1 Highway, provides a connector route between major centers such as Saint John, Moncton, and the USA.

2.3 Siting Considerations

The Project location was selected due to its proximity to the Town of Hampton, the existing road infrastructure and ease of access to the Site. The Site is located adjacent to the Firefly Estates Subdivision previously developed by the Proponent.

The Site is not located within a designated municipal drinking water supply watershed or wellfield area.

No other locations were considered.

2.4 Physical Components and Dimensions of the Project

A copy of the tentative subdivision plan is presented in Appendix D. The Site comprises an approximate area of 30 ha and will be subdivided to create 49-lots, 4 new public streets (combined length of approximately 1.75 km), and the extension of Brasswood Drive (length of approximately 225 metres). The proposed streets should be constructed in accordance with the New Brunswick Department Transportation and Infrastructure (NBDTI) requirements/standards.

Stormwater and surface runoff should be managed through the installation of a network of ditches and stormwater retention ponds in accordance with NBDTI standards/requirements. No sidewalks will be constructed for the Project. Electricity will be provided through typical overhead network of utility poles installed, operated, and maintained by NB Power.

The lots should be serviced by individual domestic wells and septic systems. A WSSA initial application has been prepared and is included in Appendix B.

2.4.1 Construction Phase

During construction the Project will include:

- Site preparation including vegetation clearing and grubbing. Each lot will be cleared of vegetation to facilitate the construction of a residential dwelling, associated ancillaries (i.e., domestic well and septic systems), and landscaped yard. A vegetated perimeter may be maintained around each lot;
- Construction of permanent roads (approximately 2 km) and associated stormwater infrastructure (i.e., ditches, cross-drains, retention ponds, etc.). Disturbed overburden soils may be re-used during any grading activities;
- Installation of overhead services and service conduits (i.e., electrical and telecommunication transmission lines);
- Management of construction waste. Domestic wastes will be collected in temporary dumpster services on Site, and cleared vegetation/grubbings and excess asphalt should be removed for proper off-site disposal; and
- Construction traffic (i.e., dump trucks, concrete trucks, hauling trucks etc.) to accommodate the construction phase of the Project. Temporary lay down areas should be limited to the Site.

2.4.2 Operational Phase

Upon the completion of the construction phase for the subdivision development, each residential lot will be sold and privately owned. The roadways are to be maintained by NBDTI. Operational activities are expected to include:

- The installation, development and use of groundwater via individual domestic wells. A WSSA initial application is included in Appendix B;
- The installation, development and use of individual septic systems on each residential lot. Septic systems should be designed by a qualified persons per the New Brunswick Technical Guidelines for On-Site Sewage Disposal Systems under the *Public Health Act*,
- Management and disposal of household solid waste; and
- Passive stormwater management via the collection of overland flow in on-Site ditching and retention ponds.

2.5 Project Related Documents

There are no known prior EIAs or environmental studies available for the Project.

A Water Supply Source Assessment (WSSA) Initial Application is presented in Appendix B, which proposes a hydrogeological testing plan for the Site. The WSSA Initial Application was approved by the Technical Review Committee (TRC). A final WSSA report will be submitted to NBDELG under separate cover.

3.0 ENVIRONMENTAL IMPACT ASSESSMENT METHODOLOGY

This EIA report has been written to meet the requirements of the *New Brunswick Environmental Impact Assessment Regulation 87-83* (as described in Section 1.0), and in particular:

- Documents the existing conditions of the Site and the Project description;
- Assesses potential environmental effects of the Project (positive or negative); and
- Outlines mitigation and impact management measures to minimize anticipated impacts or to reduce anticipated impacts to acceptable levels.

Specific to the EIA document, potential interactions or effects of the Project on the environment have been identified and are discussed herein. Where potential effects are anticipated, the proposed methods for mitigating the potential effects have been presented.

3.1 Assessment Boundaries

The EIA has been completed for two spatial boundaries:

- The Site is defined as the proposed subdivision development, identified by SNB PID 30344352 (Figure 1); and
- The Assessment Area encompasses nearby sensitive receptors (*i.e.*, neighbouring residential dwellings, environmentally sensitive areas, *etc.*) within a 1 km radius of the Site (Figure 1).

The temporal boundaries of the assessment have been completed for the construction and operation phase of the Project (residential subdivision development); overall timeline depends on housing demand and approvals. A decommissioning and abandonment phase of the Project is not anticipated as, once individual lots are purchased and developed the area will presumably remain as a residential development for the reasonably foreseeable future.

4.0 DESCRIPTION OF THE EXISTING ENVIRONMENT

4.1 Atmospheric Environment

4.1.1 Climate Conditions

The climate conditions of the Assessment Area are based upon Environment and Climate Change Canada (ECCC) climate normals recorded at SAINT JOHN A weather station, located approximately 22 km east of the Site at an elevation of +109 metres. As this is the closest monitoring station, the climate conditions measured are assumed to be representative to those at the Site and surrounding areas.

The Canadian Climate Normals (1981 to 2010) recorded from the SAINT JOHN A climate station indicate an annual daily average temperature of 5.2 degree Celsius (°C), with a daily maximum temperature of 22.6°C (July) and daily minimum temperature of -13.3°C (January). An extreme maximum temperature was recorded in August 1976 (34.4°C) and an extreme minimum temperature was recorded in February 1948 (-36.7°C). According to the climate normals, January is typically the coldest month with a daily average temperature of -7.9°C and July is the warmest month with a daily average temperature of 17.1°C (ECCC, 2022).

Average annual precipitation at SAINT JOHN A weather station is 1295.5 millimetres (mm); the average rainfall and snowfall is 1076.0 mm and 239.6 centimetres (cm), respectively. On average, November is the rainiest month and January is the snowiest (ECCC, 2022).

4.1.2 Air Quality

Air quality is monitored by both provincial and federal agencies across New Brunswick. There are no monitoring stations in close proximity to the Site; the nearest is located in Saint John - Forest Hills, approximately 30 km east of the Site. This station monitors ozone, fine particulate matter, sulphur dioxide, nitrogen dioxide, relative humidity, ambient temperature, barometric pressure, wind speed, and wind direction.

The Province of New Brunswick has Air Quality Objectives (Table 4.1) for regulated air contaminants under the *Air Quality Regulation* of the *New Brunswick Clean Air Act*.

Dellastant	Averaging Period			
Pollutant	1 Hour	8 Hours	24 Hours	1 Year
Carbon Monoxide (CO)	35,000 μg/m ³ (30 ppm)	15,000 μg/m ³ (13 ppm)	-	-
Hydrogen Sulphide (H ₂ S)	15 μg/m ³ (11 ppb)	-	5 µg/m ³ (3.5 ppb)	-
Nitrogen Dioxide (NO ₂)	400 μg/m ³ (210 ppb)	-	200 μg/m ³ (105 ppb)	100 μg/m³ (52 ppb)
Sulphur Dioxide (SO2)	900 µg/m ³ (339 ppb)	-	300 µg/m³ (113 ppb)	60 µg/m ³ (23 ppb)
Total Suspended Particulate (PM _{2.5})	-	-	120 µg/m³	70 µg/m³
Notes: µg/m ³ = micrograms per cubic metre ppm = parts per million ppb = parts per billion				

Table 4.1: New Brunswick Air Quality Objectives

Data available for the Saint John - Forest Hills Air Quality Monitoring Station did not identify any exceedances of the air quality objectives between 2019 and 2022 (NBDELG, Air Quality Data Portal, 2022).

4.1.3 Sound and Vibration Sources

The Assessment Area is considered a rural residential area and no major sources of noise or vibration are known, except the Route 1 highway, located approximately 400 metres east of the Site (Figure 1 and Figure 2).

4.2 Groundwater Resources

A description of the existing groundwater resources, including topography and drainage, local geology, and hydrogeology is presented in the WSSA initial application (Appendix B).

4.3 Terrestrial Environment

A two-phased approach was used to characterize the existing terrestrial environment: a desktop study and biological field program.

4.3.1 Desktop Study

A desktop study was completed for existing information related to habitat, flora and fauna species at risk (SAR) that may occur within the Site. SAR are considered species that have a protective status under Schedule 1 of the federal *Species at Risk Act* (*SARA*) or are protected under the provincial *New Brunswick Species at Risk Act* (*NBSAR*).

A data request was submitted to the Atlantic Canada Conservation Data Centre (ACCDC) for a 5 km radius of the Site. The ACCDC report provides the location of recorded flora and fauna SAR, the presence or absence of any location sensitive species, and the location and information on significant or managed natural areas. The ACCDC report in presented in Appendix E.

4.3.1.1 Ecological Significant Areas (ESAs)

The ACCDC report identified two managed areas (MA) within a 5 km radius of the Site (ACCDC, 2022; Appendix E) including:

- Ducks Unlimited Canada Conservation Lands; and
- Hampton Marsh Nature Preserve.

The Ducks Unlimited Canada Conservation Lands are located approximately 4.5 km north of the Site. This MA is approximately 14.5 ha in size and interpretation from GeoNB Mapping shows an inland waterbody surrounded by Provincially Significant Wetland.

The Hampton Marsh Nature Preserve is approximately 3 km northwest of the Site. Interpretation from GeoNB Mapping suggests this MA is a 15 ha forested wetland that transitions to a freshwater wetland along the shoreline of the Ossekeag Creek.

The ACCDC report also identified three Ecological Significant Areas (ESAs) within a 5 km radius of the Site (ACCDC 2022; Appendix E) and include:

- McManus Lake ESA;
- Hampton-Kennebecasis Wetland Complex ESA; and
- Hampton Roadcuts ESA.

The McManus Lake ESA is approximately 67 ha in size and is located 3 km north of the Site. It was designated as an ESA since it has supported a small colony of Great Black-backed Gulls (ACCDC, 2022; Appendix E).

The Hampton-Kennebecasis Wetland Complex ESA is approximately 1,196 ha in size and located more than 1.5 km west of the Site. This extensive marsh comprises a series of backwaters and arms of the Kennebecasis River. There are numerous Ducks Unlimited impoundments (ACCDC, 2022; Appendix E).

The Hampton Roadcuts ESA is designated for its geologic significance. It is located along Route 1 Highway on either side of exit 149. Cobbles and boulders are clearly visible in the steeply dipping conglomerate layers. The hills that can be seen north of the Kennebecasis River valley are underlain by Late Precambrian volcanic rock (ACCDC, 2022; Appendix E).

No National Wildlife Areas (NWAs), Migratory Bird Sanctuaries (MBSs), Ramsar Sites, or New Brunswick Protected Natural Areas, apart from the listed MA's and ESA's, are located within 5 km of the Site (Environment Canada Protected Areas Network, 2022, Ramsar Sites Information Service, 2022, and NBDERD Protected Natural Areas, 2022).

The Project is not expected to interact with any ESAs or MAs and, therefore, are not discussed further in this EIA.

4.3.1.2 Flora Species at Risk

The ACCDC identified one flora SAR: Butternut (*Juglans cinerea*) as occurring within 5 km of the Site (ACCDC, 2022; Appendix E); a single record of this species was observed 2.8 km from the Site.

Butternut is listed as Endangered by COSEWIC, *SARA* and *NBSAR*, with a Provincial Rarity Rank of S1 (critically imperiled) and typically occurs in rich, moist well-drained hills and gravels (Appendix E).

Butternut was not observed during the field investigations; therefore, the Project is not expected to impact this species on a population level and is not discussed further in this EIA.

4.3.1.3 Fauna Species at Risk (SAR)

The ACCDC identified 14 fauna SAR as occurring within 5 km of the Site (ACCDC, 2022; Appendix E); a summary of the SAR and their protection designations are presented in Table 4.2.

Common Name	Scientific Name	COSEWIC ¹ Rank	SARA ² Status	NBSAR ³ Status
Atlantic Salmon – Outer Bay of Fundy pop.	Salmo salar pop. 7	Endangered	-	Endangered
Wood Thrush	Hylocichla mustelina	Threatened	Threatened	Threatened
Chimney Swift	Chaetura pelagica	Threatened	Threatened	Threatened
Bank Swallow	Riparia riparia	Threatened	Threatened	-
Bobolink	Dolichonyx oryzivorus	Threatened	Threatened	Threatened
American Eel	Anguilla rostrata	Threatened	-	Threatened
Barn Swallow	Hirundo rustica	Special Concern	Threatened	Threatened
Rusty Blackbird	Euphagus carolinus	Special Concern	Special Concern	Special Concern
Olive-sided Flycatcher	Contopus cooperi	Special Concern	Threatened	Threatened
Canada Warbler	Wilsonia canadensis	Special Concern	Threatened	Threatened
Common Nighthawk	Chordeiles minor	Special Concern	Threatened	Threatened
Eastern Wood- Pewee	Contopus virens	Special Concern	Special Concern	Special Concern
Eastern Cougar	Puma concolor pop. 1	-	-	Endangered
Monarch	Danaus plexippus	Endangered	Special Concern	Special Concern

Table 4.2: Summary of ACCDC Identified Fauna Species at Risk

1. Committee of the Status of Endangered Wildlife in Canada.

2. Species at Risk Act.

3. New Brunswick Species at Risk Act.

The Site conditions observed during the investigations suggest only moderate or low probability of occurrence for any of the fauna SAR identified in the ACCDC report. A summary of the SAR fauna species, their preferred habitat, and their probability of occurring within the Site are presented in Appendix E.

Further, ACCDC listed four fauna SAR and one SAR habitat as location sensitive species (i.e., known to inhabit areas within 5 km of the Site) including:

- Wood Turtle (*Glyptemys insculpta*) Threatened, *SARA* and *NBSAR*
- Bald Eagle (Haliaeetus leucocephalus) Endangered, NBSAR
- Peregrine Falcon (Falco peregrinus pop. 1) Endangered, NBSAR

- Monarch Butterfly (Danaus plexippus) Endangered, SARA
- *Bat Hibernaculum or Bat Species Occurrence.

*Consists of three species of bats and/or their hibernaculum habitat: Little Brown Myotis (*Myotis lucifugus*), Long-Eared Myotis (*Myotis septentrionalis*), and Tri-Coloured Bat (*Perimyotis subflavus*). All three bats are considered Endangered under the *SARA* and the *NBSAR*.

The Wood Turtle is listed as Threatened under *SARA* and the *NBSAR*. This species is generally found in forested habitats and require daily water resources; thus, are associated with clear, freshwater streams and the associated floodplains. The preferred streams contain a year-around flow with substrate beds of sand, gravel and sometimes cobble. Wood Turtles also use bogs, marshy pastures, beaver ponds, oxbow lakes, riparian and shrub areas, meadows, hay and agricultural fields, and transmission line right-of-ways (*SARA*, 2021). There are no fresh water sources within the Site and as such, suitable habitat for Wood Turtle is not present.

The Bald Eagle is designated as Endangered under the *NBSAR*. This species forages within large bodies of water and will nest in forested areas adjacent to large bodies of water (GNB, 2021). Although the Site is heavily forested, it is located more than 2 km from a large body of water and it is therefore unlikely that the Site would be used by this species.

The Peregrine Falcon is designated as Special Concern and Endangered by *SARA* and *NBSAR*, respectively. This species nests in high cliffs, bridges, or towers overlooking open foraging areas. The Site does not have suitable nesting habitat for this species.

The breeding habitat for Monarch is confined to sites where Milkweed, the sole food of the caterpillars, grow. These plants grow predominantly in open and periodically disturbed habitats such as roadsides, fields, wetlands, prairies, and open forests (SARA, 2021). Milkweed was observed within the hydro corridor on the Site, which will remain undisturbed during the Project; thus, impacts to Monarchs are not expected.

The three species included in the Bat Hibernaculum are listed as Endangered under *SARA* and *NBSAR*. These species are most susceptible to White Nose Syndrome, a fungus that kills bats by awakening them during their hibernation periods when there is no food and depletes their fat reserves. These bats over-winter in caves, abandoned mines or in buildings (NBDERD, 2018). Suitable habitat for Bat Hibernaculum was not observed on the Site.

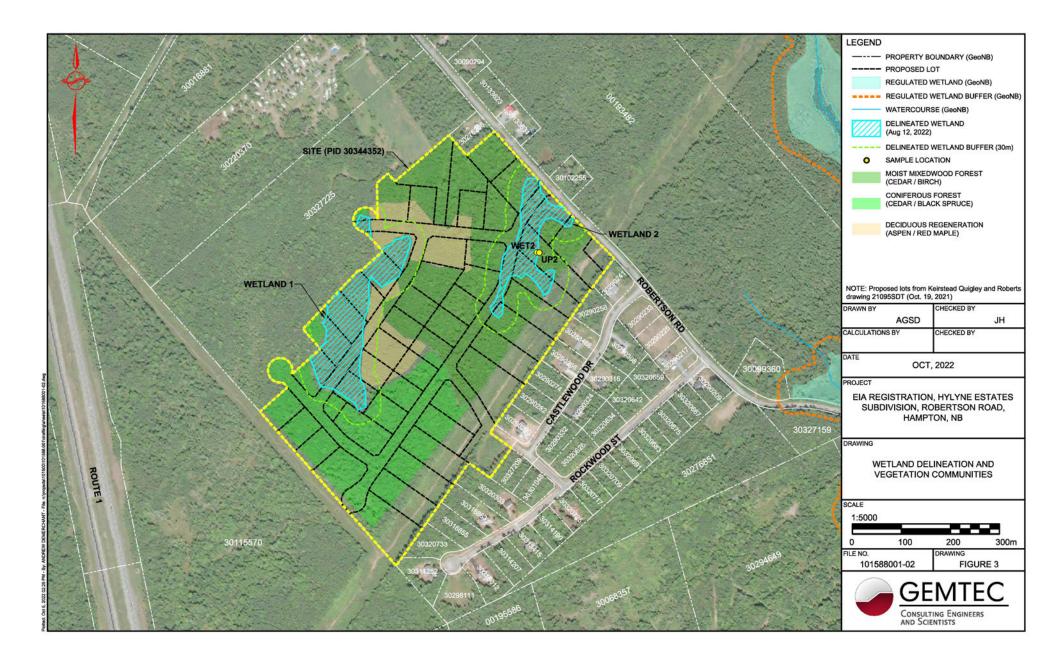
Critical habitat for any of the SAR fauna was not observed within the Site.

4.3.2 Biological Field Program

A biological field program was completed by GEMTEC environmental personnel. Dates and surveys completed are presented in Table 4.3. Data was collected to characterize the existing terrestrial environment within the Site at the time of the surveys. Methodology and results for the biological field program are discussed below:

- Ecological Land Classification;
- Breeding Bird Presence;
- Wetland Delineation; and
- Incidental Wildlife Observations.

Table 4.3: Fieldwork Summary and Dates


Date	Biological Survey
May 19, 2022	Breeding Bird Survey #1
	Early Flowering Vegetation Survey
	Incidental Wildlife Observations
July 15, 2022	Breeding Bird Survey #2
	Summer Flowering Vegetation Survey
	Incidental Wildlife Observations
July 21, 2022	Active Bird Nesting Survey
August 12, 2022	Wetland Delineation
	Incidental Wildlife Observations

4.3.3 Ecological Land Classification

A GEMTEC biologist attended the Site on several occasions to characterize the habitat and vegetation communities within the Site. The Site is heavily forested with a mix of deciduous and coniferous tree species dominating the canopy. There are no records of wetland within or immediately adjacent to the Site per the GeoNB WAWA Reference Map. However, wetland features were identified within the Site by GEMTEC biologists.

No watercourses were observed on the Site or expected; therefore, potential impacts to surface water quality and the aquatic environment are not discussed herein.

The results of the investigation are illustrated on Figure 3.

Forested Wetland

The provincial GeoNB mapping was reviewed prior to the Site visit and showed no mapped wetlands within proximity to the Site. Two separate forested wetlands, not associated with any watercourses, were identified, and delineated during the Site inspections. A small (1.76 ha) wetland, "Wetland 2", is located in the northeast corner of the property while a second larger wetland "Wetland 1", that continues off-site, is present along the western property boundary (Figure 3). A detailed description of both wetlands is presented in Section 4.3.2.2.

Moist Mixed Forest

A Moist Mixed Forest was identified within the Site (Photo 1, Appendix G). This feature comprises the western portion of the Site (Figure 3). The forest is comprised of a mix of coniferous and deciduous species dominated by eastern white cedar (*Thuja occidentalis*), white spruce (*Picea glauca*), white birch (*Betula papyrifera*), and trembling aspen (*Populus tremuloides*). Associate canopy species include tamarack (*Larix laricina*), black spruce (*Picea mariana*), red maple (*Acer rubrum*), and balsam poplar (*Populus balsamifera*). Typical understory vegetation in this ecosite include bunchberry (*Cornus canadensis*), bracken fern (*Pteridium aquilinum*), star flower (*Trientalis borealis*), trout lily (*Erythronium americanum*), and ostrich fern (*Matteuccia struthiopteris*), although, vegetation is less dense with a limited shrub layer. In pocketed areas where canopy was determined to be less than 35%, a dense understory of lowbush blueberry (*Vaccinium angustifolium*), serviceberry (*Amelanchier canadensis*), fowl mana grass (*Glyceria striata*), and various ferns exists. It should be noted, and as advised by the developer, portions of the Mixed Forest community have recently been subjected to forest management activities including some clearing.

Coniferous Forest

A mature Coniferous Forest is located within eastern portion of the Site (Figure 3; Photo 2, Appendix G). The forest is dominated by eastern white cedar with eastern hemlock (*Tsuga canadensis*), white spruce, white birch and silver maple (*Acer saccharinum*) also found throughout the ecosite. Trees within the forest are mature and well spaced (greater than 3 metres). Woody, shrub species are limited in the ecosite. Ground cover is dominated by sphagnum growth, rich herb species including wood sorrel (*Oxalis sp.*), woodland strawberry (*Fragaria vesca.L*), and creeping snowberry (*Gaultheria hispidula*) as well as variety of ferns including interrupted fern (*Osmunda claytoniana*), ostrich fern, sensitive fern (*Onoclea sensibilis*), and bracken fern. It should be noted, and as advised by the developer, portions of the Coniferous Forest have recently been subjected to forest management activities including some clearing.

Deciduous Regeneration Woodland

Areas within the Site have been subject to historical clearing, presumably for timber harvesting (Figure 3). These areas have begun to regenerate with early succession tree species. Young trembling aspen dominate these areas with other associate deciduous species including red maple and balsam poplar.

Hydro Corridor

A Hydro Corridor runs along the eastern and southern boundary of the Site (Photo 3, Appendix G). This ecosite is subject to regular disturbance as part of the hydro corridors maintenance cycle. The shrub layer is the dominant form with lowbush blueberry, speckled alder (*Alnus incana*), and young trembling aspen dominating the ecosite. Forbs and ground cover are characterized as a mix of meadow and thicket species including Canada goldenrod (*Solidago canadensis*), narrow-leaved goldenrod (*Euthamia graminifolia*), New England aster (*Symphyotrichum novae-angliae*), common milkweed (*Asclepias syriaca*), fragrant bedstraw (*Galium triflorum*) and various common cool season grasses.

4.3.4 Wetland Delineation

To determine the wetland boundaries, accepted industry standards were used as described by the *Corps of Engineers Wetlands Delineation Manual – Technical Report Y-87-1*, U.S. Army Corps of Engineers (1987), and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region*, U.S. Army Corps of Engineers (2012). This included identifying the presence of dominating hydrophytic vegetation, hydric soils and any hydrological indicators such as surface water, soil saturation and drainage patterns, etc. A paired data point (wetland and upland) was recorded at encountered wetlands to show the three parameter determinations. The data point information was recorded on the New Brunswick Department of Environment Wetland Delineation Data Sheets (Appendix F). A handheld GPS was used to capture the coordinates of the wetland boundary and data points.

Wetland 1

Wetland 1 is located along the northwestern property boundary and extends northwest off-site (Figure 3). The feature is described as an approximately 3.78 ha forested swamp (Photo 4, Appendix G).

It contains dominant hydrophytic vegetation of balsam poplar, eastern white cedar, Grey Birch (*Betula populifolia*) and red maple. Shrub growth in the wetland is limited with young grey birch, chokecherry (*Prunus virginiana*), and red raspberry (*Rubus idaeus*) dominating the growth. sensitive fern and wood horesetail (*Equisetum sylvaticum*) dominate the herbaceous stratum.

The soil is characterized as a Depleted Matrix (F3) which is an indicator of wetland soils (Photo 5, Appendix G). Soils were also saturated at surface which is a primary hydrology indicator (A3). Water-stained leaves (B9) were also observed within the wetland.

Although this wetland is not associated with any watercourses, it does exceed 1 ha in size. As such, in accordance with *WAWA Regulation 90-80* under the *Clean Water Act* (1989), is considered a regulated wetland.

Wetland 2

Wetland 2 is located in the northeast corner of the property and is described as a 1.76 ha forested swamp (Figure 3; Photo 6, Appendix G). It contains dominant hydrophytic vegetation of balsam fir (*Abies balsamea*) and eastern white cedar with associate species including grey birch and red maple. The wetland contains limited shrub growth while the herbaceous stratum is dominated by bunchberry, starflower and cinnamon fern (*Osmunda cinnamomea*).

The soil is characterized as a Depleted Matrix (F3) which is an indicator of wetland soils (Photo 7, Appendix G). The soil was determined to be saturated at surface which is a primary indicator (A3) of wetland hydrology.

Although this wetland is not associated with any watercourses, it does exceed 1 ha in size. As such, in accordance with *WAWA Regulation 90-80* under the *Clean Water Act* (1989), is considered a regulated wetland.

4.3.5 Breeding Bird and Active Nesting Survey

Breeding bird surveys were completed following the general principles outlined in the *Maritimes Breeding Bird Atlas (MBBA) Guide for Atlassers* (April 2006), tailored to the needs of this Project:

- Two surveys were conducted between May 15 and July 15 which falls within the peak breeding season for the majority of bird species in New Brunswick.
- Weather conditions conducive for auditory and visual surveys were conducted in winds less than 19 km/hour (>3 on the Beaufort scale), with no precipitation.
- A comprehensive search of the Site (Figure 4) was conducted in order to ensure full coverage of all habitat units to determine the breeding status of all birds detected within the subject lands.

All birds observed or heard utilizing each wildlife habitat area were documented, and breeding bird evidence codes were assigned to determine the level of breeding, following the *MBBA* breeding evidence codes. Appendix H summarizes the breeding bird surveys conducted in 2022.

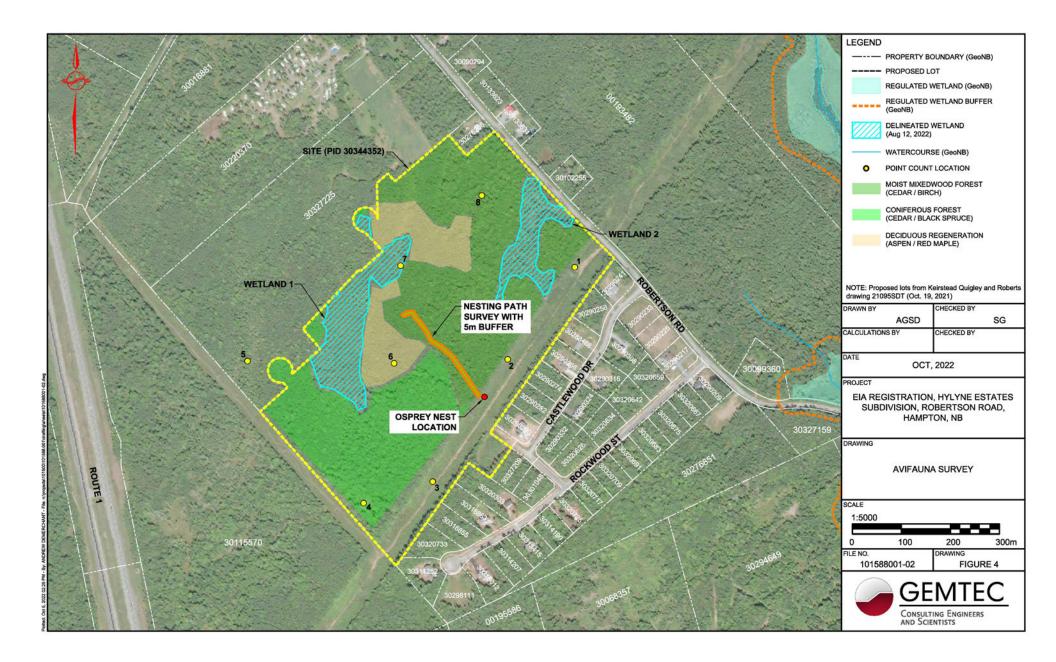
Results

Breeding Bird Survey

Thirty-nine species comprising 201 individuals were determined to be Possible, Probable or Confirmed breeders on or immediately adjacent to the Site. Appendix H summarizes each species detected, including the habitat units in which they were recorded and the level of breeding that was determined overall on the Site.

In decreasing order, the following birds were most abundant species identified in the Site: Whitethroated Sparrow (*Zonotrichia albicollis*; 16), Ovenbird (*Seiurus aurocapilla*; 14), Black-capped Chickadee (*Poecile atricapillus*; 14), Blue Jay (*Cyanocitta cristata*; 13), Black-throated Green Warbler (*Setophaga virens*; 11), and Common Yellowthroat (*Geothlypis trichas*; 11). The species identified are considered common in the region and are consistent with the development stage and species composition of the forest within the Site with the exception of one S3 species:

 A single S3 species was identified with no S2 or S1 species being present in the Site. The Pine Siskin (*Spinus pinus*) was identified at survey point 2 (Figure 4) on May 19, 2022. The individual was heard making breeding calls within its natural breeding habitat. It is expected that this species was utilizing the Deciduous Regeneration Forest illustrated on Figure 4.


An active osprey nest was observed during both migratory breeding bird surveys. Two individuals displayed territorial behavior around the nest within the hydro corridor. The nest location is presented on Figure 4. Osprey is not considered a rare species and has an S-rank of S5S5B,S2M.

No common nighthawks were detected during the survey. Although the transmission line right of way is suitable habitat for common nighthawks, regular vegetation management in this area may deter birds from nesting.

No designated bird SAR were identified during the field investigations and are not expected to be impacted by the proposed construction; thus, are not discussed further in this EIA.

A list of all bird species recorded during the bird surveys is included in the bird survey report included in Appendix H, along with their highest breeding status and the number of individuals of each species that were observed. A summary of the bird species and their associated habitat within the Site is also included in the report in Appendix H.

Nesting Survey

A nesting migratory bird survey was conducted on July 21, 2022 to accommodate well drilling for the Project WSSA. The proposed well locations were located within heavily vegetated areas and required vegetation clearing within the breeding bird season to allow access.

GEMTEC biologists conducted a nesting survey within the path required to be cleared and identified no nests of breeding migratory birds (Figure 4). The path where vegetation clearing was required had been staked and a 5-metre buffer on either side was applied to determine the limits of the survey. All trees, shrubs and fallen vegetation were scanned for nests as well as for birds being flushed from their nesting area.

A second well location was proposed along the south-eastern property boundary. The path required to access the this well location had been cleared, as such, a nesting survey was not conducted in this location.

4.4 Cultural Features

There are no national or provincial parks located adjoining the Site or in the Assessment Area. A recreational campground (Fire Fly Forest Recreation Area) is located within the Assessment Area, approximately 150 metres east of the Site.

There are no federally, provincially, or locally recognized heritage areas located within the Site or Assessment Area. The nearest First Nations community is the Welamukotuk (Oromocto) First Nations located approximately 65 km north of the Site. The Sitansisk (Saint Mary's) First Nations community is located approximately 80 km to the northeast of the site. Both the communities reside on designated reserve lands and maintain the right to harvest natural resources to support their cultural, social, and economic wellbeing.

Review of provincial predictive mapping shows the Site and adjoining properties have low potential for archeological or heritage resources. A pedestrian walkover of the Site by an archaeologist was not deemed required. A copy of the New Brunswick Department of Tourism, Heritage and Culture (NBTHC) supplied mapping is presented in Appendix C.

4.5 Socio-Economic Environment

4.5.1 Existing Land Use

Within the Assessment Area, the neighbouring residential properties are generally located to the east, southwest of Robinson Road. These residential properties are part of the Firefly Estates Subdivision. The Site is located in parish of Hampton, approximately 4 km southeast from the town centre of Hampton. The Town of Hampton Land Use Plan and Rural Plan Map are included in Appendix C.

A list of all adjoining property uses is presented in Table 4.4 per SNB's Registry and Mapping Services (SNB Planet, 2022).

Location Relative to the Site	PID	Land Use
	30276208	Residential/Forested
North	00193482	Timberland
North	30102255	Residential/Forested
	30133631	Residential
	30290241	Residential
	30290258	Residential/Forested
	30288468	Residential
East	30290266	Residential/Forested
	30290274	Residential/Forested
	30290282	Residential/Forested
	30290290	Residential/Forested
	30327209	Residential/Forested
Southeast	30320303	Residential/Forested
	30316863	Residential/Forested
	30316855	Residential/Forested
South	30320733	Residential/Forested
	30311252	Residential/Forested
Southwest	30115570	Timberland
Northwest	30327225	Timberland

Table 4.4: Adjoining Property Land Use

The Treasury Board of Canada Secretariat maintains an inventory of federal contaminated sites. This inventory was reviewed, in conjunction with the SNB Planet, to determine the current and historical extent of commercial and/or industrial sites within and adjoining the Site. Neither the Site nor any adjoining properties are identified to be federal contaminated sites. The Federal Contaminated Sites mapping, relative to the site, is included in Appendix C.

Property identifies for the Site and adjoining properties were searched in SNB, reviewing the Land Gazette for each property. The Land Gazette is an information repository of land-related notices, restrictions, and other information about land parcels (i.e., PIDs). Based on a review of online Land Gazette information, there are no records of contamination or remediation for the Site or adjoining properties.

4.5.2 Local Economy and Local Socio-economic Structure

The Project is located just outside the Town of Hampton municipal boundary and is within a short distance of various amenities including schools, retail, fire protection services. Further, the nearby Route 1 Highway, provides a connector route between major centers such as Saint John, Moncton, and the USA.

When considering the proposed local governance reform, the Site will be encompassed within Entity 47, which also includes the Town and LSD of Hampton, portions of the Kingston LDS, portion of the Norton LSD, and portion of Upham LSD. The estimated population of Entity 47 is 8,216 and tax base of \$720,103,040 (ELG, 2021).

5.0 IDENTIFICATION OF ENVIRONMENTAL IMPACTS

An assessment of potential environmental impacts was completed based on the description of proposed development provided by the proponent as well as the environmental studies discussed above to characterize the Site and Assessment Area.

The proposed Project involves both direct effects (within the Site) and indirect effects (within the Assessment Area).

Potential direct effects include vegetation clearing, ground disturbing activities required for the development of a residential subdivision, including the construction of permanent roads and stormwater infrastructure to NBDTI specifications, importing fill, loss of wetland, potential for erosion/sedimentation.

Potential indirect effects of the proposed development include change in groundwater hydrology, noise and light pollution.

5.1 Atmospheric Environment Potential Effects

5.1.1 Climate Conditions Potential Effects

It is not expected the Project will affect climate conditions such as ambient temperatures, precipitation amounts and wind patterns; therefore, climate conditions are not discussed further in this EIA.

5.1.2 Air Quality Potential Effects

The Project could temporarily impact local air quality during the construction phase by increased fugitive dust and equipment emissions during road grading and disturbance of overburden materials. The increases are expected to be short-term (daytime hours) and limited to portions of the Site as residential lots and roadways will be developed in a sequential manner.

Air quality during the operational phase of the Project is limited to commuter vehicles and heating / cooling systems installed in residential dwellings; thus, is not discussed further herein.

5.1.3 Sounds and Vibration Potential Effects

Sound and vibration production within the Site is expected from operating Project machinery and equipment (i.e., excavator, crusher, dump trucks, garbage trucks, etc.) during the construction phase. Construction sound and vibrations may be observed by nearby receptors in the Assessment Area.

The operational phase of the Project is a rural residential subdivision, major sources of noise and vibrations are not expected, and not discussed further herein.

5.2 Groundwater Resources Potential Effects

Potential effects to groundwater resources, including the availability of groundwater of adequate quantity and quality, and potential impacts on existing water users and the environment, will be determined during the WSSA undertaking and presented in the associated final report to be submitted to NBDELG thereafter.

5.3 Terrestrial Environment Potential Effects

5.3.1 Terrestrial Wildlife and Associated Habitat

All vegetation communities within the Site will require varying levels of vegetation removal to accommodate the Project. It should be noted, and as advised by the proponent, portions of the Site have been subjected to forest management activities including clearing. The Project will be phased, and lot development will occur "as needed", allowing for wildlife to adjust to the gradual change in habitat.

Ground disturbance increases potential for the degradation of adjoining habitat via the failure of erosion and sediment control structures during the construction phase of the Project.

During construction and operational phases, the Project will result in increased light and noise pollution which can have negative impacts on the wildlife utilizing the Assessment Area. Significant natural habitat exists surrounding the Site and the effects of increased light and noise pollution are expected to be minimal.

Although the construction and operation of the Project may temporarily affect the wildlife and wildlife habitat within the Site and Assessment Area as described above, impacts are not expected to be significant as the habitat conditions that will be lost are widely available in the surrounding area. Furthermore, the proposed mitigation measures will further reduce any potential impacts to the extent the Project is not expected to result in any significant effects to the terrestrial wildlife and their habitat.

5.3.2 Wetlands

Two wetlands were identified during the 2022 investigations and are both expected to be impacted by the proposed development. It is expected that portions of both wetlands will be cleared of vegetation to accommodate construction and site access. Fill and grading activities are also expected within both wetlands which will result in loss of wetland area and the alteration of hydrologic form and functions of these features.

In accordance with *WAWA Regulation 90-80* under the *Clean Water Act* (1989), alterations including vegetation removal, soil disturbance and / or changes to water flows, within 30 metres of a delineated wetland will require a permit prior to the commencement of any work.

Although the Project will result in some loss of wetland habitat within the Site, the overall impact to wetlands is not considered to be significant as any lost wetland area should be compensated at a 2:1 ratio and the proposed mitigation measures will minimize any risk to remaining wetland habitats within the Site and Assessment Area. In addition, and as mentioned above, a WAWA permit should be obtained prior to any Project work within 30-metres of a regulated wetland.

5.3.3 Breeding Bird Potential Effects

On-Site shrubs and trees may support bird populations during certain parts of the year; thus, there is potential for the disturbance or destruction of migratory breeding birds and their habitat during the construction phase if the works occur during the active breeding window.

Ultimately the proposed Project may alter the habitat with the removal of vegetation, increase in human presence, and increase noise and light pollution.

Attraction to cleared/stockpile areas may result in an increase in bird injuries and/or deaths or destruction of nests.

Impacts to bird habitat and migratory breeding birds can be reduced by conducting construction activities outside of the prescribed breeding window (April 15th to September 1st). With this mitigating consideration, the overall impact to birds and bird habitat is not considered to be significant as habitat conditions that will be lost are widely available in the surrounding area. Furthermore, the proposed mitigation measures will further reduce any potential impacts to the extent the Project is not expected to result in any significant effects to breeding birds and their habitat.

5.4 Cultural Features Potential Effects

No First Nations or designated reserve lands are situated within the Assessment Area. A highlevel project description and invitation for comments and concerns was sent to the Elsipogtog First Nation (Big Cove), the Welamokotuk (Oromocto) First Nation, and Amlamgog (Fort Folly) First Nation in accordance with Engagement and Consultation Contact Protocol (DAA, 2019) as part of this EIA. Any received correspondence and concerns will be presented to NBDELG under a separate cover detailing public and First Nations consultation.

Potential effects as a result of earthwork to archaeological and heritage resources are not likely due to the low potential for occurrence within the Site.

5.5 Socio-Economic Environment

The Project is expected to have a positive impact to the local economy and community by providing additional housing options in a demanding real estate market. The Project is considered to be consistent with nearby zoned residential areas within the Assessment Area (Town of Hampton Land Use Plan; Appendix C), and an extension of an existing subdivision development (Firefly Estates Subdivision) located on the adjoining property to the east. As such, significant potential effects to existing land use, or the socio-economic environment are not expected, and are not discussed further herein.

6.0 SUMMARY OF PROPOSED MITIGATION

The potential effects and proposed mitigation measures to minimize the potential adverse effects to the environment during the Project are summarized in Table 6.1.

Table 6.1: Summary of Proposed Mitigation Measures

Project Summary of Potential Mitigation Meas		Mitigation Measures
Component	Interaction	
Air Quality	Potential for particulate matter and dust.	Dust suppressants may be used during periods of dry weather;
		Dry materials/stockpiles may be covered or windrowed to prevent blowing dust or debris. Similarly, dusty material should be transported in covered haulage vehicles;
		Dust generating activities should be limited during periods of dry or windy conditions; and
		Wind prone areas should be stabilized in a timely manner.
	Potential for gaseous emissions from equipment and truck traffic.	Any non-essential internal combustion engines should be shut off when not in use, and heavy equipment should not remain idling for periods exceeding 15 continuous minutes as a best management practice; and
		Equipment should be maintained according to emission standards and in good working order.
Sound/ Vibration	Noise levels and vibration from equipment and truck traffic.	Equipment should be maintained according to emission standards and in good working order;
Quality		Equipment should be muffled, when feasible; and
		Generally, on-site activities should be limited to day-time hours (<i>i.e.,</i> 12 hours per day).

Table 6.1: Summary of Proposed Mitigation Measures

Project	Summary of Potential	Mitigation Measures
Component	Interaction	
Groundwater Quality	Potential for contaminants to be released into water resources through spills of fuels, lubricants, and chemicals from on-site equipment and storage areas.	No construction chemical or petroleum storage should occur within 100-metres of a private groundwater well; No construction chemical or petroleum storage should occur within 30-metres of an environmental sensitive area <i>(i.e.,</i> wetland, watercourses, <i>etc.</i>); and Construction equipment should be kept in good working order.
Wildlife Habitat	Vegetation clearing will alter / destroy habitat in the Site; and Soil disturbance including excavation, importation of fill and other materials, other grading activities.	Vegetation clearing should be kept to a minimum and only be completed within the areas required to complete construction. Where possible, brush and cleared woody debris should be placed within the remaining woodlot to promote wildlife habitat and natural regeneration. Construction should be conducted in compliance with all applicable environmental standards and regulations. Erosion and Sediment Control (ESC) structures (e.g., silt fencing) should be installed around the limits of the development envelopes and other impacted areas. Regular inspections of ESC structures should be conducted to ensure the structures remain in place and function effectively throughout construction.

Table 6.1: Summary of Proposed Mitigation Measures

Project	Summary of Potential	Mitigation Measures
Component	Interaction	
Wildlife and Birds	Vegetation clearing will alter / destroy habitat in the Site; Noise and light from Project activities may disrupt wildlife and birds; Possibility of human interaction as a result of personnel within the Site, possible attraction to waste/garbage stored on site; and Attraction to cleared/stockpile areas may result in an increase in bird injuries and/or deaths or destruction of nests.	Nearby wildlife will likely be deterred by the noise on the Site during Project activities and more suitable habitat types are not limiting on adjoining properties; Equipment should be maintained in good working order; Equipment should be muffled, if feasible; Construction activities should be limited to daytime (sunlight) hours; Vegetation clearing should not be completed within the Breeding Bird period, April 15 to September 1, without the completion of a nesting survey conducted no more than 5 days prior to clearing activities. If a nesting bird species is encountered, contact with and disturbance of the species and its habitat should be avoided. A qualified biologist should be contacted to determine when work may proceed with limited impacts to the nesting individuals; An appropriate vegetated buffer should be established around any nests encountered to protect them from disturbance and work in that area will be avoided until after the birds have fledged or vacated; and If any SAR are encountered during construction activities, a qualified biologist should be contacted for further direction.

Table 6.1: Summary	y of Proposed	Mitigation Measures
--------------------	---------------	---------------------

Project	Summary of Potential	Mitigation Measures
Component	Interaction	
Wetlands	 Permanent alteration of wetland habitat via: Vegetation removal; Soil disturbance including excavation, importation of fill and other materials, other grading activities. 	A WAWA permit should be obtained prior to construction for all work completed within 30 metres of the wetlands. Compensation for wetland impacts, as required, should be determined through the WAWA process. Vegetation removal, soil disturbance, and machine operation should be limited to the individual development envelopes. ESC fencing should be installed around the Site boundary and any adjacent wetlands in the Assessment Area to mitigate sedimentation, prevent pollution, and prohibit vegetation clearing beyond the defined limits. ESC fencing should be established prior commencement of construction activities.
Archeological Resources	Potential for earthworks to uncover or destroy archaeological or heritage resources.	Existing vegetation will be retained whenever possible and tree / vegetation clearing will be kept to a minimum; Areas to be excavated shall be clearly marked to minimize the footprint within the Site;
		In the event of an unplanned archaeological or heritage resources discovery, all work will cease in the immediate area;
		The findings will be reported to the New Brunswick Archaeological Services to determine a course of action; and
		In the event that skeletal remains are encountered, all work will cease in the Site. The finding will be immediately reported to the RCMP.

7.0 PUBLIC AND FIRST NATIONS INVOLVEMENT

7.1 First Nations Involvement

The Province of New Brunswick has a constitutional Duty to Consult, and accommodate where required, Aboriginal Peoples whenever a decision or activity is being contemplated that could adversely impact Aboriginal or Treaty rights. As per the Interim Proponent Guide published by the Province of New Brunswick, project proponents play a valuable role in the consultation process by engaging Aboriginal Peoples in the development of any project or proposal.

In keeping with the above guidance, a notification containing a high-level project description and invitation for comments and concerns was sent to the Elsipogtog First Nation (Big Cove), the Welamokotuk (Oromocto) First Nation, and Amlamgog (Fort Folly) First Nation in accordance with Engagement and Consultation Contact Protocol (DAA, 2019).

Any comments and/or questions will be addressed and responded to and summarized in the First Nation Involvement/Public Consultation Summary report to be submitted to NBDELG.

7.2 Public and Stakeholder Involvement

An information letter will be sent to landowners within 1 km of the Site and local MLAs as well as the Mayor of Hampton. The information letter will provide a description of the Project. Any comments and/or questions will be addressed and responded to and summarized in the First Nation Involvement/Public Consultation Summary report to be submitted to NBDELG.

The EIA Registration document will be made available for public viewing at the Department of Environment and Local Government – Hampton Local Services Regional Office located at 2-410 William Bell Drive in Hampton, NB. Alternatively, an electronic version of the document can be viewed at the following website: https://www2.gnb.ca/content/gnb/en/departments/elg/environment/content/environmental_impactassessment/registrations/2022.html under project 1589.

8.0 APPROVAL OF THE PROJECT

Subsequent to the receipt of a Certificate of Determination, any applicable approvals, permits and/or authorizations will be obtained as required.

9.0 FUNDING

The Project will be funded solely by the Proponent.

10.0 REFERENCES

Atlantic Canada Conservation Data Centre (ACCDC). 2022. Ranking Data. Internet Publication: http://www.accdc.com/products/ranking.html Updated March 14, 2022.

Atlantic Canada Conservation Data Centre (ACCDC). 2022. Data Report 7175 Hampton, NB

- Department of Aboriginal Affairs (DAA) Interim Proponent Guide, A Guide for Proponents on Engaging with Aboriginal Peoples in New Brunswick. August 2019. Website: https://www2.gnb.ca/content/dam/gnb/Departments/aas-saa/pdf/ProponentGuide-Excel/InterimProponentGuide.pdf
- Environment Canada and Climate Change (ECCC). 2018. Canadian Climate Normals (1981-2010). Accessed April, 2022. Website: <u>http://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=st</u> <u>nName&txtStationName=saint+john&searchMethod=contains&txtCentralLatMin=0&txtC</u> <u>entralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=6250&dispBack=1</u>
- Environment Canada Protected Areas Network (ECPAN). 2022. Accessed October 2022. Website: http://www.ec.gc.ca/ap-pa/default.asp?lang=En&n=7FC45404-1#a3
- Environment and Local Government (ELG). 2021. Working Together for Vibrant and Sustainable Communities. Province of New Brunswick. https://www2.gnb.ca/content/dam/gnb/Corporate/Promo/localgovreform/docs/WhitePape r-EN-Web.pdf
- Federal Contaminated Sites Inventory (FCSI). Accessed April 2022. Website: https://mapcarte.tbs-sct.gc.ca/
- GeoNB Wetland Mapping (GeoNB). Accessed May, 2022. Website: http://geonb.snb.ca/geonb/
- GeoNB Protected Wellfields (GeoNB). Accessed May, 2022. Website: http://geonb.snb.ca/geonb/index_wellfield.html
- GeoNB Protected Watersheds (GeoNB). Accessed May, 2022. Website: http://geonb.snb.ca/geonb/index_watershed.html
- Government of New Brunswick (GNB). 2021. Species at Risk in New Brunswick, Bald Eagle. <u>https://www2.gnb.ca/content/dam/gnb/Departments/nr-</u> <u>rn/pdf/en/Publications/SAR/baldeagle.pdf</u>
- Maritime Breeding Bird Atlas. 2006. Guide for Atlassers. Website: <u>https://www.mba-aom.ca/jsp/codes.jsp?lang=en&pg=breeding</u>.Accessed April 2022.

- New Brunswick Department of Environment and Local Government (NBDELG). Air Quality Data Portal. Accessed April 2022. Website: https://www.elgegl.gnb.ca/AirNB/en/SamplingLocation/Index
- New Brunswick Department of Environment and Local Government (NBDELG). 2020. Air Quality Regulation. August 2021.

New Brunswick Department of Environment and Local Government (NBDELG). Air Quality Monitoring Results 2012 & 2013. 2015.

- New Brunswick Department of Environment and Local Government (NBDELG). January 2018. A Guide to Environmental Impact Assessment in New Brunswick.
- New Brunswick Department of Natural Resources and Energy Development (NBDNRED). 2018. White Noise Syndrome. <u>https://www2.gnb.ca/content/dam/gnb/Departments/nr-rn/pdf/en/Wildlife/Bats-WhiteNoseSyndrome.pdf</u>
- New Brunswick Department of Natural Resources and Energy Development (NBDNRED). 2018. Protected Natural Areas. Accessed October 2022. Website: http://nbdnr.maps.arcgis.com/apps/webappviewer/index.html?id=ceb3caf9aba34466bbb 0bfa0bb0c3ed5&locale=en
- Species at Risk Public Registry (SARA). 2021. Monarch (Danaus plexippus). Accessed October 2022. Website: <u>https://species-registry.canada.ca/index-en.html#/species/294-90</u>
- Species at Risk Public Registry (SARA). 2021. Wood Turtle (Glyptemys insculpta). Accessed October 2022. Website: https://species-registry.canada.ca/index-en.html#/species/286-449
- Service New Brunswick (SNB). 2022. Registry and Mapping Services. Accessed April 2022. Website: <u>https://www.planet.snb.ca/PLANET/index.html</u>
- The RAMSAR Convention Secretariat. 2022. The Ramsar Sites Information Service. Accessed October 2022. Website: https://rsis.ramsar.org/

APPENDIX A

NBDELG Correspondence

December 14, 2021

Tony Raymond T.A. Raymond Environmental Services Ltd. 1113 Route 875 Searsville, NB E5P 3S9

RE: Hylyne Estates Subdivision (PID 30344352)—EIA Registration Required.

Mr. Raymond:

The Environmental Impact Assessment (EIA) Branch of the Department of Environment and Local Government (ELG) has reviewed the tentative subdivision plan submitted to Regional Service Commission (RSC) 8 for the 49-lot subdivision on PID 30344352 ("Hylyne Estates"). Although the plan currently under review is for 49 lots and you have indicated there is no immediate plan for future development, it has been determined that Hylyne Estates represents an expansion of an existing subdivision (i.e., "Firefly Estates"), which will be connected to Hylyne Estates and was also developed by your company. Therefore, the proposed subdivision referred to as "Hylyne Estates" requires EIA Registration and review under the *Environmental Impact Assessment Regulation – Clean Environment Act*, Schedule "A" paragraph (t):

"all major residential developments outside incorporated areas".

Please be aware no work on the residential development can continue until the proposed project has been registered for an EIA and a *Certificate of Determination* (CoD) signed by the Minister of Environment and Climate Change has been issued. Information regarding the EIA review process can be found in our *Guide to Environmental Impact Assessment in New Brunswick*, available here: <u>https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/EIA-</u> EIE/GuideEnvironmentalImpactAssessment.pdf.

.

P.O. Box 6000, Fredericton, NB, E3B 5H1 / C. P. 6000, Fredericton, NB, E3B 5H1 Tel. / Tél. : 506-453-2690 Fax / Téléc. : 506-457-4994

Please also note that a Water Supply Source Assessment (WSSA) will also be required as part of the EIA review. More information on the WSSA process can be found in our *Water Supply Source Assessment Guidelines* document available online at the following link:

https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/EIA-

<u>EIE/WaterSupplyAssessmentGuidelines.pdf</u>. The initial application form must accompany the EIA Registration Document at the time of registration.

Upon registration, a registration fee of \$ 1,100 will be required either in the form of a cheque made payable to the Minister of Finance for the Province of New Brunswick, or paid online through Service New Brunswick's website: <u>https://www.pxw1.snb.ca/snb9000/product.aspx?productid=A001P809000</u>.

Proponents often will hire professional environmental consultants to help prepare the required documents and to aid in the EIA review process. It is recommended that you identify all potential future expansions (e.g. future phases or expansion opportunities, etc.) in the EIA registration document as this will avoid new EIA registrations should you require future expansions. I have attached a list of consulting firms that can complete EIAs in New Brunswick. I've also included a couple of links below to previously registered subdivision projects available on our website under "Projects Under Review":

https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/EIA-EIE/Registrations-Engegistrements/documents/EIARegistration1399.pdf https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/EIA-EIE/Registrations-Engegistrements/documents/EIARegistration1512.pdf

If you require further information, please do not hesitate to contact Justin Chase at 506-444-2679 or at justin.chase@gnb.ca.

Sincerely,

Crystale Harty, B.Sc. Director, Environmental Impact Assessment Branch, ELG

c. Justin Chase—EIA Branch, ELG Brian Hook—Building Inspector and Development Officer, RSC 8

RE: Hylyne Subdivision

Chase, Justin (ELG/EGL) <Justin.Chase@gnb.ca> To: Tony Raymond <talandenv@gmail.com> Cc: Brian Hook <bhook@rsc8.ca>, "Harty, Crystale (ELG/EGL)" <Crystale.Harty@gnb.ca>

15 December 2021 at 08:18

Good morning, Tony.

After careful consideration, it was determined that the proposed Hylyne Estates subdivision requires an Environmental Impact Assessment (EIA). The attached letter from EIA Branch Director, Crystale Harty, is the official decision, and provides more detail on the requirements.

When you've had a chance to review the letter, you can send me any questions you have. We can also schedule a phone call or web meeting (e.g., Teams) to discuss any questions you have and review next steps in the EIA Registration process.

Thank you for your patience and cooperation.

Justin Chase, MSc

EIA Specialist/Spécialiste des ÉIE

Environmental Impact Assessment/Étude d'impact sur l'environnement

Environment and Local Government/Environnement et Gouvernements locaux

Phone/Téléphone : 506-444-2679 (office)

E-mail/Courriel : Justin.Chase@gnb.ca

[Quoted text hidden]

20211214_HartyC_T.A.Raymond_EIA_Required.pdf 82K

https://mail.google.com/mail/u/0/?ik=fed6f36e5c&view=pt&search=all&permmsgid=msg-f%3A1719214513317883142&simpl=msg-f%3A17192145133... 1/1

APPENDIX B

Water Supply Source Assessment (WSSA) Initial Application

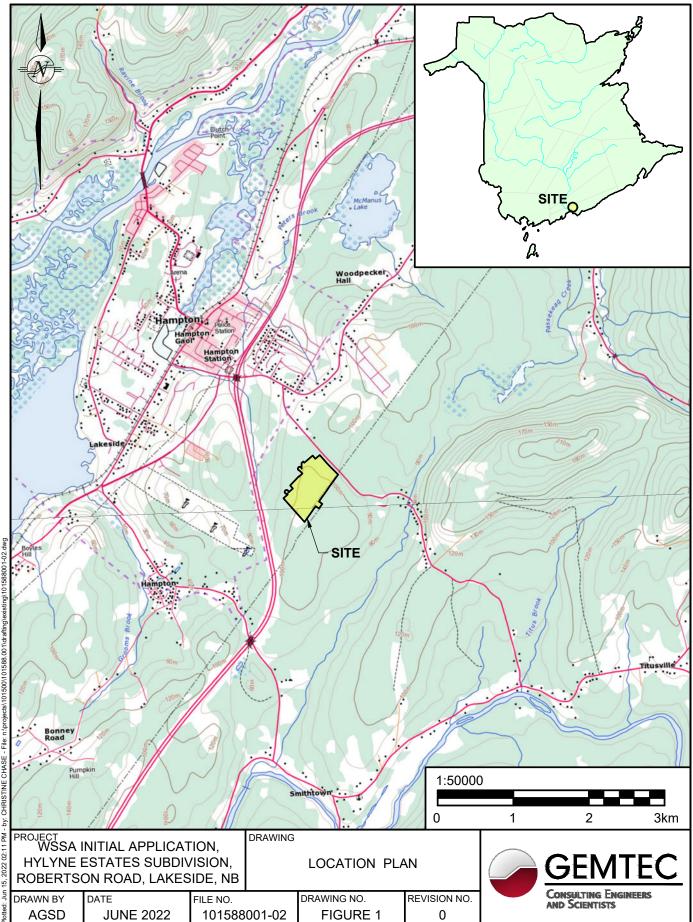
191 Doak Road fax: 506.453.9470 E3C 2E6 www.gemtec.ca

June 16, 2022

File: 101588.001-LTR02 NBDELG File 4561-3-1589

Environment and Local Government Environmental Impact Assessment Branch Marysville Place, P.O. Box 6000 Fredericton, NB E3B 5H1

Attention: Justin Chase, Project Manager


Water Supply Source Assessment Initial Application Re: Hylyne Estates Subdivision, Lakeside, New Brunswick

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by T. A. Raymond Environmental Services Ltd. (the Proponent) to prepare a New Brunswick Environmental Impact Assessment (EIA) registration document and to manage the EIA process for the proposed Hylyne Estates subdivision in Lakeside, New Brunswick (the "Project").

The Project will subdivide Property Identifier (PID) 30344352 ("the Site"), which is located along Robertson Road, approximately 500 m east of the Town of Hampton (see Figures B1 and B2). NBDELG has confirmed (via a letter to Tony Raymond dated December 14, 2021) that the proposed 49-lot Hylyne Estates subdivision is considered to represent an expansion of the existing 39-lot Firefly Estates subdivision, which was developed immediately southeast of PID 30344352. Therefore, the Project requires an EIA registration and review under the Environmental Impact Assessment Regulation (87-83) - New Brunswick Clean Environment Act, as Schedule "A" designates the following as a project that may result in a significant environmental impact:

> "(t) all major residential developments outside incorporated areas".

Figures B1 and B2 show the Site location and the proposed subdivision plan, respectively. NBDELG's letter of December 14, 2021 confirmed that a Water Supply Source Assessment (WSSA) would be required as part of the EIA review. This letter represents the WSSA Initial Application.

CHASE - File: n:\projects\101500\101588.001\di CHRISTINE š 2022 02:11 PM

lProjects\101500\101588.001\Drafting\Existing\101588.001_DWG01_R0_WSSA_2022-06-15.d

	Legend	WELL US BY CRAIG PROPOS PROPOS WATERC PROPER PLANNEE REGULA 30m BUF	OURSE TY LINE D DETENTI FED WETL	G 2015 EOLOG VELL ON PO AND	S ASSESS GIC	MENT
	2. Coordina	s and dime ate system	nsions are	approx swick;	imate.	
	 Aerial ph Microsof Date 	notograph t Bing Map	approximat	e year 2	2016. Sou	rce
		IE 2022		CHG		CC
00000000000000000000000000000000000000	HYL	YNE ES	FIAL APF FATES S ROAD, I	UBDI	VISION,	
		SOURC	FOR WA E ASSES _ APPLIC	SSME	NT	
VI	Scale 1:7500					
	0	150		300		.50m
	Project No.		Drawing No.		Rev	sion No.
30294,656	1015	588.001		GURE		0
30 ²⁹ s DS		Co	SEM		<u>C</u>	

LAYOUT OF APPLICATION

1.0	PROPONENT INFORMATION	.5
2.0	WATER REQUIREMENTS	.5
3.0	ALTERNATE WATER SUPPLY SOURCES	.6
4.0	EXISTING CONDITIONS	.6
4.2 4.2 4.2 4.4 4.4 4.4	 Topography and Drainage Geology Hydrogeology Groundwater Quality 	6 6 7 8
5.0	2015 ASSESSMENT	.9
6.0	PROPOSED TESTING AND WORK SCHEDULE1	0
7.0	PROJECT PERSONNEL1	2
8.0	CLOSURE1	2
9.0	REFERENCES1	3

ATTACHMENTS

- Zoning Map
- Tentative Subdivision Plan
- Online Well Log System records within 500 m of PID 30344352
- OWLS Water Quality Analytical Tables
- NBDELG Correspondence

1.0 PROPONENT INFORMATION

Proponent:	T.A. Raymond Environmental Services Ltd.
	113 Route 875
	Searsville, NB
	E3P 3S9
Contact Person:	Tony Raymond
	Phone: 506-433-0254
	Email: <u>talandenv@gmail.com</u>

2.0 WATER REQUIREMENTS

Each of the 49 proposed residential lots in the Hylyne Subdivision will have their water supplied by an individual private well. According to the WSSA Guidelines (NDBELG, 2017), the perperson water requirement for a subdivision lot with a single-family home is 450 litres per day (L/day), with a per-person peak demand rate of 3.75 litres per minute (L/min). The peak demand is assumed to occur for 120 minutes each day, and the number of people per household is calculated as the number of bedrooms plus one (NBDELG, 2017).

Therefore, assuming 4-bedroom homes on each of the 49 lots (i.e., 5 people per household), the anticipated water requirements are as presented in Table 1.

Daily rate	m³/day	L/min	US gpm	igpm
Per lot	2.25	1.56	0.41	0.34
For 49-lot subdivision	110.25	76.56	20.23	16.84
Peak rate (for 120 minutes/day)		L/min	US gpm	igpm
Per lot	-	18.75	4.95	4.12
For 49-lot subdivision	-	918.75	242.73	202.10

Table 1Water Requirements

m³/day = cubic metres per day

L/min = litres per minute

US gpm = United States gallons per minute

igpm = Imperial (British) gallons per minute

3.0 ALTERNATE WATER SUPPLY SOURCES

Municipal services are not currently available in the vicinity of the Site. The eastern boundary of the Town of Hampton (which does have a municipal water supply) is at least 200 metres (m) from the western edge of PID 30344352. The only mapped surface water feature within 500 m of the Site is an unnamed tributary to Hammond River and associated wetlands (SNB, 2022).

4.0 EXISTING CONDITIONS

4.1 Land Use and Zoning

The Site is included in the Rural Plan Zoning Map for the Hampton Parish Planning Area (dated March 2019). The adjacent Firefly Estates subdivision is zoned as "Residential 1", while the Site and all other properties within 500 m are zoned as "Mixed Use". A copy of the Rural Plan Zoning Map is attached to this WSSA Initial Application.

4.2 Topography and Drainage

According to the topographical contours presented on the tentative subdivision plan for Hylyne Estates (Kierstead Quigley and Roberts (2021), attached), the elevation of the Site ranges from approximately 106 metres above sea level (masl) at the southern portion of the property to 82 masl at the western portion of the property. The Site generally slopes in a northerly direction; however, regionally, the topography slopes west towards Darlings Lake (approximately 3 km west of the Site) and the Kennebecasis River (approximately 4.3 km west of the Site. The closest mapped water feature to the Site is an unnamed, southwest-flowing tributary to Hammond River; it is approximately 275 m from the eastern corner of the Site (Figure B2). Other tributary branches and associated wetlands are present farther east. Precipitation is expected to infiltrate pervious surfaces, with runoff flowing in a northerly or westerly direction off the Site.

4.3 Geology

The Site is covered with a blanket (generally 0.5 to 3 m thick) of Late Wisconsinan-aged morainal sediments consisting of loamy lodgment till, minor ablation till, silt, sand, gravel, and rubble (Rampton, 1984). A sample of this brownish-red "Kennebecasis Till" collected approximately 500 m west of the Site by Pronk et al. (2005) contained 30-40% gravel and 0-10% cobbles by volume, with a matrix of silty sand with trace clay. These sediments were well-drained and very friable (Pronk et al., 2005).

These surficial deposits are underlain by terrestrial sedimentary rocks of the Carboniferous aged Mabou Group (Kennebecasis Formation), which consist of reddish-brown conglomerate and sandstone with minor mudstone, nodular limestone and sparse plant material (Barr and White, 2001).

The New Brunswick Online Well Log System (OWLS) was queried on June 1, 2022 for a radius of 500 m around PID 30344352. This radius yielded a list of 29 unique records, and analytical results for nine water quality samples. The OWLS logs confirm that bedrock in the area generally consists of sandstone, which is sometimes interbedded with shale or conglomerate. Copies of the OWLS logs are attached to this WSSA Initial Application, and the approximate locations of these wells are shown on Figure B2.

4.4 Hydrogeology

Regionally, we expect intermediate to deep groundwater flow to be westward towards Darlings Lake and the Kennebecasis River. However, we expect the direction of shallow groundwater flow to be influenced by local topography.

All but one OWLS record were for domestic drinking water wells with 15 cm diameter steel casings; most of the logs are for properties located within the adjacent Firefly Estates subdivision (see Figure B2). The 29th (industrial) well, located on the Firefly Forest Recreational Area and Campground property (PID 30220370; approximately 150 m northwest of the Site) had no available information related to its casing, water-bearing fracture zones, or depth to static water level, but had the highest estimated safe yield. Well construction records are summarized in Table 2.

	Overall Well Depth (m)	Casing Depth (m)	Depth to Bedrock (m)	Driller's Estimated Safe Yield (L/min)	Depth to First Water-bearing Fracture Zone (m)	Depth to Static Water Level ** (m)
Sample Size	29	28	29	29	27	27
Minimum	30.5	6.1	0.0*	6.8	12.8	2.4
Average	54.3	8.6	4.7	53.1	30.5	22.9
Median	45.7	6.3	4.3	36.4	24.4	16.8
Maximum	91.4	21.3	9.1	227.5	65.5	83.8

Table 2 Summary of OWLS Well Construction Details

* = Stratigraphic logs confirmed that one well had bedrock present at ground surface; however, the GPS coordinates for this point indicated it was 7.8 km east of the Site, despite appearing in the search results for a 500 m radius around PID 30344352.

** = Two zero values were omitted from the calculation of summary statistics.

m = metres (measured from ground surface)

L/min = litres per minute

Based on only the average and median estimated safe yields of 53.1 and 36.4 L/min, respectively, individual private wells should be able to support the required peak flowrate (18.75 L/min for a 4-bedroom household) in most cases. However, driller's estimated safe yields

do not consider the compounded drawdown effect from multiple nearby wells (i.e., well interference), which will be important during peak demand periods.

4.5 Groundwater Quality

Water quality analytical results were available for nine of the 29 OWLS records located within 500 m of PID 30344352. For all nine samples, results included various general chemistry, trace metals, and microbiological parameters. In the attached table, we have compared the OWLS analytical results to:

- Health Canada's 2020 Guidelines for Canadian Drinking Water Quality (GCDWQ);
- Atlantic Risk-Based Corrective Action (RBCA) Human Health-Based Tier I Environmental Quality Standards (EQS) for Groundwater (for a potable site).

The following exceedances of the guidelines were noted:

- The concentration of iron exceeded the aesthetic GCDWQ (0.3 mg/L) in two wells;
- The concentration of manganese exceeded the aesthetic GCDWQ (0.02 mg/L) in two wells. The concentration in one well also exceeded the health-based GCDWQ and EQS (both equivalent to 0.12 mg/L);
- Turbidity exceeded the operational guideline (1.0 NTU) in three wells;
- The concentration of uranium exceeded the health-based GCDWQ and EQS (both equivalent to 0.02 mg/L) in one well.

Turbidity is frequently elevated in newly drilled or deepened wells, as it is related to suspended sediment. We noted that in most cases, elevated concentrations of iron, manganese, and/or uranium appeared concurrently with elevated turbidity, thereby suggesting that the iron, manganese and/or uranium was partially attributable to the presence of suspended sediment. Turbidity and suspended sediment often decrease over time with well use.

Based on the available data, well water may require treatment before use as potable water.

4.6 Pollution or Contamination Hazards

The Site is currently forested, undeveloped land. A review of Service New Brunswick (SNB) Land Gazette information for the properties within 500 metres of the Site boundaries indicates that no existing pollution or contamination hazards have been identified. Furthermore, no federal contaminated sites are present within 500 m of the Site (Treasury Board of Canada, N.D.).

A review of recent aerial photos (Google Earth) and Google Street View indicates that Robertson Road adjoins the Site to the northeast, the Firefly Estates residential subdivision is present to the southeast, and the adjacent properties to the southwest and northwest are forested and undeveloped. Several residential properties and a former automotive service centre are present to the north of the Site, along Robertson Road. The New Brunswick Route 1 highway runs in a north-south direction approximately 300 m from the western edge of the Site. The land across Robertson Road to the northeast is forested and undeveloped. The Firefly Forest Recreational Area and Campground is located approximately 150 m northwest of the Site; Hampton Brewing Company is located on the same property.

5.0 2015 ASSESSMENT

In March 2015, Craig Hydrogeologic ("Craig") completed a Comprehensive Water Supply Assessment (CWSA) under the Sustainable Planning Branch guidelines (NBDELG, 2009) to support the development of the adjacent 39-lot, 50-acre Firefly Estates subdivision. Two new wells were installed on lots within the subdivision. Well "PW1" was 38.1 m deep, and the driller's estimated safe yield was 22.7 to 27.3 L/min (5 to 6 igpm). Well "Obs1" was 45.7 m deep, and the driller's estimated safe yield was 13.6 L/min (3 igpm). The approximate locations of these wells are shown on Figure B2.

PW1 was subjected to a six-hour constant-rate pumping test (at 22.7 L/min, or 5 igpm) and Obs1 was used as an observation well. One other existing potable well on a neighbouring lot was also used as an observation well; however, the owners were using the well at the time of the pumping test.

Well logs obtained from Craig indicate that the first recorded water-bearing fracture zone was at 15.24 metres below ground surface (mbgs) in PW1, and at 21.3 mbgs at Obs1. At the end of the constant-rate test, drawdown at PW1 was 6.68 m. Transmissivity was estimated at 2.7 square metres per day (m²/day), and the specific capacity was 0.75 imperial gallons per metre of drawdown at the end of the constant-rate test. Based on the determined transmissivity and ignoring recharge, Craig projected a 100-day drawdown of just under one metre for a pumping rate of 1.56 L/min (i.e., the per-lot average daily water requirement). Using the Cooper-Jacob (1946) distance-drawdown method, Craig calculated a radius of influence for the constant-rate pumping test of approximately 300 m.

Based on figures appended to the Craig (2015) report, after two hours of pumping at 22.7 L/min (i.e., at a rate approximately 20% higher than the prescribed peak flow rate for a single lot with a 5-person household), drawdown at PW1 was approximately 5.5 m. At that time, drawdown in Obs1 (located at a radial distance of approximately 14 m from PW1) was in the order of two metres. From two hours after the start of pumping until the end of the test, drawdown increased linearly at a rate of about 4.7 millimetres (mm) per minute.

6.0 PROPOSED TESTING AND WORK SCHEDULE

The WSSA requirements for this Project were provided verbally by Gérard Souma (NBDELG hydrogeologist) and have been confirmed by Mr. Souma in the attached written correspondence. Based on Mr. Souma's direction, a total of three test wells will be installed (see Figure B2) and subjected to the aquifer and water quality testing outlined in Table 3 to fulfill the requirements of this EIA.

Test Description	Pumping Well	Water Quality Sampling at Pumping Well	Observation Well(s)	Water Quality Sampling at Observation Wells ¹
2-hour step-drawdown test (4 steps at 30 minutes each; one step to be completed at the approximate peak flowrate for one well, and one step to be completed at the average daily rate for 49 lots)	22-2	-	• 22-1	-
24-hour constant-rate pumping test (pumping rate to meet or exceed the average daily requirement for the entire 49-lot subdivision if possible)	22-2	 3 samples: After 2 hours of pumping After 12 (±4) hours of pumping At end of test 	• 22-1 • 22-3	 2 samples (each well): After 12 (±4) hours of pumping At end of test

Table 3 Proposed Hydrogeological Testing

¹ Water samples from the observation wells will be collected using a bailer at the specified times.

If the step-drawdown test suggests that 22-2 will not be able to maintain the required pumping rate for a 24-hour period (i.e., 76.56 L/min), the 24-hour test is to proceed with the highest rate that we deem is sustainable for that duration based on the results of the step-drawdown test. We understand that if the well is ultimately pumped at a rate lower than 76.56 L/min, the Technical Review Committee will likely only approve a **reduced number of lots** that is consistent with the actual pumping rate.

Alternatively, Mr. Souma indicated that we may carry out the pumping test at one of the observation wells instead, if the yield is judged to be higher (through air-lift and/or step-drawdown testing) than at 22-2. If Well 22-3 is selected to serve as the pumping well, we understand that a fourth well will likely need to be installed to ensure that drawdown is measurable in at least one observation well. If required, this well would be placed on the adjacent lot to the northeast of 22-3.

Test well installation will be carried out by E.R. Steeves Well Drilling. All wells will be installed in positions on proposed lots that will allow them to be used as domestic wells in the future. Therefore, the driller will construct and develop the test wells as domestic potable wells and will adhere to relevant setback distances (e.g., to proposed roadways). The well completion depths will be determined in the field based on the locations and yields of encountered water-bearing fracture zones (i.e., the well's ability to supply a typical residence), and whether the well appears to intersect the same aquifer as the other test wells.

Aquifer testing will be conducted by E.R. Steeves Well Drilling and observed and monitored by GEMTEC personnel. Water extracted during the various aquifer tests will be discharged downgradient of the pumping and observation wells, and away from the well heads.

Water quality samples will be collected by GEMTEC in accordance with Table 3 and submitted to an accredited laboratory for analysis of general chemistry, trace metals, and microbiology (Total Coliforms and *E. coli*). Additionally, for due diligence related to the presence of an automotive service centre less then 50 m (cross-gradient) from the Site boundary, samples collected from the pumping well will be analyzed for petroleum hydrocarbons (PHCs). For the PHC samples, we will request that the lab use low-level (potable water) detection limits and a silica gel treatment to help prevent false positive results attributable to natural (biogenic) organic matter in the groundwater.

We anticipate that test well installation and hydrogeological testing will proceed in the late summer or early fall of 2022, pending approval of this WSSA Initial Application. Aquifer testing will not occur during the NBDELG-accepted groundwater recharge seasons (October to December and mid-March to the end of May) unless we can demonstrate that groundwater recharge has not yet begun. Additionally, the precise schedule for hydrogeological fieldwork will depend on:

- Recent precipitation amounts and weather conditions;
- Forecasted precipitation and weather conditions for the period of testing;
- Laboratory-dictated sample drop-off windows and hold times;
- The rate of recovery (to static water level) after each individual aquifer test.

7.0 PROJECT PERSONNEL

Table 4 outlines the key personnel involved in the EIA and source development.

Table 4 Key Personnel								
Role	Company	Contact Information						
		Paul Vanderlaan, P.Eng.						
Principal Contact	GEMTEC Consulting	Environmental Regulatory Specialist						
Person for EIA	Engineers and Scientists Ltd.	paul.vanderlaan@gemtec.ca						
		(506) 453-1025						
		Christine Chase, M.Eng., P.Eng.						
l huden en ele sint	GEMTEC Consulting	Environmental Engineer						
Hydrogeologist	Engineers and Scientists Ltd.	christine.chase@gemtec.ca						
		(506) 261-2255						
		Jennifer Hachey, B.Sc.						
Primary Author of EIA	GEMTEC Consulting	Environmental Biologist						
Registration Document	Engineers and Scientists Ltd.	jennifer.hachey@gemtec.ca						
		(506) 657-0200						
		Mike Steeves						
		President and Drill Operator						
Contracted Driller	E.R. Steeves Well Drilling	info@steeveswelldrilling.ca						
		(506) 652-8544						

Table 4Key Personnel

8.0 CLOSURE

If you have any comments or questions on the content of this letter, please do not hesitate to contact the undersigned.

Christing Chase

Christine Chase, M.Eng., P.Eng. Environmental Engineer

cc: Tony Raymond, President of T. A. Raymond Environmental Services Ltd.

N:\Projects\101500\101588.001\Deliverables\WSSA Initial Application\101588.001_Appendix B_REV0_2022_06-16_WSSA_Initial Application.docx

9.0 REFERENCES

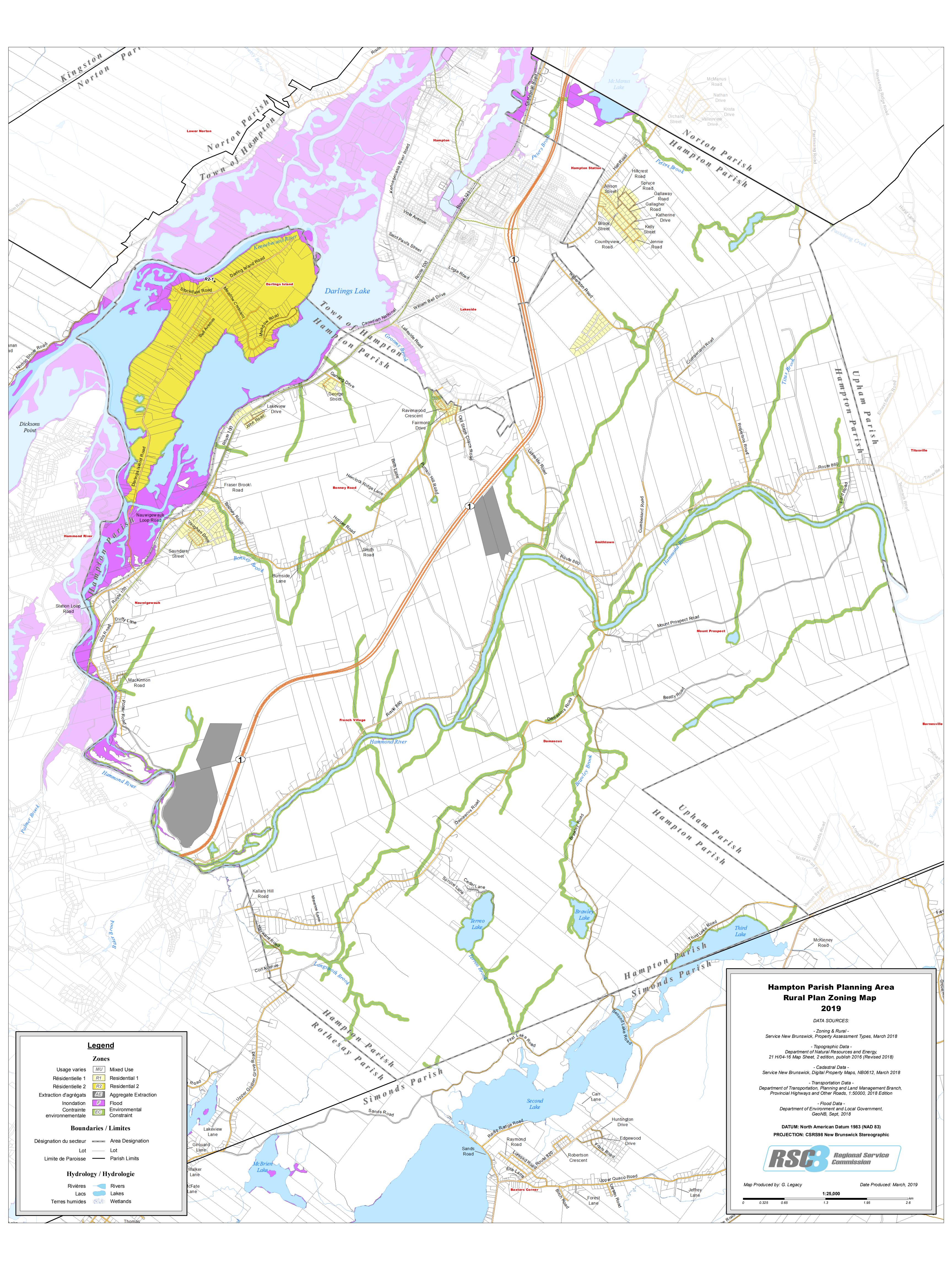
- Barr, S.M. and White, C.E., 2001. Geology of the Dickie Mountain area (NTS 21 H/12c and part of H/12b), Kings County, New Brunswick. New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division, Plate 2001-43 (revised 2007).
- Government of Canada. N.D. Atlas of Canada Toporama. <u>https://atlas.gc.ca/toporama/en/inde</u> <u>x.html</u>
- Health Canada. 2020. Guidelines for Canadian Drinking Water Quality Summary Table. Prepared by Health Canada, in collaboration with the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, September 2020. <u>https://www.canada.ca/en/health-</u> <u>canada/services/environmental-workplace-health/reports-publications/water-</u> <u>guality/guidelines-canadian-drinking-water-guality-summary-table.html</u>
- Kierstead Quigley and Roberts, 2021. Tentative Plan, Hylyne Estates Subdivision, Robertson Road, Parish of Hampton, King's County, New Brunswick, Dwg. No. 21095SDT. Plan dated October 19, 2021.
- New Brunswick Online Well Log System (OWLS). <u>https://www.elgegl.gnb.ca/0375-0001/</u>. Accessed online June 1, 2022.
- New Brunswick Department of Environment. 2009. Water Supply Assessments: A Guideline for the Review of Subdivisions serviced by Individual Private Wells. Issued by the Provincial Planning Director, Sustainable Planning Branch, Department of Environment. Dated July 15, 2009.
- New Brunswick Department of Environmental and Local Government (DELG). 2017. Environmental Impact Assessment: Water Supply Source Assessment Guidelines.
- Pronk, A.G., Allard, S., and Boldon, R., 2005. Surface materials of the Sussex map area (NTS 21 H/12), southeastern New Brunswick. New Brunswick Department of Natural Resources, Minerals, Policy and Planning Division. Plate 2005-16.
- Rampton, V. N., 1984: Generalized surficial geology of New Brunswick. Department of Natural Resources and Energy. Minerals, Policy and Planning Division. NR-8 (scale 1: 500 000). (Original Map number 1594A; Edited by AA. Seaman, 2002, Digitized by K.J. Mersereau, 2002.)

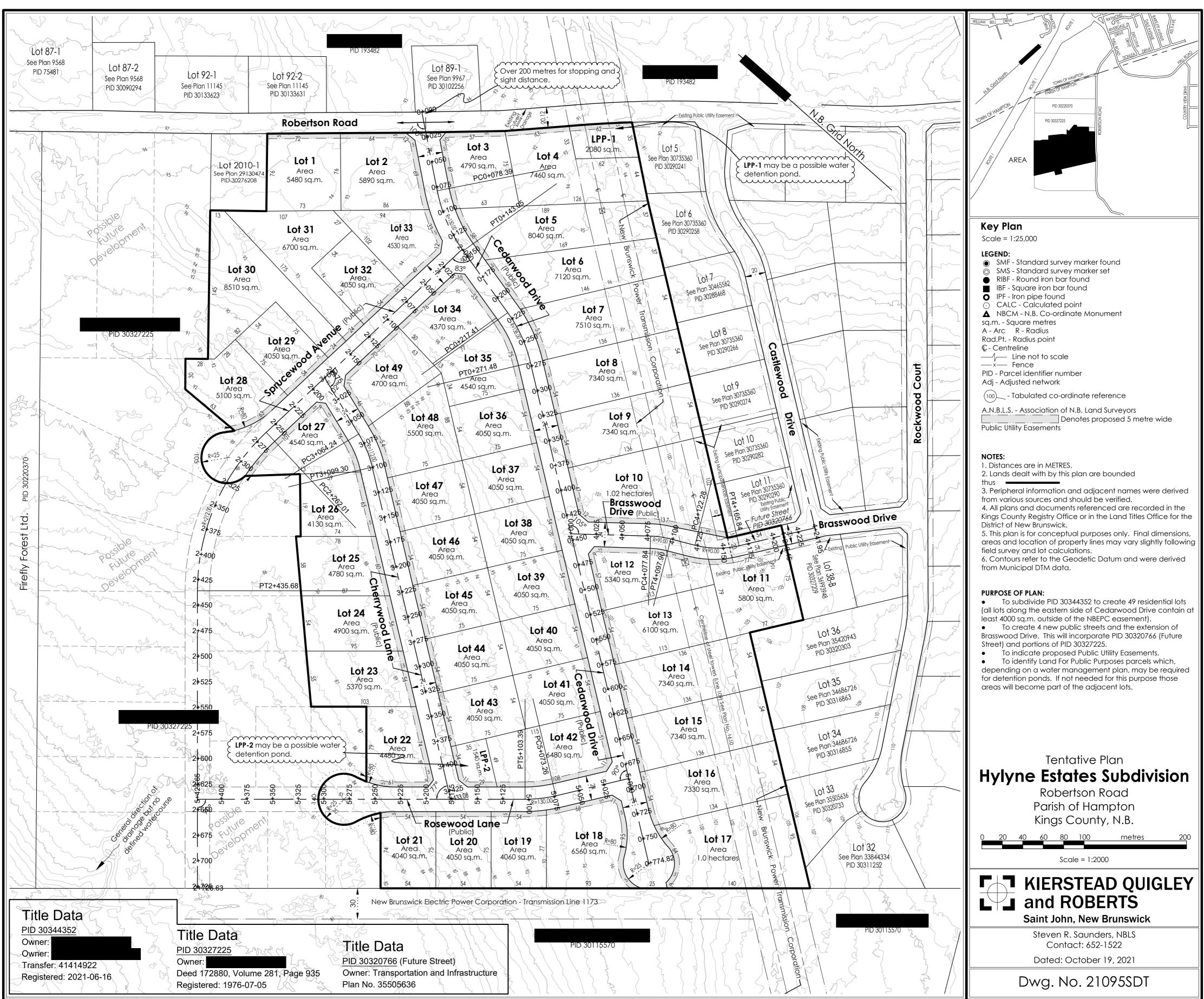
Service New Brunswick (SNB), 2022. GeoNB Map Viewer. http://geonb.snb.ca/geonb/

Service New Brunswick (SNB). Registry and Mapping Services <u>https://www.planet.snb.ca/PLAN</u> <u>ET /index.html</u>

Treasury Board Secretariat. Federal Contaminated Sites Inventory. <u>http://www.tbs-sct.gc.ca/dfrp-rbif</u>

ATTACHMENTS


Zoning Map


Tentative Subdivision Plan

Online Well Log System records within 500 m of PID 30344352

OWLS Water Quality Analytical Tables

NBDELG Correspondence

Well Driller's Report

Environment

Report Number 8356

Date printed	6/1/2022	2						
Drilled by Well Use Non-Drinkin	g Water, Ind		Work ⁻ New V		Drill Methoo Rotary	ł		Completed (10/2003
Casi	ing Informati	on		Casing abov	e ground	Dri	ve Shoe Used?	
				There is no casi	ng information.			
Aquifer Tes Method Air	Initial W Level (B 0m	BTC) F	mping Rate Ipm Isina)	Duration 0hr	Final Water Level (BTC) 0m	Estimated Safe Yield 227.5 lpm	Flowing Well?	Rate 0 lpm
Well Groutin There i	g is no Grout info	ormation.		illing Fluids Us one	ed	Disinfectant N/A Qty 0L	Pump Inst N/A Intake Settin Om	
Driller's Log							Overall Well De	epth
Well Log Fror 8356 0m 8356 4.27m	4.27m	Colour Brown Red		М	ock Type ud and Rock ock		42.67m Bedrock Level 4.27m	
Water Bearir	ng Fracture 2	Zone		Setbacks]	
There is no water bearing fracture zone information.					There is no S	Setback inform	ation.	

There is no water bearing fracture zone information.

Well Driller's Report

Date pri	inted	6/1/2022	2								
Drilled I	by										
Well Us	se			Wor	к Туре		Drill Method	d		Work	Completed
Drinkin	ng Water	, Domesti	С	New	Well		Rotary			10/	03/2011
	Casing	Informati	ion		Casing a	above	ground		Driv	ve Shoe Used?	
	Well Log	Casing Ty	/pe		Diameter		From	End	SI	otted?	
	28561	Steel			15.24cm		0m	6.40m			
Aquife	r Test/Yi			Pumpin			Final Water		nated	Flowing	
Method	I	Initial W Level (E		Rate	y Duratio	าท	Level (BTC)	June	Yield	Well?	Rate
Air		45.72	2m	45.5 lpr of casina)			3.66m		lpm	No	0 lpm
Well Gr	outing				Drilling Fluid	s Use	d	Disinfeo	ctant	Pump Inst	alled
٦	There is no	o Grout info	ormatio		None			Bleach	(Javex	() N/A Intake Setting	g (BTC)
								Qty (CL	39.62m	
Driller's	Log									Overall Well De	epth
Well Log	From	End	Colo	ur		Ro	ck Type			45.72m	-
28561 28561	0m 3.96m	3.96m 45.72m	Brown Red				d and Gravel ndstone			Bedrock Level 3.96m	
	5	Fracture 2			Setbacks						
There is no water bearing fracture zone information.			zone	Well Log			Setback Fr				
					28561	21.3		eptic Tank			
					28561 28561	26.8 26.2		each Field	Dublic	Way Road	
					20001	20.2		agin of ally			

Date pri	inted	6/1/202	2								
Drilled I	by										
Well Us	se			Wor	'k Type		Drill Method	ł		Work	k Completed
Drinkin	ng Water	, Domest	ic	New	v Well		Cable Tool			07	7/25/2011
	Casing	Informat	tion		Casin	g above	ground		Driv	e Shoe Used?	
	Well Log	Casing T	ype		Diameter		From	End	Slo	otted?	
	28676	Steel			15.24cm		0m	6.10m			
Aquife	r Test/Yi	eld Initial V	Vater	Pumpir	ng		Final Water		imated e Yield	Flowing	
Method	l	Level (I		Rate	Dura	ation	Level (BTC)			Well?	Rate
		4.57 (BTC -		45.5 lp of casina)	m 2h	irs	4.57m	45.	5 lpm	No	0 lpm
Nell Gr	outing				Drilling Flu	iids Use	d	Disinfe	ectant	Pump In:	stalled
Nell Log	Grout Ty	pe F	rom	End	None			N/A		N/A Intake Sett	ing (BTC)
28676	Other	0	m	5.49m				Qty	0L	33.53m	ing (DTC)
Driller's	100									o	
Vell Log		End	Colou	ur		Ro	ck Type			Overall Well E 36.58m	Depth
28676 28676	0m 2.44m	2.44m 36.58m	Brown Red			Mu Sar	d ndstone			Bedrock Leve 2.44m	1
Water E	Bearing F	racture	Zone		Setback	<s< td=""><td></td><td></td><td></td><td></td><td></td></s<>					
Well Log	Depth		Rate		Well Log	Dist	ance S	etback l	From		
28676	15.24m		4.55 lpm		28676	19.5	1m S	eptic Tar	ık 📃		
28676	22.86m		4.55 lpm		28676	22.8		each Fiel			
28676	33.53m		36.4 lpm		28676	20.1	2m R	iaht of ar	v Public	Way Road	

Date pri	nted	6/1/202	2										
Drilled b	ру												
Well Us	е			Worl	к Туре		Drill Method	t		Work C	ompleted		
					Well		Rotary			12/14/201			
	Casing	Informat	ion		above	ground	Drive Shoe Used?						
	Well Log	Casing T	ype	[Diameter		From	End	SI	otted?			
	29317	Steel		-	15.24cm		0m	9.14m					
Aquifer	· Test/Yi	eld						Fatin	nated				
Method		Initial W Level (E		Pumpin Rate	g Durati		Final Water Level (BTC)	Safe	Yield	Flowing Well?	Rate		
Air		3.66	im í	45.5 lpr of casina)	n 1hr 15r	min	3.66m	45.5	lpm	No	0 lpm		
Well Gro	outing			[Drilling Fluid	s Used	ł	Disinfec	tant	Pump Insta	lled		
Т	here is no	o Grout inf	ormatio		None			Bleach (Javex	() Other Intake Setting	(BTC)		
								Qty ()L	22.86m			
Driller's	Log									Overall Well Dep	oth		
Well Log	From	End	Colo	ur		Roc	k Type			44.20m			
29317 29317	0m 6.10m	6.10m 44.20m	Brown Red			Mud Cong	glomerate			Bedrock Level 6.10m			
			-										
vvater B	earing F	racture	∠one		Setbacks								
Well Log	Depth		Rate		Well Log	Dista		etback Fr	om				
29317	30.48m		13.65 lpm	1	29317	22.86		eptic Tank					
29317	39.62m		54.6 lpm		29317	24.38		each Field	.				
					29317	22.56	m R	ight of any	PUDIIC	Way Road			

Well Driller's Report

Date pri	nted	6/1/202	2								
Drilled b Well Us Drinkin	•	Domest	ic		c Type Well	Dril Rot	Methoo ary	ł			Completed 7/2014
	Casing	Informat	ion		Casing a	above grou	Ind		Driv	e Shoe Used?	
	Well Log 30698	Casing Ty Steel	/pe		Diameter 5.24cm	F Or	rom n	End 6.10m	Slo	otted?	
Aquifer Method Air	Test/Yie	Initial W Level (E 45.72	BTC) 2m	Pumping Rate 227.5 Ipi o of casino)	Duratio	on Leve	ll Water el (BTC) .05m	Safe	mated Yield 5 Ipm	Flowing Well? No	Rate 0 Ipm
Well Gro	Duting There is no	Grout inf	ormatio	N	Drilling Fluid None	s Used		Disinfee Bleach Qty		Pump Insta N/A Intake Setting 36.58m	
Driller's Well Log	From	End	Colo	ur		Rock Ty	pe			Overall Well Dep 49.38m	oth
30698 30698 30698 30698	0m 3.66m 12.19m 24.38m 27.43m 32.00m	3.66m 12.19m 24.38m 27.43m 32.00m 49.38m	Red Red Grey Red Grey Red			Clay Shale Conglome Shale Conglome Shale				Bedrock Level 3.66m	
Water B	earing F		Zone		Setbacks Well Log	Distance	S	etback F	rom		
30698	45.72m	2	227.5 lpr	n	30698	22.86m	S	eptic Tank	(

24.38m

36.58m

Leach Field

Center of road

30698

30698

Date pri	inted	6/1/202	2									
Drilled b	су											
Well Us	e			Work	к Туре		Drill Metho	b		Work	Complete	эd
Drinkin	g Water	Domest	ic	New	Well Ro		Rotary			11/	13/2012	
	Casing Information				Casing a	above	oove ground		Driv	ve Shoe Used?		
	Well Log	Casing T	ype	[Diameter		From	End	Sl	otted?		
	31512	Steel		1	5.24cm		0m	6.10m				
Aquife	r Test/Yi	eld						Fstin	nated			
Method		Initial W Level (E		Pumping Rate	g Duratio		Final Water Level (BTC)	Safe	Yield	Flowing Well?	Rat	te
Air		38.1) m	31.85 Ipi of casina)	m Ohr 30n	nin	4.57m	31.85	5 lpm	No	0 lp	m
Well Gr	outing				Drilling Fluid	s Usec	d	Disinfec	tant	Pump Inst	alled	
Т	There is no	o Grout inf	ormatio	1	None			Bleach (Javex) Submersi Intake Settin		
								Qty ()L	35.05m	,	
Driller's	Log									Overall Well De	enth	
Well Log	From	End	Colo	ur		Roc	к Туре			38.10m	spin	
31512	0m	2.44m	Brown			Clay				Bedrock Level		
31512	2.44m	38.10m	Red			Shal	e			2.44m		
Water B	Bearing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Dista	nce S	etback Fr	om			
31512	27.43m		13.65 lpr	n	31512	22.86	m S	eptic Tank				
31512	33.53m		18.2 lpm		31512	30.48		each Field				
					31512	12.80				Way Road		
					31512	22.86	m C	enter of roa	ad			

Date pri	nted	6/1/202	2									
Drilled b	ру											
Well Us	е			Worl	к Туре		Drill Method	t		Wo	ork Comple	eted
Drinking Water, Domestic			ic	New Well			Rotary				06/05/201	3
	Casing Information				Casing	above	ove ground		Driv	e Shoe Usec	1?	
	Well Log	Casing T	уре	[Diameter		From	End	Sl	otted?		
	31979	Steel		-	15.24cm		0m	6.10r	n			
Aquifer	Test/Yi	eld						Fs	timated			
Method		Initial W Level (E		Pumpin Rate	g Durati	on	Final Water Level (BTC)	Sa	ife Yield	Flowing Well?		ate
Air		5.49 (BTC - I		22.75 lp of casing)	m 1hr 15i	min	5.49m	22	.75 lpm	No	0	lpm
Well Gro	outing				Drilling Fluid	ls Use	d		fectant	•	Installed	
Т	here is no	o Grout inf	ormatic	n.	None			N/A		N/A Intake Se	etting (BTC)	
								Qty	0L	22.86m	า	
Driller's	Log									Overall Well	Depth	
Well Log	From	End	Colo	ur		Roc	k Type			38.10m	·	
	0m 3.05m	3.05m 38.10m	Browr Red			Soil San	dstone			Bedrock Lev 3.05m	/el	
										0.0011		
Water B	earing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Dista	ince S	etback	From			
31979	22.86m		9.1 lpm		31979	22.86		eptic Ta				
31979	33.53m		13.65 lpr	n	31979	28.96		each Fi				
					31979	30.48	im R	ight of a	any Public	Way Road		

Date pri	nted	6/1/202	2								
Drilled b	у										
Well Us	е			Wor	k Type		Drill Method	b		Work	Completed
Drinkin	g Water,	Domest	ic	New	/ Well	Rotary			07/	/09/2015	
	Casing	Informat	ion		Casing	above	ground		Driv	/e Shoe Used?	
	_	Casing T			Diameter		From	End		otted?	
	31991	Steel	<u>, , , , , , , , , , , , , , , , , , , </u>		15.24cm		0m	6.10m			
Aquifer	Test/Yi	eld						E d'			
Method	100011	Initial W Level (E		Pumpin Rate	ig Durat	ion	Final Water Level (BTC)	Safe	nated Yield	Flowing Well?	Rate
Air		3.66	ŝm	45.5 lpr of casina)	m 1hr 15	min	3.66m	45.8	5 lpm	No	0 lpm
Well Gro	outing				Drilling Fluid	ls Use	d	Disinfe	ctant	Pump Ins	talled
Т	here is no	Grout inf	ormatio		None			N/A		Submers Intake Settir	
								Qty	0L	21.34m	
Driller's	Log									Overall Well De	epth
Well Log	From	End	Colo	ur		Ro	ck Type			38.71m	•
31991 31991	0m 4.88m	4.88m 38.71m	Brown Brown			Mue Sar	d ndstone			Bedrock Level 4.88m	
Water B	earing F	racture	Zone		Setbacks	5					
Well Log	Depth		Rate		Well Log	Dista	ance S	etback F	rom		
31991	24.38m		45.5 lpm		31991	24.3		eptic Tank			
					31991	27.4		each Field			
					31991	32.0	0m R	light of any	/ Public	Way Road	

Well Driller's Report

Date pri	nted	6/1/202	2								
Drilled b	ру										
Well Us	e			Wor	k Type		Drill Metho	b		Worl	k Completed
Drinkin	Drinking Water, Domestic			New	Well	Rotary				09	9/03/2014
	Casing	Informat	ion		Casing	above	ove ground		Driv	ve Shoe Used?	,
	Well Log Casing Type				Diameter		From	End	Sl	otted?	
	32012	Steel			15.24cm		0m	7.32n	n		
Aquifer	· Test/Yi		lotor	Pumpin	0		Final Water		timated	Flowing	
Method		Initial W Level (E		Rate	9 Durat	tion	Level (BTC)	00	fe Yield	Well?	Rate
Air		5.49	m	45.5 lpr of casina)			5.49m	45	5.5 lpm	No	0 lpm
Well Gr	outing				Drilling Flui	ds Use	d	-	fectant	Pump In: N/A	stalled
Т	here is n	o Grout inf	ormatio		None			N/A		Intake Sett	ing (BTC)
								Qty	0L	15.24m	
Driller's	Log									Overall Well E	Depth
Well Log	From	End	Colo	ur		Ro	ck Type			30.48m	-1
32012 32012	0m 6.10m	6.10m 30.48m	Brown Brown			Muc Sha				Bedrock Leve 6.10m	l
Water B	Bearing I	-racture	Zone		Setback	S					
Well Log	Depth		Rate		Well Log	Dista	ance S	Setback	From		
32012	28.35m	4	45.5 lpm		32012	18.29		eptic Ta			
					32012 32012	24.38		each Fie		Wey Bood	
					32012	35.0		light of a		Way Road	

Date printed	6/1/2022						
Drilled by							
Well Use		Work 7	Гуре	Drill Metho	bd	Work Co	mpleted
Drinking Wate	r, Domestic	New W		Rotary		07/15/	2014
Casing	g Information		Casing ab	ove ground	Di	rive Shoe Used?	
Well Lo	g Casing Type	Dia	ameter	From	End	Slotted?	
32017	Steel	15.	24cm	0m	10.97m		
Aquifer Test/	/ield				Estimate	d	
Method	Initial Water Level (BTC)	Pumping Rate	Duration	Final Wate Level (BTC	er Safe Yiel		Rate
Air	4.27m (BTC - Below t	36.4 lpm	1hr	4.27m	36.4 lpn	n No	0 lpm
Well Grouting		Dri	illing Fluids	Used	Disinfectant	Pump Installe	ed
There is	no Grout informat	ion.	ne		Bleach (Jave	ex) N/A Intake Setting (E	
					Qty 0L	22.86m	10)
Driller's Log						Overall Well Dept	า
Well Log From	End Co	lour		Rock Type		32.00m	
32017 Om 32017 9.14m	9.14m Brov 32.00m Red	vn		Clay Sandstone		Bedrock Level	
						9.14111	
Water Bearing	Fracture Zone		Setbacks				
Well Log Dept	n Rate	<u>\</u>	Well Log	Distance	Setback From		
3201721.343201727.43			32017	54.86m	Center of road		

Drilled b	nv									
Well Us	•			Work T	vpe	Drill Method	1		Work C	ompleted
		, Domesti	ic		Not Specifie		•			9/2016
					-	-				
	Casing	Informat	ion		Casing abov	e ground	[Drive Sh	noe Used?	
	Well Log	Casing Ty	/pe	Dia	meter	From	End	Slotted	?	
	32513	Steel		15.2	4cm	0m	12.19m			
Aquifer	r Test/Yi	eld					F atimat	o d		
-		Initial W		Pumping		Final Water	Estimat Safe Yi		Flowing	
Method		Level (E		Rate	Duration	Level (BTC)			Well?	Rate
Air		16.76 (BTC - E		9.1 lpm of casing)	1hr	12.19m	9.1 lpr	n	No	0 lpm
Well Gro	outing			Dri	ling Fluids Us	ed	Disinfectar	nt	Pump Insta	lled
		o Grout inf	ormatio	Noi			Bleach (Ja	vex)	Submersib	
							Qty 0L		64.01m	
Driller's	Log							Ove	erall Well Dep	oth
Well Log	From	End	Colo	ur	R	ock Type			25m	
32513	0m	3.05m	Red		C	lay		Bec	Irock Level	
	3.05m	9.14m	Red			roken Rock		9.14		
	9.14m 24.38m	24.38m 51.82m	Red Red			hale andstone				
	51.82m	53.34m	Red			hale				
	53.34m	54.86m	Red			andstone		_		
32513	54.86m	57.91m	Red		SI	hale				
32513	57.91m	64.01m	Red			andstone				
	64.01m	79.25m	Red		SI	hale				

water Be	earing Frac	cture Zone	Sett	Dacks	
Well Log	Depth	Rate	Well	Log Distance	Setback From
32513	16.76m	1.14 lpm	32513	3 24.38m	Septic Tank
32513	21.34m	2.28 lpm	32513	3 27.43m	Leach Field
32513	73.15m	5.69 lpm	32513	3 21.34m	Right of any Public Way Road

Well Driller's Report

32520

Date pri	inted	6/1/202	22									
Drilled b Well Us	•			Work	Туре	Drill N	lethod			W	ork Com	pleted
Drinkin	g Water,	Domes	tic	New	••	Rotar	У				09/23/2	•
	Casing	Informa	tion		Casing a	bove ground	d		Drive	e Shoe Use	d?	
	Well Log	Casing T	уре		Diameter	Fror	n	End	Slot	tted?		
	32520	Steel		1	5.24cm	0m		12.19m				
Aquifer	r Test/Yie	Initial V		Pumping		Final		Estima Safe N		Flowing	9	
Method		Level (,	Rate	Duratio		` '			Well?		Rate
Air		21.3		15.92 lpr	n 1hr	3.66	6m	15.92	lpm	No		0 lpm
		(BIC -	Delow loc	of casina)								
Well Gro	outing	Grout in	formatio	N	Drilling Fluids Ione	Used	-	Disinfect Bleach (J		Subm	Installed ersible	
							(Qty Ol	L	48.77r	etting (BT) N	
Driller's	Log									Overall Wel	l Donth	
Well Log	From	End	Colo	ur		Rock Type				60.96m	Грерш	
32520	0m	0.61m	Brown			Gravel				Bedrock Le	برما	
32520	0.61m	5.49m	Red			Clay and Gra	avel			9.14m	VCI	
32520	5.49m	9.14m	Red			Broken Rock	ĸ			0.1411		
32520	9.14m	60.96m	Red			Sandstone						
			7									
vvater B	Bearing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Distance	Se	tback Fro	m			
32520	21.34m		9.1 lpm		32520	21.34m		ptic Tank				
32520	56.39m		6.82 lpm		32520	25.91m	Lea	ach Field				_

16.76m

Right of any Public Way Road

Well Driller's Report

Date pri	inted	6/1/202	2								
Drilled k Well Us Drinkin	•	Domest	ic		k Type ^y Well		Drill Methoo Rotary	ł			Completed 9/2014
	Casing	Informat	ion		Casing a	above	ground		Driv	e Shoe Used?	
	Well Log 32793	Casing Ty Steel	/pe		Diameter 15.24cm		From 0m	End 6.10m	Slo	otted?	
Aquifer Method Air	r Test/Yi	Initial W Level (E 83.82	BTC) 2m	Pumpin Rate 6.82 Ipr of casina)	Duratio	on I	Final Water Level (BTC) 4.57m	Safe	nated Yield Ipm	Flowing Well? No	Rate 0 lpm
Well Gro	Outing There is no	Grout inf	ormatior		Drilling Fluids None	s Usec	3	Disinfec Bleach (Qty (Pump Insta) Submersib Intake Setting 80.77m	ole
Driller's Well Log 32793 32793	Log From 0m 3.05m	End 3.05m 83.82m	Colou Brown Brown	ır		Clay	k Type glomerate and s	Sandstone		Overall Well Dep 83.82m Bedrock Level 3.05m	oth
Water B	Bearing F	racture	Zone		Setbacks						
Well Log 32793 32793	Depth 60.96m 79.25m		Rate 2.28 lpm 4.55 lpm		Well Log 32793 32793 32793 32793 32793	Dista 22.86 25.91 54.86 64.92	m S m Lo m R	etback Fr eptic Tank each Field ight of any enter of roa	Public	Way Road	

Date pri	nted	6/1/202	2								
Drilled b	у										
Well Us	е			Wor	к Туре		Drill Method	b		Work Co	mpleted
Drinkin	g Water,	Domest	ic	New	/ Well		Rotary			03/10/	2015
	Casing	Informat	tion		Casing	abov	e ground		Driv	ve Shoe Used?	
	Well Log	Casing T	уре		Diameter		From	From End		otted?	
	32804	Steel			15.24cm		0m	6.10m	1		
Aquifer	Test/Yi	eld Initial V	Vator	Pumpir	na		Final Water	-	timated fe Yield	Flowing	
Method		Level (I		Rate	Durat	ion	Level (BTC)		ie rielu	Well?	Rate
Air		15.2	4m [′]	13.65 lp o of casing)		-	1.83m	13.	65 lpm	No	0 lpm
Well Gro	outing				Drilling Fluid	ds Us	ed		ectant	Pump Installe	ed
Т	here is no	o Grout inf	formatio		None				h (Javex	Intake Setting (B	STC)
								Qty	0L	38.10m	
Driller's	Log									Overall Well Depth	า
Well Log	From	End	Colo	ur		Ro	ock Type			45.72m	
32804 32804	0m 1.52m	1.52m 45.72m	Brown Red				ud and Till andstone			Bedrock Level 1.52m	
Water B	earing F	racture	Zone		Setbacks						
Well Log	Depth		Rate		Well Log	Dis	tance S	etback	From		
32804	21.34m		4.55 lpm		32804					Way Road	
32804	36.58m		4.55 lpm		32804			enter of	-	• • • • • • • • • • • • • • • • • • •	
32804	40.54m		4.55 lpm								

Date pri	nted	6/1/202	2									
Drilled b Well Us	•			Worl	кТуре		Drill Metho	d		W	Vork Comp	leted
Drinkin	g Water,	Domest	ic	Othe	er - Not Sp	pecifie	d Rotary				09/03/20	12
	Casing	nforma	tion		Casin	g abov	e ground		Driv	ve Shoe Use	ed?	
	Well Log	Casing T	уре	[Diameter		From	End	Sl	otted?		
	33648	Steel		-	5.24cm		0m	12.19n	<u>ו</u>			
Aquifer Method	Test/Yie	eld Initial V Level (I		Pumpin Rate	g Dura	ation	Final Water Level (BTC)	Saf	mated e Yield	Flowir Well?	<u> </u>	Rate
Air		16.7	,	81.9 lpr	n 1ŀ	۱r	7.62m	81.	9 lpm	No	() lpm
		(BTC -	Below top	of casina)								
Well Gro	5	Grautin	(Drilling Flu None	ids Us	ed	Disinfe Bleach		:) Subm	o Installed nersible	
I	here is no	Grout in	ormation					0	0		Setting (BTC)
								Qty	0L	0m		
Driller's	Log									Overall We	ell Depth	
Well Log	From	End	Colou	r		R	ock Type			60.96m		
33648	0m 0.91m 6.71m	0.91m 6.71m 11.58m	Brown Red Red			Br	opsoil roken Rock andstone			Bedrock Le 6.71m	evel	
	11.58m	13.72m	Red			-	hale					
33648	13.72m	60.96m	Red			Sa	andstone					
Water B	earing F	racture	Zone		Setback	s]
Well Log	Depth		Rate		Well Log			Setback F				
33648 33648	16.76m 21.34m		2.28 lpm 11.38 lpm		33648 33648			-	-	Way Road Way Road		-
33648	30.48m		68.25 lpm		33040	00.3		agin of an				J

Drilled b	ру								
Well Us	е			Work	Туре	Drill Method	l	Work (Completed
Drinkin	g Water,	Domesti	ic	New V	Vell	Rotary		09/0	03/2012
	Casing	Informat	ion		Casing abo	ve ground	D	Prive Shoe Used?	
	Well Log	Casing Ty	/pe	Di	ameter	From	End	Slotted?	
	33649	Steel		15	.24cm	0m	12.19m		
Aquifer	Test/Yie	eld					Estimate	a d	
Method		Initial W Level (E		Pumping Rate	Duration	Final Water Level (BTC)	Safe Yie	<u> </u>	Rate
Air		18.29 (BTC - E		9.1 lpm of casing)	1hr	7.62m	9.1 lpn	n No	0 lpm
Well Gro	outing			D	rilling Fluids U	sed	Disinfectan	t Pump Insta	alled
Т	here is no	Grout inf	ormatior	No	one		Bleach (Jav	vex) N/A Intake Setting	g (BTC)
							Qty 0L	0m	
Driller's	Log							Overall Well De	pth
Well Log	From	End	Colou	ır	F	Rock Type		91.44m	P
33649	0m	0.30m	Brown		1	Topsoil		Bedrock Level	
33649	0.30m	7.62m	Red			Broken Rock		7.62m	
33649 33649	7.62m 19.81m	19.81m 27.43m	Red			Shale Sandstone			
33649 33649	27.43m	27.43m 28.96m	Red Red			Sandstone Shale		_	
33649	28.96m	50.29m	Red			Sandstone		_	
33649	50.29m	62.48m	Red			Shale		_	
33649	62.48m	82.30m	Red		5	Sandstone			
33649	82.30m	91.44m	Red		5	Shale			

Mater B	cunng i ruc		Consu		
Well Log	Depth	Rate	Well Lo	g Distance	Setback From
33649	18.29m	1.14 lpm	33649	60.96m	Right of any Public Way Road
33649	70.10m	3.41 lpm	33649	60.96m	Center of road
33649	76.20m	4.55 lpm			

Date pr	inted	6/1/202	2									
Drilled	by											
Well Us	se			Wo	rk Typ	е	Drill Method	t			Work C	Completed
Drinkir	ng Water,	Domest	ic		v Well		Rotary)4/2012
	Casing	Informat	ion		C	Casing abo	ve ground		Driv	e Shoe l	Used?	
	Well Log	Casing Ty	ype		Diame	eter	From	End	Slo	otted?		
	33650	Steel			15.24c	m	0m	12.19m				
Aquife	r Test/Yi	eld						Esti	nated			
		Initial W		Pumpir Rate			Final Water	Safe	e Yield		wing ell?	
Method	1	Level (E				Duration	Level (BTC)				-	Rate
Air		28.96 (BTC - E		15.92 lp of casing)		1hr	6.10m	15.9	2 lpm	١	No	0 lpm
Well Gr	outing				Drillin	g Fluids U	sed	Disinfe	ctant	Pu	mp Insta	alled
-	There is no	Grout inf	ormatio	n.	None	0		Bleach	(Javex		A ake Setting	(BTC)
								Qty	0L	0m	-	(2:0)
Driller's	Log									Overall	Well De	oth
Well Log	From	End	Colo	ur		F	Rock Type			91.44m		pui
33650	0m	0.30m	Brown				Fopsoil			Bedrock	< Level	
33650	0.30m	7.01m	Red				Broken Rock			7.01m		
33650 33650	7.01m 11.58m	11.58m 13.72m	Red Red				Sandstone Shale					
33650	13.72m	15.24m	Red				Sandstone					
33650	15.24m	32.00m	Red				Shale					
33650	32.00m	38.10m	Red				Sandstone					
33650	38.10m	39.62m	Red				Shale					
33650	39.62m	47.24m	Red			5	Sandstone					
33650	47.24m	48.77m	Red				Shale					
33650	48.77m	62.48m	Red				Sandstone					
33650	62.48m	91.44m	Red			5	Shale					
1												

Water Be	earing Frac	ture Zone	Setbacks	6	
Well Log	Depth	Rate	Well Log	Distance	Setback From
33650	28.96m	1.14 lpm	33650	60.96m	Right of any Public Way Road
33650	47.24m	3.41 lpm	33650	60.96m	Right of any Public Way Road
33650	76.20m	2.28 lpm			
33650	88.39m	9.1 lpm			

Well Driller's Report

Date pri	inted	6/1/202	2									
Drilled I	•				-							
Well Us	-	Domoot	:-		< Type Well		Aethod					Complete 25/2016
Drinkin	ng Water,	Domest		Inew	vven	Rota	ry				10/2	25/2016
	Casing	Informat	ion		Casing a	above groun	d		Driv	e Sho	e Used?	
	Well Log	Casing T	ype	[Diameter	Fro	m	End	Slo	otted?		
	36327	Steel		1	15.24cm	0m		6.10m				
Aquife	r Test/Yi	eld						Estim	nated			
Method	l	Initial W Level (E		Pumpin Rate	g Duratio		Water (BTC)	Safe			lowing Well?	Rate
Air		45.72 (BTC - E		36.4 lpn of casina)	n Ohr	0	m	36.4	lpm		No	0 lpr
Well Gr	outing			[Drilling Fluids	s Used		Disinfec	tant		Pump Insta	alled
7	There is no	Grout inf	ormatio		None			Bleach (Javex	/	Submersil ntake Setting	
								Qty ()L	;	30.48m	
Driller's	Log									Overa	all Well De	oth
Well Log	From	End	Color	ır		Rock Type	;			45.72		pui
36327	0m	0.76m	Brown			Mud					ock Level	
36327	0.76m	45.72m	Red			Conglomera	ate			0.76n		
Water E	Bearing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Distance	Se	etback Fr	om			
36327	39.62m		22.75 lpm		36327	20.12m	Se	ptic Tank				
36327	42.67m		13.65 lpm		36327	27.74m		ach Field				
					36327	30.48m		ght of any		Way Ro	ad	
					36327	40.23m		enter of roa	ad			

Setbacks measured yes (new construction)

Well Driller's Report

Date pri	inted	6/1/202	2									
Drilled I	ру											
Well Us	e			Wor	k Type		Drill Metho	d			Work Co	mpleted
Drinkin	g Water	Domest	ic		New Well Rotary						05/12	•
	Casing	Informat	ion		Casing a	above	ground		Driv	/e Shoe	Used?	
	Well Log	Casing Ty	ype		Diameter		From	End	SI	otted?		
	36356	Steel			15.24cm		0m	9.75m				
Aquife	r Test/Yi	eld						Fst	imated			
Method		Initial W Level (E		Pumpin Rate	ig Duratio	on	Final Water Level (BTC)	Saf	e Yield		owing /ell?	Rate
Air		45.72 (BTC - E		91 lpm of casina)	n Ohr 30n	nin	7.62m	91	l lpm		No	0 lpm
Well Gr	outing				Drilling Fluids	s Use	d	Disinfe	ectant	Pu	ump Install	ed
٦	There is no	o Grout inf	ormatior		None			Bleach	ı (Javex	•)	ubmersibl ake Setting (I	
								Qty	0L	36	6.58m	-
Driller's	Log									Overall	Well Dept	'n
Well Log	From	End	Colou	ır		Roo	ck Type			45.72m	•	
36356	0m	5.18m	Brown			Clay	y and Gravel			Bedroc	k Level	
36356	5.18m	45.72m	Brown				dstone			5.18m		
Water E	Bearing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Dista	ance S	Setback I	From			
36356	12.80m	9	91 lpm		36356	21.34		Septic Tar				
					36356	25.91		each Fiel			_	
					36356	68.58			-	Way Road	d	
					36356	78.64	im (Center of I	oad			

Date pri	nted	6/1/202	2								
Drilled b	у										
Well Us	е			Wor	к Туре		Drill Method	b		Work	Completed
Drinkin	g Water,	Domest	ic	New	Well		Rotary			09/	/21/2017
	Casing	Informat	ion		Casing	above	ground		Driv	ve Shoe Used?	
	Well Log	Casing T	уре		Diameter		From	End	SI	otted?	
	36681	Steel		•	15.24cm		0m	6.10m			
Aquifer	Test/Yi	eld						Ectir	nated		
Method		Initial W Level (E		Pumpin Rate	g Durati		Final Water _evel (BTC)	Safe	Yield	Flowing Well?	Rate
Air		4.88 (BTC - E		45.5 lpr of casina)	m 1hr 15ı	min	4.88m	45.5	5 lpm	No	0 lpm
Well Gro	outing				Drilling Fluid	ls Used	l	Disinfe	ctant	Pump Ins	
Т	here is no	o Grout inf	ormatio		None			N/A		Submers Intake Settir	
								Qty	0L	30.48m	
Driller's	Log									Overall Well D	epth
Well Log	From	End	Colo	ur		Roc	к Туре			70.10m	
36681	0m	1.83m	Brown			Soil				Bedrock Level	
36681	1.83m	70.10m	Brown			Sanc	Istone			1.83m	
			_								
Water B	earing F	racture	Zone		Setbacks						
Well Log	Depth		Rate		Well Log	Dista		etback F			
36681	65.53m		45.5 lpm		36681	21.34		eptic Tank			
					36681	27.43		each Field			
					36681	33.53	n R	light of any	Public	Way Road	

Date pri	nted	6/1/202	2											
Drilled b	ру													
Well Us	e			Wo	rk Typ	be	Dr	ill Method	k			Work	Complet	ed
Drinkin	g Water	, Domest	ic	Nev	v Wel		Ro	otary				11/	/08/2018	
	Casing	Informat	ion		(Casing ab	ove gro	ound		Dri	ve Sh	oe Used?		
	Well Log	Casing T	ype		Diam	eter		From	End	S	lotted?)		
	37197	Steel			15.240	cm		0m	21.3	4m				
Aquifer Method	[.] Test/Yi	eld Initial W Level (E		Pumpii Rate		Duration		nal Water vel (BTC)	S	stimateo afe Yielo		Flowing Well?	Ra	ate
Air		12.19		136.5 lp of casina)		1hr		2.19m	1:	36.5 lpm	١	No	0 lp)m
Well Gro	outing				Drillir	ng Fluids l	Used		Disir	fectant		Pump Inst	talled	
Т	here is no	o Grout inf	ormation		None				Chlo	rine pell	ets	Submers		
									Qty	0L		24.38m		
Driller's	Log										Ove	rall Well De	epth	
Well Log	From	End	Colou	r			Rock T	уре			42.6		-	
37197	0m	5.49m	Grey				Sandsto	ne			Bed	rock Level		
37197 37197	5.49m 19.81m	19.81m 36.58m	Brown Grey				Clay Sandsto				0m			
37197	36.58m	42.67m	Brown				Clay							
Water B	earing F	- racture	Zone		Se	tbacks								

37197	36.58m	136.5 lpm
Well Log	Depth	Rate
water be	аппу гіа	

Setbacks	5	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Well Driller's Report

Date pri	inted	6/1/2022							
Drilled I Well Us	•		Wo.	rk Turno	Drill A	lethod		Work	Completed
		Domestic		rk Type v Well		ietnou			Completed 26/2015
	Casing	Informatior	ו	Casing a	above groun	d	Driv	ve Shoe Used?	
	Well Log	Casing Type)	Diameter	Fror	m Enc	d Slo	otted?	
	38857	Steel		15.24cm	0m	12.1	19m		
Aquife	r Test/Yi	eld				F	stimated		
Method		Initial Wat Level (BT)			Final \ on Level	Nater S	afe Yield	Flowing Well?	Rate
Air		53.34m (BTC - Belo	45.5 lp ow top of casina)		nin 3.3	5m 4	l5.5 lpm	No	0 lpm
Well Gr	outing			Drilling Fluid	s Used	Disir	nfectant	Pump Inst	talled
٦	There is no	Grout inform	nation.	None		Blea	ch (Javex) Submersi Intake Settin	
						Qty	0L	48.77m	
Driller's	Log							Overall Well De	enth
Well Log	From	End	Colour		Rock Type			53.34m	spin
38857 38857	0m 3.05m		Brown Red		Clay and Mu Sandstone	ıd		Bedrock Level 3.05m	
Water E	Bearing F	Fracture Zo	ne	Setbacks					
Well Log	Depth	Rat	e	Well Log	Distance	Setbac	k From		
38857	38.10m		65 lpm	38857	20.12m	Septic T	ank		
38857	49.07m	31.8	35 lpm	38857	27.74m	Leach F			
				38857	27.43m		any Public	Way Road	
				38857	37.49m	Center	of road		

Well Driller's Report

Date pri	nted	6/1/202	2									
Drilled b	у											
Well Us	е			Wor	k Type		Drill Metho	d			Work C	Complete
Drinkin	g Water,	Domest	ic		Well		Rotary					5/2016
	Casing	Informat	ion		Casin	g abov	e ground		Dri	ve Sho	be Used?	
		Casing T			Diameter		From	End	S	lotted?		
	38912	Steel			15.24cm		0m	6.10	m			
Aquifer	Test/Yi	eld										
Method	100011	Initial W Level (E		Pumpin Rate	-	ation	Final Wate Level (BTC	r Sa	stimated afe Yield		Flowing Well?	Rat
Air		45.72	2m ́	68.25 lp o of casing)		1min	9.45m	68	3.25 lpm	ı	No	0 lp
Well Gro	outina				Drilling Flu	iids Us	ed	Disir	fectant		Pump Insta	alled
	5	o Grout inf	ormatic		None			Blead	ch (Jave	x)	Submersit	ole
								Qty	0L		30.48m	. ,
Driller's	Log										all Well Dep	oth
Well Log	From	End	Colo	our		R	ock Type			45.7		5011
38912	0m	4.27m	Browr	n		M	ud and Gravel			Bedr	ock Level	
38912	4.27m	45.72m	Red			Sa	andstone			4.27		
Water B	earing F	racture	Zone		Setback	٢S						
Well Log	Depth		Rate		Well Log	Dis	tance	Setbacl	k From			
38912	38.10m		4.55 lpm		38912			Septic T	ank			
38912	43.89m		63.7 lpm		38912			each F				
					38912			-	any Public	: Way R	oad	
					38912	40.2	23m (Center o	f road			

Date pri	nted	6/1/202	2								
Drilled b	ру										
Well Us	e			Worl	к Туре		Drill Metho	d		Wor	k Completed
Drinkin	g Water	, Domest	ic	New	Well		Rotary			1	1/25/2015
	Casing	Informat	ion		Casing a	above	ground		Driv	ve Shoe Used?	>
	Well Log	Casing T	уре	I	Diameter		From	End	SI	otted?	
	39076	Steel		•	15.24cm		0m	6.10m	า		
Aquifer	· Test/Yi	eld						Fe	timated		
Method		Initial W Level (B		Pumpin Rate	g Duratio		Final Water Level (BTC)	Sa	fe Yield		Rate
Air		2.44 (BTC - I		18.2 lpr of casina)	m 1hr 45n	nin	2.44m	18	8.2 lpm	No	0 lpm
Well Gro	outing				Drilling Fluids	s Used	Ł	Disinf	ectant	Pump In	stalled
Т	here is no	o Grout inf	ormatior		None			N/A		N/A Intake Set	ting (BTC)
								Qty	0L	54.86m	
Driller's	Log									Overall Well	Depth
Well Log	From	End	Colou	ır		Roc	k Type			88.39m	•
39076 39076	0m 4.27m	4.27m 88.39m	Brown Red			Mud San	dstone			Bedrock Leve 4.27m	el
Water B	Bearing F	racture	Zone		Setbacks						
Well Log	Depth		Rate		Well Log	Dista	nce S	Setback	From		
39076	24.38m		4.55 lpm		39076	18.29		Septic Ta			
39076	82.30m		13.65 lpm		39076	25.91		each Fie			
					39076	22.86	m F	Right of a	ny Public	Way Road	

Date pri	nted	6/1/202	2									
Drilled b	ру											
Well Us	e			Wor	k Type		Drill Method	b		Wo	ork Complet	ed
Drinkin	g Water	, Domest	ic	New	v Well		Rotary			(06/14/2017	
	Casing	Informat	ion		Casing	abovo	around		Driv	ve Shoe Used	2	
	Casing	morma	.1011		Casing	above	giounu				:	
	Well Log	Casing T	уре		Diameter		From	End	SI	otted?		
	39113	Steel			15.24cm		0m	6.10m	า			
Aquifer	· Test/Yi	eld							timated			
Method		Initial V Level (I		Pumpir Rate	ng Durati	on	Final Water Level (BTC)	ou	fe Yield	Flowing Well?	Ra	ate
Air		4.88	ßm	27.3 Ip of casing)	m 1hr 30	min	4.88m	27	'.3 lpm	No	0 lp	ст
Well Gr	outing				Drilling Fluid	ls Use	d	Disinf	ectant	•	nstalled	
Т	here is no	o Grout inf	ormatio		None			N/A		N/A Intake Se	etting (BTC)	
								Qty	0L	30.48m	1	
Driller's	Log									Overall Well	Depth	
Well Log	From	End	Colo	ur		Ro	ck Type			51.82m	•	
39113	0m	3.66m	Brown			Soil				Bedrock Lev	ام	
39113	3.66m	51.82m	Brown				nglomerate			3.66m	CI	
Water B	Bearing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Dista	ance S	Setback	From			
39113	24.38m		9.1 lpm		39113	19.8 ⁻		eptic Ta				
39113	48.77m		18.2 lpm		39113	24.38		each Fie				
					39113	33.53	3m R	light of a	ny Public	Way Road		

Date pri	inted	6/1/202	22								
Drilled I	•										
Well Us					к Туре		Nethod				Completed
Drinkin	ng Water,	Domest	tic	New	Well	Rota	ſŊ			06/	09/2021
	Casing	Informa	tion		Casing a	above groun	d		Drive	Shoe Used?	
	Well Log	Casing T	уре		Diameter	Fro	m	End	Slot	ted?	
	41776	Steel			15.24cm	0m		9.14m			
Aquife	r Test/Yi	eld						Estima	ated		
Method	l	Initial V Level (Pumpin Rate	g Duratio		Water (BTC)	Safe Y		Flowing Well?	Rate
Air		38.1 (BTC -		22.75 lp p of casing)	m 1hr	4.8	8m	22.75	lpm	No	0 lpm
Well Gr	outing				Drilling Fluids	3 Used]	Disinfecta	ant	Pump Inst	
1	There is no	Grout in	formatic	on.	None		E	Bleach (Ja	avex)	Submers Intake Settin	
							(Qty OL	-	30.48m	
Driller's	Log									Overall Well De	anth
Well Log	From	End	Colc	our		Rock Type	;			37.49m	spin
41776	0m	0.61m	Brown	1 <u> </u>		Gravel			E	Bedrock Level	
41776	0.61m	3.05m	Brown	<u> </u>					8	3.53m	
41776 41776	3.05m 7.62m	7.62m 8.53m	Grey Red			Till Gravel					
41776	8.53m	37.49m	Red			Sandstone					
Water E	Bearing F	racture	Zone		Setbacks						
Well Log	Depth		Rate		Well Log	Distance	Se	tback Fror	m		
41776	24.38m		4.55 lpm		41776	24.38m	Se	ptic Tank			
41776	32.61m		18.2 lpm		41776	24.38m		ach Field			
					41776 41776	25.91m 32.00m	Rig	ht of any P	ublic W	ay Road	
								nter of road			

Well Driller's Report

Date pri	inted	6/1/2022										
Drilled k Well Us Drinkin	se	Domestic	0		k Type ⁄ Well	Drill Rota	Method ary	I			Complet 27/2019	
	Casing	Informatio	on		Casing a	above grou	nd		Driv	e Shoe Used?		
	Well Log 41995	Casing Type Steel	pe		Diameter 15.24cm	Fro Om		End 7.01m	Slo	otted?		
Aquifer Method Air	r Test/Yie	eld Initial Wa Level (B ⁻ 0m (BTC - Be	TC)	Pumpin Rate 0 Ipm of casina)	Duratio	on Leve	Water I (BTC))m	Estim Safe ` 13.65	Yield	Flowing Well? No	Ra 0 Ip	
Well Gro		Grout info	rmation		Drilling Fluids None	s Used		Disinfect Bleach (J Qty 0	Javex	Pump Insta Submersil Intake Setting 60.96m	ble	
Driller's Well Log 41995 41995	Log From Om 3.66m	End 3.66m 68.58m	Colou Brown Red	r		Rock Typ Mud and S Sandstone	tones			Overall Well De 68.58m Bedrock Level 3.66m	pth	
Well Log 41995	Depth 18.29m	2.	ate .28 lpm		Setbacks Well Log 41995	Distance 24.38m	Se	etback Fro eptic Tank	om			
41995	62.79m	1'	1.38 lpm		41995 41995 41995	27.74m 51.82m 58.83m	Ri	each Field ight of any f enter of roa		Way Road		

Date pri	nted	6/1/202	2									
Drilled b	ру											
Well Us	e			Worl	k Type	Drill N	Method				Work (Complete
Drinkin	g Water,	Domest	ic		Well	Rota	ry					21/2020
	Casing	Informat	ion		Casing a	above groun	nd		Driv	e Sho	e Used?	
	Well Log	Casing Ty	/pe	[Diameter	Fro	m	End	Slo	otted?		
	44830	Steel		1	15.24cm	0m		6.10m				
Aquifer	· Test/Yi	eld Initial W	/ater	Pumpin	g		Water	Estin Safe			lowing	
Method		Level (E	BTC)	Rate	Duratio	on Level	(BTC)				Well?	Rate
Air		4.88 (BTC - E		91 lpm of casina)	n 1hr	4.8	8m	91 I	pm		No	0 lpr
Well Gro	outing				Drilling Fluid	s Used		Disinfec			Pump Inst	
Т	here is no	Grout inf	ormatior		None		(Chlorine	pellet		Submersi ntake Setting	
							(Qty C)L	3	30.48m	
Driller's	Log									Overa	all Well De	pth
Well Log	From	End	Colou	ır		Rock Type)			57.91	m	
44830 44830	0m 5.18m	5.18m 57.91m	Brown Brown			Soil Shale				Bedro 5.18m	ock Level	
Water B	Bearing F	racture	Zone		Setbacks							
Well Log	Depth		Rate		Well Log	Distance	Se	tback Fr	om			
44830	54.86m		91 lpm		44830	24.38m		ptic Tank				
					44830	27.43m		ach Field				
					44830	60.96m	Rig	ght of any	Public	Way Ro	ad	

Date pri	nted	6/1/202	2								
Drilled b Well Us Drinkin	•	Domest	ic		k Type ^y Well		Drill Metho Rotary	d			Completed 20/2020
	Casing	Informat	ion		Casing	above	e ground		Driv	ve Shoe Used?	
	Well Log 44849	Casing T Steel	уре		Diameter 15.24cm		From 0m	End 6.10m	Sl	otted?	
Aquifer Method Air	Test/Yie	Initial V Level (I 3.66	BTC)	Pumpin Rate 18.2 Ipr of casina)	Durati	-	Final Water Level (BTC) 3.66m	Saf	imated e Yield 2 Ipm	Flowing Well? No	Rate 0 Ipm
Well Gro T	Duting There is no	Grout inf	ormatior		Drilling Fluid None	s Use	ed	Disinfe Other Qty	ectant 0L	Pump Insta Submersil Intake Setting 45.72m	ble
Driller's Well Log 44849 44849 44849	Log From 0m 1.22m 4.27m	End 1.22m 4.27m 57.91m	Colou Brown Brown Red	r		Fill So				Overall Well De 57.91m Bedrock Level 4.27m	pth
	earing F	racture	Zone		Setbacks						
Well Log 44849 44849	Depth 45.72m 54.86m		Rate 9.1 lpm 9.1 lpm		Well Log 44849 44849	25.9 28.9	91m S 96m L	Setback Septic Tar .each Fiel	ık d		
					44849	33.5	53m F	Right of ar	y Public	Way Road	

Sample Information

- Call																																																				
ALK_T(mg/L)	AI(mg/L)	As(µg/L)	B(mg/L)	Ba(mg/L) Br(r	mg/L) CC	OND(µSIE/cm) Ca(mg	g/L) Cd(µg/L	.) CI(mg/L)) Cr(µg/L)	Cu(µg/L	L) E.coli P/	P/A(P/A) F(mg/L)	Fe(mg/L)	HARD(mg/L)	K(mg/L)	Mg(mg/L)	Mn(mg/L)	NO2(mg/L)	NO3(mg/L) NOX(m	g/L) Na(mg/L)	Pb(µg/L)	SO4(mg/L)	Sb(µg/L)	Se(µg/L)	TC-P/A(P/A) TU	RB(NTU) TI(µg/L)	U(µg/L)	Zn(µg/L)	pH(pH)	Þ=COND(µSIE/cm)) Þ=TDS(mg/L)	Þ@B(no units)	Þ@C(no units)	ÞAN(Epm)	Þ CAT(Epm) Þ	Þ CO3(mg/L) Þ	ÞDIFB(%) ÞDI	IFC(%) Þ HC	CO3(mg/L) ÞOH(n	mg/L) Þ SIN(no	o units) Þ DIFTDS	S(%) BR2(mg/L)	L) CLRT(TCU)	E.coli-	LSI(no units)	Li(mg/L) N	Mo(mg/L) N	NH3T(mg/L as N) Ni(mg/L)	_) Sr(mg/L)	TC- MPN/MPN/100ml)	TP(mg/L) V(m	ng/L) pHs(no units)
115	< 0.0250	1.60 (0.0140	0.3250 < 0.	.10 28	89 43.40	< 0.50	14.60	17	< 10	Ab	< 0.10	0.0150	122	0.68	3.40	< 0.0050	< 0.05	0.18 0.23	4.59	< 1	5.71	< 1	< 1.50	Ab 0.7	·4 < 1	6.40	< 5	7.93	256.2390	142.56	1.21	2.2120	2.8490	2.6670 0	0 3.	6.00	090 115	0	0.1650												
106	0.14	< 1.50	0.02	0.2090 < 0.	.10 22	22 39.80	< 0.50	2.82	< 10	< 10	Ab	< 0.10	* 0.4470	105	0.60	1.50	0.0070	< 0.05	< 0.05 < 0.05	6.32	< 1	4.86	< 1	< 1.50	Ab * 7	< 1	6.20	< 5	8.11	207.4020	120.5310	-0.91	1.18	2.31	2.44 1	1.30 -2	2.7390 3.40) 104.	70 0.10	0.4480												
101	< 0.0250	< 1.50	0.0160	0.4760 < 0.	.10 24	43 43.10	< 0.50	8.71	< 10	< 10	Ab	< 0.10	0.02	117	0.90	2.18	< 0.0050	< 0.05	< 0.05 0.06	4.49	< 1	4.67	< 1	< 1.50	Ab <	.20 < 1	2.30	< 5	8.06	222.2730	125.1820	-1.25	1.5810	2.3730	2.5530 1	1.10 -3	3.6490 4.45	550 99.9	0 0.10	0.4070												
123	< 0.0250	< 1.50 (0.0210	0.2140 < 0.	.10 24	44 41.70	< 0.50	2.67	< 10	< 10	Ab	< 0.10	< 0.01	115	0.50	2.70	< 0.0050	< 0.05	0.08 0.08	4.82	< 1	4.68	< 1	< 1.50	Ab 0.3	0 < 1	8.80	6	7.95	222.34	131.48	0.7666	1.6515	2.6425	2.5295 1	1.0220 2.		151 121.	90 0.0446	0.3674	-99.9950	I										
124	< 0.0250	< 1.50 (0.0130	0.3750 < 0.	.10 26	61 49.10	< 0.50	2.85	< 10	54	Ab	< 0.10	0.0710	132	0.50	2.26	0.15	< 0.05	< 0.05 < 0.05	4.70	< 1	5.04	< 1	< 1.50	Ab 0.5	i0 < 1	4	30	8.13	240.84	139.60	-1.3184	1.4357	2.6729	2.8680 1	1.5520 -3	3.5201 4.01	174 122.4	40 0.0675	0.6155	-99.9950	I										
131	< 0.0250	< 1.50	0.06	0.1420 < 0.	.10 27	71 47	< 0.50	3.23	< 10	< 10	Ab	< 0.10	0.0610	126	0.80	2.05	0.0080	< 0.05	< 0.05 < 0.05	13.10	< 1	9.91	< 1	< 1.50	Ab * 1	.10 < 1	* 71	< 5	8.15	262.71	155.22	-1.2264	0.5477	2.9249	3.1111 1	1.7160 -3	3.0851 1.55	533 129.3	20 0.0706	0.6364	-99.9950	I										
52.90	0.03	< 1.50 (0.0130	0.1250 < 0.	.10 13	32 20.30	< 0.50	5.17	< 10	< 10	Ab	< 0.10	0.0250	55.30	0.30	1.13	0.0050	< 0.05	0.20 0.20	3.33	< 1	3.83	< 1	< 1.50	Ab 0.7	°0 < 1	1	5	7.67	118.59	66.9620	0.3118	1.6908	1.3033	1.2638 0	0.2315 1.	.5386 5.35	504 52.6	5 0.0234	-0.5521	-99.9950	I										
52.40	0.09	< 1.50	< 0.01	0.1090 < 0.	.10 11	17 21.10	< 0.50	2	< 10	< 10	Ab	< 0.10	0.6740	55.40	0.50	0.65	0.0260	< 0.05	< 0.05 < 0.05	2.74	< 1	2.58	< 1	< 1.50	Ab * 4	.80 < 1	< 0.50	7	7.15	109.23	62.24	-0.9542	1.0414	1.1672	1.2861 0	0.0695 -4	4.8460 3.43	346 52.3	2 0.0071	-1.0569	-99.9950	I										
110	< 0.0010	< 0.0010	0.0190	0.3130	23	37 40.70	< 0.0000	010 7.50	< 0.0010	0.0020	1	0.06	< 0.02	108	0.50	1.54	< 0.0010		0.41	5.64	< 0.0001	5	< 0.0001	< 0.0010	< (0.10 < 0.0001	0.0060	0.0010	7.80		130											0.04	< 5	Ab	-0.15	0.0069 0	0.0002 <	< 0.05 < 0.0010	0 0.3340	Ab	< 0.02 0.00	010 7.90

	Alkal	inity	Alun	ninum		Arse	enic		Bo	oron	Barium		Bromide	е	True	Colour	Conductivity	Calcium
Parameter	ALK_T (mg/L as CaCO3)	ALK_T (mg/L)		Al (mg/L)- Flag	As (mg/L)	As (mg/L)- Flag	As (µg/L)	As (μg/L)- Flag	B (mg/L)	B (mg/L)- Flag	Ba (mg/L)	BR2 (mg/L)	Br (mg/L)	Br (mg/L)- Flag	CLRT (TCU)	CLRT (TCU)- Flag	COND (μSIE/cm)	Ca (mg/L)
Well 1		115	0.025	<			1.6		0.014		0.325		0.1	<			289	43.4
Well 2		106	0.14				1.5	<	0.02		0.209		0.1	<			222	39.8
Well 3		101	0.025	<			1.5	<	0.016		0.476		0.1	<			243	43.1
Well 4		123	0.025	<			1.5	<	0.021		0.214		0.1	<			244	41.7
Well 5		124	0.025	<			1.5	<	0.013		0.375		0.1	<			261	49.1
Well 6		131	0.025	<			1.5	<	0.06		0.142		0.1	<			271	47
Well 7		52.9	0.03				1.5	<	0.013		0.125		0.1	<			132	20.3
Well 8		52.4	0.09				1.5	<	0.01	<	0.109		0.1	<			117	21.1
Well 9	110)	0.001	<	0.001	<			0.019		0.313	0.04			5	<	237	40.7
Guidelines for Canadian Drinking Water Quality ¹																		
Maximum Allowable Concentration (MAC) (mg/L)	-			-		0.0	01			5	2.0		-			-	-	-
Number of exceedances of MAC	-			-		()			0	0		-			-	-	-
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)	-			-		-				-	-		-		1	15	-	-
Number of exceedances of AO/OG	-			-		-	•			-	-		-			0	-	-
Environmental Quality Standards (EQS) ²																		
Human Health-Based Tier 1 EQS for a potable site (mg/L)	-			-		0.0	01			5	1		-			-	-	-
Number of exceedances of EQS	-			-		()			0	0		-			-	-	-

¹ Health Canada (September 2020)
 ² Atlantic RBCA (July 2021)

		Cadm	ium		Chloride		Chror	nium			Copper			E. coli	
Parameter	Cd (mg/L)	Cd (mg/L)- Flag	Cd (µg/L)	Cd (µg/L)- Flag	CI (mg/L)	Cr (mg/L)	Cr (mg/L)- Flag	Cr (µg/L)	Cr (µg/L)- Flag	Cu (mg/L)	Cu (µg/L)	Cu (µg/L)- Flag	E.coli P/A (P/A)-Flag	E.coli-MPN (MPN/100ml)	E.coli-MPN (MPN/100ml)- Flag
Well 1			0.5	<	14.6			17			10	<	Ab		
Well 2			0.5	<	2.82			10	<		10	<	Ab		
Well 3			0.5	<	8.71			10	<		10	<	Ab		
Well 4			0.5	<	2.67			10	<		10	<	Ab		
Well 5			0.5	<	2.85			10	<		54		Ab		
Well 6			0.5	<	3.23			10	<		10	<	Ab		
Well 7			0.5	<	5.17			10	<		10	<	Ab		
Well 8			0.5	<	2			10	<		10	<	Ab		
Well 9	0.00001	<			7.5	0.001	<			0.002					Ab
Guidelines for Canadian Drinking Water Quality ¹															
Maximum Allowable Concentration (MAC) (mg/L)		0.00)7		-		0.0)5			2			0 / Absent	
Number of exceedances of MAC		0			-		C)			0			0	
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)		-			250		-				1			0 / Absent	
Number of exceedances of AO/OG		-			0		-				0			0	
Environmental Quality Standards (EQS) ²															
Human Health-Based Tier 1 EQS for a potable site (mg/L)		0.00)5		-		0.0)5			2			-	
Number of exceedances of EQS		0			-		C)		I	0			-	

Health Canada (September 2020)
 Atlantic RBCA (July 2021)

	Flue	oride	Ir	on	Hardr	ness	Potassium	Langelier Saturation Index	Lithium	Magnesium	Man	ganese	Molybdenum
Parameter	F (mg/L)	F (mg/L)- Flag	Fe (mg/L)	Fe (mg/L)- Flag	HARD (mg/L as CaCO3)	HARD (mg/L)	K (mg/L)	LSI (no units)	Li (mg/L)	Mg (mg/L)	Mn (mg/L)	Mn (mg/L)- Flag	Mo (mg/L)
Well 1	0.1	<	0.015			122	0.68			3.4	0.005	<	
Well 2	0.1	<	0.447	*		105	0.6			1.5	0.007		
Well 3	0.1	<	0.02			117	0.9			2.18	0.005	<	
Well 4	0.1	<	0.01	<		115	0.5			2.7	0.005	<	
Well 5	0.1	<	0.071			132	0.5			2.26	0.15		
Well 6	0.1	<	0.061			126	0.8			2.05	0.008		
Well 7	0.1	<	0.025			55.3	0.3			1.13	0.005		
Well 8	0.1	<	0.674			55.4	0.5			0.65	0.026		
Well 9	0.06		0.02	<	108		0.5	-0.15	0.0069	1.54	0.001	<	0.0002
Guidelines for Canadian Drinking Water Quality ¹													
Maximum Allowable Concentration (MAC) (mg/L)	1	5		-	-		-	-	-	-	0	.12	-
Number of exceedances of MAC		0		-	-		-	-	-	-		1	-
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)		-	C).3	-		-	-	-	-	0	.02	-
Number of exceedances of AO/OG		-		2	-		-	-	-	-		2	-
Environmental Quality Standards (EQS) ²													
Human Health-Based Tier 1 EQS for a potable site (mg/L)		-		-	-		-	-	-	-	0	.12	0.07
Number of exceedances of EQS		-		-	-		-	-	-	-		1	0

¹ Health Canada (September 2020)
 ² Atlantic RBCA (July 2021)

	Total A	mmonia	Nit	rate	Ni	trite	Nitrou	s Oxides	Sodium	Ni	ckel		Lea	ıd		Sulphate
Parameter	NH3T (mg/L as N)	NH3T (mg/L as N)-Flag	NO2 (mg/L)	NO2 (mg/L)- Flag	NO3 (mg/L)	NO3 (mg/L)- Flag	NOX (mg/L)	NOX (mg/L)- Flag	Na (mg/L)	Ni (mg/L)	Ni (mg/L)- Flag	Pb (mg/L)	Pb (mg/L)- Flag	Pb (µg/L)	Pb (µg/L)- Flag	SO4 (mg/L)
Well 1			0.05	<	0.18		0.23		4.59					1	<	5.71
Well 2			0.05	<	0.05	<	0.05	<	6.32					1	<	4.86
Well 3			0.05	<	0.05	<	0.06		4.49					1	<	4.67
Well 4			0.05	<	0.08		0.08		4.82					1	<	4.68
Well 5			0.05	<	0.05	<	0.05	<	4.7					1	<	5.04
Well 6			0.05	<	0.05	<	0.05	<	13.1					1	<	9.91
Well 7			0.05	<	0.2		0.2		3.33					1	<	3.83
Well 8			0.05	<	0.05	<	0.05	<	2.74					1	<	2.58
Well 9	0.05	<					0.41		5.64	0.001	<	0.0001	<			5
Guidelines for Canadian Drinking Water Quality ¹																
Maximum Allowable Concentration (MAC) (mg/L)		-	4	15		3		-	-		-		0.00)5		-
Number of exceedances of MAC		-		0		0		-	-		-		0			-
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)		-		10		1		-	200		-		-			500
Number of exceedances of AO/OG		-		0		0		-	0		-		-	_		0
Environmental Quality Standards (EQS) ²																
Human Health-Based Tier 1 EQS for a potable site (mg/L)		-		-		-		-	-	().1		0.00)5		-
Number of exceedances of EQS		-		-		-		-	-		0		0			-

¹ Health Canada (September 2020)

² Atlantic RBCA (July 2021)

		Antin	nony			Seler	ium		Strontium		Total Coliforms			Total Pho	osphorus
Parameter	Sb (mg/L)	Sb (mg/L)- Flag	Sb (µg/L)	Sb (µg/L)- Flag	Se (mg/L)	Se (mg/L)- Flag	Se (µg/L)	Se (µg/L)- Flag	Sr (mg/L)	TC-MPN (MPN/100ml)	TC-MPN (MPN/100ml)-Flag	TC-P/A (P/A)	TC-P/A (P/A)- Flag	TP (mg/L)	TP (mg/L)- Flag
Well 1			1	<			1.5	<					Ab		
Well 2			1	<			1.5	<					Ab		
Well 3			1	<			1.5	<					Ab		
Well 4			1	<			1.5	<					Ab		
Well 5			1	<			1.5	<					Ab		
Well 6			1	<			1.5	<					Ab		
Well 7			1	<			1.5	<					Ab		
Well 8			1	<			1.5	<					Ab		
Well 9	0.0001	<			0.001	<			0.334		Ab			0.02	<
Guidelines for Canadian Drinking Water Quality ¹															
Maximum Allowable Concentration (MAC) (mg/L)		0.0	06			0.0)5		7		0 / Absent			-	·
Number of exceedances of MAC		()			C			0		0			-	·
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)		-				-			-		0 / Absent			-	
Number of exceedances of AO/OG		-				-			-		0			-	
Environmental Quality Standards (EQS) ²															
Human Health-Based Tier 1 EQS for a potable site (mg/L)		0.0	06			0.0)5		2.4		-			-	
Number of exceedances of EQS		()			C	_		0		-			-	

Health Canada (September 2020)
 Atlantic RBCA (July 2021)

	Tur	bidity		Thal	lium			Uraniun	n	Vanadium		Zinc		р	Н	Conductivity (Calculated)
Parameter	TURB (NTU)	TURB (NTU)- Flag	Tl (mg/L)	TI (mg/L)- Flag	TI (μg/L)	Tl (μg/L)- Flag	U (mg/L)	U (µg/L)	U (µg/L)- Flag	V (mg/L)	Zn (mg/L)	Zn (µg/L)	Zn (µg/L)- Flag	рН (рН)	pHs (no units)	Þ =COND (μSIE/cm)
Well 1	0.74				1	<		6.4				5	<	7.93		256.239
Well 2	7	*			1	<		6.2				5	<	8.11		207.402
Well 3	0.2	<			1	<		2.3				5	<	8.06		222.273
Well 4	0.3				1	<		8.8				6		7.95		222.34
Well 5	0.5				1	<		4				30		8.13		240.84
Well 6	1.1	*			1	<		71	*			5	<	8.15		262.71
Well 7	0.7				1	<		1				5		7.67		118.59
Well 8	4.8	*			1	<		0.5	<			7		7.15		109.23
Well 9	0.1	<	0.0001	<			0.006			0.001	0.001			7.8	7.9	
Guidelines for Canadian Drinking Water Quality ¹																
Maximum Allowable Concentration (MAC) (mg/L)		-		-	-			0.02		-		-			-	-
Number of exceedances of MAC		-		-	-			1		-		-			-	-
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)	:	1.0		-	-			-		-		5		7.0 -	10.5	-
Number of exceedances of AO/OG		3		-	-			-		-		0		()	-
Environmental Quality Standards (EQS) ²																
Human Health-Based Tier 1 EQS for a potable site (mg/L)		-		0.0	02			0.02		0.0062		-			-	-
Number of exceedances of EQS		-		C)			1		0		-			-	-

¹ Health Canada (September 2020)
 ² Atlantic RBCA (July 2021)

	Total Dissolved Solids (Calculated)				Other Ca	alculated	Paramete	ers (No G	uidelines)			
Parameter	Þ =TDS (mg/L)	Þ @B (no units)	Þ @C (no units)	Þ AN (Epm)	Þ CAT (Epm)	Þ CO3 (mg/L)	Þ DIFB (%)	Þ DIFC (%)	Þ DIFTDS (%)	Þ HCO3 (mg/L)	Þ OH (mg/L)	Þ SIN (no units)
		,	,						(* - 7			,
Well 1	142.56	1.21	2.212	2.849	2.667	0	3.31	6.009		115	0	0.165
Well 2	120.531	-0.91	1.18	2.31	2.44	1.3	-2.739	3.4		104.7	0.1	0.448
Well 3	125.182	-1.25	1.581	2.373	2.553	1.1	-3.649	4.455		99.9	0.1	0.407
Well 4	131.48	0.7666	1.6515	2.6425	2.5295	1.022	2.1857	4.6451	-99.995	121.9	0.0446	0.3674
Well 5	139.6	-1.3184	1.4357	2.6729	2.868	1.552	-3.5201	4.0174	-99.995	122.4	0.0675	0.6155
Well 6	155.22	-1.2264	0.5477	2.9249	3.1111	1.716	-3.0851	1.5533	-99.995	129.2	0.0706	0.6364
Well 7	66.962	0.3118	1.6908	1.3033	1.2638	0.2315	1.5386	5.3504	-99.995	52.65	0.0234	-0.5521
Well 8	62.24	-0.9542	1.0414	1.1672	1.2861	0.0695	-4.846	3.4346	-99.995	52.32	0.0071	-1.0569
Well 9	130											
Guidelines for Canadian Drinking Water Quality ¹												
Maximum Allowable Concentration (MAC) (mg/L)	-						-					
Number of exceedances of MAC	-						-					
Aesthetic Objective / Operational Guidance Value (AO/OG) (mg/L)	500						-					
Number of exceedances of AO/OG	0						-					
Environmental Quality Standards (EQS) ²												
Human Health-Based Tier 1 EQS for a potable site (mg/L)	-						-					
Number of exceedances of EQS	-						-					

¹ Health Canada (September 2020)
 ² Atlantic RBCA (July 2021)

RE: Hylyne Estates Subdivision

Souma, Gerard (ELG/EGL) <Gerard.Souma@gnb.ca>

Wed 6/15/2022 11:52 AM

To: Paul Vanderlaan <paul.vanderlaan@gemtec.ca>

Cc: Chase, Justin (ELG/EGL) <Justin.Chase@gnb.ca>;Christine Chase <Christine.Chase@gemtec.ca>

You don't often get email from gerard.souma@gnb.ca. Learn why this is important

Hi Paul,

This is a good summary of our discussion. I also agree on the flexibility proposed for the sampling time and method.

Feel free to contact me if you have any questions before submitting the application. Once the application is submitted, I would appreciate it to include Justin, the EIA project manager, to any further discussion. So, he can keep tract of the history of any agreement that may have become necessary in the future.

Thanks, Gerard

Gerard Souma, PhD, P. Eng./ing.,

Civil Engineer and Hydrogeologist / Ingénieur Civil et Hydrogéologue Source and Surface Water Management Branch / Direction de la Gestion des eaux de source et de surface Athorisations and Compliance Division / Division des autorisations et de la conformité Department of Environment and Local Government / Ministère de l'Environnement et des Gouvernements locaux

Phone / Téléphone : 506-856-2374 Fax / Télécopieur : 506-856-2370 E-mail / Courriel : <u>gerard.souma@gnb.ca</u> www.gnb.ca

This message is intended for the person to whom it is addressed and is to be treated as confidential or private communications. It must not be forwarded unless permission has been received from the originator. If you have received this message inadvertently, please notify the sender and delete the message. Then delete your response. Thank you for your cooperation.

Ce message est destiné à la personne désignée dans la présente et il doit demeurer confidentiel. Il ne doit pas être réacheminé sans la permission de l'expéditeur. Si ce message vous a été envoyé par erreur, veuillez aviser l'expéditeur et effacer le message. Effacez ensuite votre réponse. Merci de votre collaboration.

From: Paul Vanderlaan <paul.vanderlaan@gemtec.ca>
Sent: Wednesday, June 15, 2022 11:24 AM
To: Souma, Gerard (ELG/EGL) <Gerard.Souma@gnb.ca>
Cc: Chase, Justin (ELG/EGL) <Justin.Chase@gnb.ca>; Christine Chase <Christine.Chase@gemtec.ca>
Subject: Hylyne Estates Subdivision

ATTENTION! External email / courriel externe.

Hi Gerard,

Thanks for taking our call this morning and providing us with your guidance and suggestions as we prepare our application.

As per our discussion this morning, can you please confirm the following for our WSSA Initial Application?

For the proposed 49-lot "Hylyne Estates" residential subdivision outside of Hampton, NB, which is to occupy an area of approximately 80 acres, you have indicated the following:

- A total of one 24-hour constant-rate pumping test is required, if the rate is equivalent to the AVERAGE DAILY water requirement for the entire subdivision (i.e., 450L/day/person x 5 persons/lot x 49 lots, equivalent to 77 L/min).
- •
- No aquifer testing is required using the PEAK FLOW rate (for either one lot or for the cumulative 49 lots).
- A step-drawdown test at the pumping well is to be completed in advance of the pumping test to confirm that the well can sustain the required rate for 24 hours.
- •
- If the step-drawdown test indicates that the required flowrate is not sustainable for 24 hours, your direction is to complete the 24-hour pumping test using the highest rate that we deem sustainable for that duration. (Ultimately, if the 24-hour pumping test is carried out at a rate less than 77 L/min, we understand that the TRC will most likely determine that the number of lots in the subdivision will need to be reduced to match the tested pumping rate.)
 - (Another option is to complete the pumping test at one of the proposed observation wells, if the estimated yield is higher there. We understand that, depending on the well chosen for the 24-hour test, this may require drilling an additional nearby well to ensure that drawdown is measurable in at least one observation well.)
- NBDELG considers consistent geology across a 1:20,000 scale DNR map as sufficient evidence of homogeneity to justify a reduced number of wells. The OWLS stratigraphic logs are not necessarily reliable sources of bedrock descriptions, as bedrock descriptions are subjective and will vary between drillers. As mapping indicates that our Site is entirely underlain by the Kennebecasis Formation, **only two observation wells are required** for our Project (for a total of 3 wells across the Site) instead of one well per 10 acres.
- No aquifer testing is required on observation wells. No aquifer testing beyond the step-drawdown test and 24-hour test are required on the pumping well.
- Considering the apparent homogeneity of the Site, the 24-hour test would be considered acceptable as long as at least one observation well had measurable drawdown. Lack of drawdown in the third well (i.e., the second observation well) would **not necessarily** be a trigger for additional pumping test(s).
- Three water samples are required at the pumping well: after 2 hours of pumping, after 12 hours, and after 24 hours. Note: We will propose sampling at 2 hours, "8 to 16 hours" (to allow flexibility in the sampling time as GEMTEC personnel will complete the sampling but will not be on-site overnight), and 24 hours.
- Two water samples are required from **each** observation well. These are to be collected during the pumping test, after 12 and 24 hours of pumping, and should not disturb the pumping test. **Bailer**

samples from the observation wells at these times are considered acceptable, assuming the observation well has experienced any amount of measurable drawdown.

• All wells must be constructed as "typical" residential wells for the area.

Thanks again for taking our call and your guidance on this! Paul

CAUTION: This email is not from someone with an @gemtec.ca email address. Do not click links or open attachments that you do not trust.

APPENDIX C

Supporting Documents

41490179 2021-07-05 12:43:41

PID: 30344352

THIS AGREEMENT OF PURCHASE AND SALE made this $\frac{25k}{2}$ day of June, 2021.

BY AND BETWEEN:

hereinafter called (the "Vendor") of the first part;

-and-

T. A. RAYMOND ENVIRONMENTAL SERVICES LTD. 1113 RTE 875 Searsville, NB E5P 3S9 hereinafter called (the "**Purchaser**") of the second part;

-and-

TONY ALONZO RAYMOND 1113 RTE 875 Searsville, NB E5P 3S9 hereinafter called (the "Guarantor") of the third part.

In consideration of the covenants and agreements herein contained the Vendor and the Purchaser agree as follows:

1. The Vendor agrees to sell and the Purchaser agrees to purchase a 32.4 hectare parcel of land presently known as PID: 30344352 and more particularly described in the Schedule "A" attached hereto (the "Land").

2. The purchase price of the Land shall be plus HST, if applicable, to be paid as follows:

- a. The sum of **an example at or before the time this agreement** is executed (the receipt of which is acknowledged by the Vendor);
- b. The balance of the purchase price on or before the 31st day of December, 2023.

3. The Purchaser shall have ten (10) days from the date of this agreement to search the title to the land. If the Purchaser or its lawyers does not notify the Vendor or its lawyer of any title objection within the period of ten (10) days, the Purchaser will be deemed to have accepted the Vendor's title to the land and no further title objections may be made after that time (except objections concerning matters which occur after the time for submitting title objections).

4. Should the Purchaser or its lawyers deliver any valid title objection to the Vendor or its lawyers within the period of ten (10) days mentioned in paragraph 3, which the Vendor is unwilling or unable to remove, the Vendor shall refund to the Purchaser all monies paid by it under this agreement and may cancel this agreement by written notice to the Purchaser. If this is done, the Vendor shall not be responsible for paying any loss or expense to which the Purchaser may have been put because it entered into this agreement.

5. If, as it is entitled to do under paragraph 4, the Vendor cancels this agreement; the Purchaser may waive such title objection and revive this agreement by providing the Vendor with a written notice of waiver and revival within five (5) days of the receipt by the Purchaser of the notice of cancellation. Upon receipt by the Vendor of a notice of waiver and revival and upon repayment to the Vendor of any monies refunded by it to the Purchaser, this agreement shall revive and continue in full force and effect as though such notice of cancellation never had been given by the Vendor.

6. The Vendor permits entry upon the land by the Purchaser for the purpose of surveying and installing services and will consent to a subdivision of the land upon the following conditions:

- a. The subdivided lots shall be of a size and in accordance with the single family residential requirements;
- b. The Purchaser shall be responsible for real property taxes commencing with the year 2022;
- c. The Purchaser shall be responsible, at the Purchaser's sole cost and expense, for the installation of all services required, including installation of public utilities and construction of streets.
- The Vendor will transfer land to the purchaser upon receipt of the following payments:

 a. the sum of for each one acre to be transferred.

b. the vendor will provide a transfer to the purchase for all land not previously conveyed to the purchaser on December 31, 2023 upon receipt of payment of the balance of the purchase price.

8. All legal fees and disbursements for the Purchaser and the Vendors shall be the sole responsibility and liability of the Purchaser.

9. The Vendor represents warrants and covenants to the Purchaser as follows:

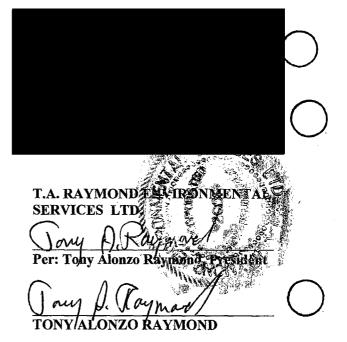
- a. No person, firm or corporation now has or at the time of closing will have any agreement or option or right capable of becoming an agreement for the purchase of the land;
- b. That no hazardous materials will be placed or stored by the Vendor on the land nor will the Vendor permit any third party to place or store any hazardous materials on the land from the date hereof until the time of closing;
- c. That the Vendor is not now and will not be at the time of closing a nonresident of Canada within the meaning and purpose of the Income Tax Act (Canada);
- d. That the Vendor is and at the time of closing will be validly registered under the goods and services tax (GST) provisions of the Excise Tax Act (Canada) and the Vendor's GST registration number is **838067403RT0001.**
- 9. The Purchaser represents warrants and covenants with the Vendor as follows:
 - a. The Purchaser is duly incorporated and validly existing and has taken all requisite corporate action to enter into this agreement and to perform the Purchaser's obligation hereunder;
 - b. That the Purchaser is not now and will not be at the time of closing a nonresident of Canada within the meaning and purpose of the Income Tax Act (Canada);
 - c. That the Purchaser is and at the time of closing will be validly registered under the harmonized sales tax (HST) provisions of the Excise Tax Act (Canada) and the Purchaser's HST registration number is 887623510RT0001.

10. The Purchaser agrees to purchase the Land, or any portion thereof, on a strictly "as is, where is" basis and is fully responsible for investigating the environmental condition of the land and the Vendor makes no representation or warranty with respect to the environmental condition of the land or wetlands.

11. The Guarantor, in consideration of the Vendor entering into this agreement with the Purchaser, unconditionally guarantees all the covenants, agreements and obligations of the Purchaser.

12. The Vendor's lawyer is Sharon D. Loughery, Loughery Law Office, 582 Main Street, Hampton, New Brunswick, E5N 6C4. The Purchaser's lawyer is Sharon D. Loughery, Loughery Law Office, 582 Main Street, Hampton, New Brunswick, E5N 6C4.

13. Time shall be of the essence of this agreement.


14. This agreement and everything in it shall enure to the benefit of and be binding upon each of the parties hereto and their respective successors, heirs and assigns.

In witness whereof the parties have signed this agreement as of the day and year first above written.

SIGNED, SEALED and DELIVERED in the presence of

U Cardwell X Sharon D. oughery

Sharon D ougher

Sharon D

SCHEDULE "A"

Beginning on the southwestern bounds of the Robertson Road at a survey marker at corner point No. 23 of Lot 2010-1 as shown on a subdivision plan **Subdivision** Subdivision" filed in the Kings County registry office as Plan No. 29130474.

Thence on a New Brunswick Grid azimuth of 229°-05'-40" for a distance of 75.87 metres to corner point No. 19 of said Lot 2010-1.

Thence on an azimuth of 319°-23'-20" for a distance of 54.83 metres to corner point No. 20 of Lot 2010-1.

Thence on an azimuth of 229°-22'-45" for a distance of 145.46 metres to a point.

Thence on an azimuth of 318°-57'-10" for a distance of 21.92 metres to a point.

Thence on an azimuth of 228°-57'-10" for a distance of 29.75 metres to a point.

Thence on an azimuth of 178°-31'-05" for a distance of 74.28 metres to a point.

Thence westerly, southerly and easterly along a curve to the left having a radius of 25 metres for a distance of 115.40 metres to a point; said curve having a chord azimuth of 226°-07'-45" and chord distance of 37.02 metres.

Thence on an azimuth of 136°-28'-45" for a distance of 53.84 metres to a point.

Thence on an azimuth of 227°-56'-25" for a distance of 61.09 metres to a point.

Thence on an azimuth of 318°-28'-35" for a distance of 4.60 metres to a point.

Thence on an azimuth of 223°-24'-35" for a distance of 167.10 metres to a point.

Thence on an azimuth of 138°-28'-35" for a distance of 54.00 metres to a point.

Thence on an azimuth of 228°-28'-35" for a distance of 78.56 metres to a point.

Thence westerly, southerly and easterly along a curve to the left having a radius of 25 metres for a distance of 132.05 metres to a point; said curve having a chord azimuth of 228°-28'-35" and a chord distance of 24.00 metres to a point.

Thence on an azimuth of 138°-28'-35" for a distance of 13.98 metres to a point.

Thence on an azimuth of 228°-28'-35" for a distance of 75.00 metres to a point on the northeastern sideline of the property as described in the second parcel of schedule 'A' in Deed 27846667; said

sideline being shown as the northeastern boundary of Parcel 89-4 as shown on a Plan of Survey filed as Plan No. 10258.

Thence along aforesaid **statutes** sideline on an azimuth of 138°-28'-35" for a distance of 419.77 metres to a survey marker at corner point No. 29 of Lot 32 as shown on a subdivision plan "Firefly Estates Subdivision" filed in the Land Titles office as Plan No. 33844334.

Thence on an azimuth of 35°-11'-50" along the northwestern sideline of aforesaid Lot 32 and several other lots of the Firefly Estates subdivision a distance of 256.96 metres to corner point No. 375 of Lot 36 as shown on Plan No. 35420943.

Thence on an azimuth of 125°-14'-30" along the northeastern sideline of Lot 36 a distance of 53.86 metres to corner point No. 370 of Lot 38-B as shown on Plan No. 36993948.

Thence on an azimuth of 35°-14'-30" along the northwestern sideline of Lot 38-B for a distance of 75.00 metres to corner point No. 371, being the southwestern corner of a parcel of land identified as "Future Street" on Plan No. 35505636.

Thence on an azimuth of 305°-14'-30" along the southwestern sideline of the Future Street a distance of 48.92 metres to a point at the beginning of a curve.

Thence along a curve to the right having a radius of 100.00 metres a distance of 5.00 metres to corner point No. 413; said curve having a chord azimuth of 306°-40'-30" and chord distance of 5.00 metres.

Thence on an azimuth of 35°-11'-50" along the northwestern sideline of the Future Street and several other lots of The Firefly Estates subdivision a distance of 358.69 metres to corner point No. 28 of Lot 6 as shown on Plan No. 30735360.

Thence on an azimuth of 37°-02'-10" along the northwestern sideline of Lot 6 and Lot 5 on Plan 30735360 a distance of 78.23 metres to corner point No. 27 lying on the aforementioned southwestern bounds of the Robertson Road.

Thence northwesterly along the various courses of the southwestern bounds of the Robertson Road a distance of 357 metres more or less to the place of beginning.

The above described tract of land contains approximately 32.4 hectares.

Development Officer **Regional Service Commission 8** SE 16

Form 55 AFFIDAVIT OF MARITAL STATUS Land Titles Act, S.N.B. 1981, c.L-1.1, s.81

Deponent:

We, SEVERALLY MAKE OATH AND SAY:

, the deponents, JOINTLY AND

- 1. That we are the persons conveying an interest in the attached instrument and have personal knowledge of the matters herein deposed to;
- 2. That we are married to each other;
- 3. That we have no former spouse with a right under the <u>Marital Property Act</u> to any interest in or possession of the subject land;
- 4. That the subject land has not been occupied as a marital home;
- 5. That we are not "non-residents" of Canada within the meaning of the <u>Income Tax Act</u>, R.S.C., 1970, C.I-S;
- 6. That we are of the legal age of nineteen (19) years and upward.

JOINTLY AND SEVERALLY SWORN to at the Town of Hampton, in the County of Kings, and Province of New Brunswick this _25th_ day of June, 2021. BEFORE ME:

nepau

Sharon D. Loughery Commissioner of Oaths Being a Solicitor As to both signatures

Form 45 AFFIDAVIT OF CORPORATE EXECUTION Land Titles Act, S.N.B. 1981, c.L-1.1, s.55

DEPONENT:	Raymond, Tony Alonzo 1113 Route 875 Searsville, NB E5P 3S9
Office Held by Deponent:	President
Corporation:	T. A. RAYMOND ENVIRONMENTAL SERVICES LTD.
Place of Execution:	Hampton, New Brunswick
Date of Execution:	June 25, 2021

I, Tony Alonzo Raymond, the deponent, make oath and say:

- That I hold the office specified above in the corporation specified above, and 1. am authorized to make this affidavit and have personal knowledge of the matters hereinafter deposed to;
- That the attached instrument was executed by me as the officer duly authorized to 2. execute the instrument on behalf of the corporation;
- That the seal of the corporation was affixed to the instrument by order of the Board of 3. Directors of the corporation;
- That the instrument was executed at the place and on the date specified above; 4.
- That the ownership of a share of the corporation does not entitle the owner thereof to 5. occupy the parcel described in the attached instrument as a marital home.

SWORN TO at the Town of Hampton, in the County of Kings and Province of New Brunswick, on the 25th day of June, 2021. **BEFORE ME:**

1 othere buy Sharon D. Loughery

Commissioner of Oaths, Being a Solicitor

Jon D. Kaymor

Form 55 AFFIDAVIT OF MARITAL STATUS Land Titles Act, S.N.B. 1981, c.L-1.1, s.81

Deponent:

RAYMOND, TONY ALONZO

1113 Route 875 Searsville, NB E5P 3S9

Spouse of Deponent:

I, TONY ALONZO RAYMOND, the deponent, make oath and say:

- 1. That I am the person conveying an interest in the attached instrument and have personal knowledge of the matters hereinafter deposed to.
- 2. That the name of my spouse is as specified above.
- 3. That I have no former spouse with a right under the *Marital Property Act* to any interest in or possession of the subject land.
- 4. That the subject land has not occupied by me and my spouse as our marital home.

)

)

)

)

))))

- 5. That I am not a non-resident of Canada within the meaning of the *Income Tax Act*, R.S.C., 1970, Chapter I-5.
- 6. That I am of the full age of nineteen (19) years.

SWORN TO at Hampton, in the County of Kings and Province of New Brunswick, on the _25th__ day of June, 2021 BEFORE ME:

toreller Sharon D. Loughery/

Commissioner of Oaths, Being a Solicitor

) any D. Raymon

TONY ALONZO RAYMOND

FORM 44 CERTIFICATE OF EXECUTION Land Titles Act, S.N.B. 1981, c.L-1.1, s.81

Notary Public:SHARON D. LOUGHERY
582 Main Street, Unit 3
Hampton, N.B.
E5N 6C4Jurisdiction:New BrunswickPlace of Residence of
Notary Public:Saint John, New BrunswickPerson Who Executed:Image: Comparison of the secure of the secure

Place of Execution:

Hampton, New Brunswick

Date of Execution:

June 25, 2021

I, SHARON D. LOUGHERY, a Notary Public in and for the jurisdiction specified above and residing at the place of residence specified above, do hereby certify:

1. That the persons who executed the attached instrument personally appeared before me;

2. That the persons' identities have been proved to my satisfaction;

- 3. That I explained to the persons the contents of the attached instrument to the best of my professional abilities;
- 4. That, after receiving the explanation, the persons executed the attached instrument voluntarily at the place and on the date specified above;
- 5. That the persons acknowledged that they are of the age of majority;
- 6. That I have ascertained that the names by which the persons are identified in the attached instrument are the persons' names in accordance with the Naming Conventions Regulation under the Land Titles Act; and
- 7. That I have signed the attached instrument next to the signature of the persons for whom this Certificate of Execution has been prepared, with my name printed legibly underneath my signature.

IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed my Notarial Seal.

Place:

Date:

Notary Public:

Hampton, New Bry	RY YOU
June 25, 2021	
Solution	BRU BRU
Sharon D. Longh	
	AAHS AAHS

FORM 44 CERTIFICATE OF EXECUTION Land Titles Act, S.N.B. 1981, c.L-1.1, s.81

Notary Public:	SHARON D. LOUGHERY 582 Main Street, Unit 3 Hampton, N.B. E5N 6C4
Jurisdiction:	New Brunswick
Place of Residence of Notary Public:	Saint John, New Brunswick
Person Who Executed:	Tony Alonzo Raymond
Place of Execution:	Hampton, New Brunswick
Date of Execution:	June 25, 2021

I, SHARON D. LOUGHERY, a Notary Public in and for the jurisdiction specified above and residing at the place of residence specified above, do hereby certify:

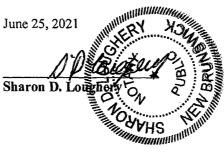
That the person who executed the attached instrument personally appeared before me; 1.

2. That the person's identity has been proved to my satisfaction;

- That I explained to the person the contents of the attached instrument to the best of my 3. professional abilities;
- 4. That, after receiving the explanation, the person executed the attached instrument voluntarily at the place and on the date specified above;

5. That the person acknowledged that the person is of the age of majority;

- 6. That I have ascertained that the name by which the person is identified in the attached instrument is the person's names in accordance with the Naming Conventions Regulation under the Land Titles Act; and
- 7. That I have signed the attached instrument next to the signature of the person for whom this Certificate of Execution has been prepared, with my name printed legibly underneath my signature.


IN TESTIMONY WHEREOF, I have hereunto set my hand and affixed my Notarial Seal.

Place:

Hampton, New Brunswick

Date:

Notary Public:

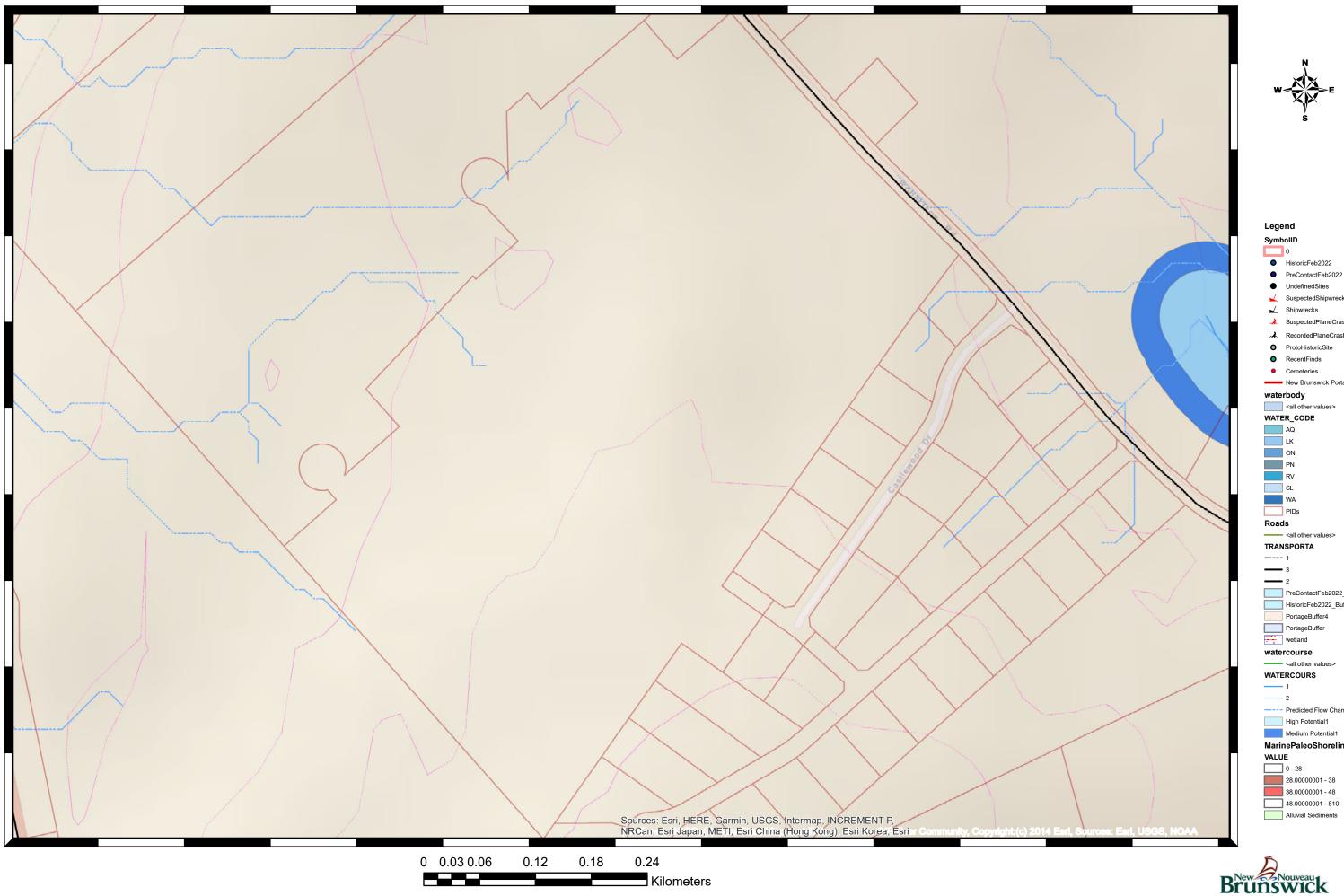
CERTIFICATE OF LEGAL EFFECT

PID:

30344352

Registered Owner:

THIS IS TO CERTIFY THAT the legal effect of the registration of the attached Agreement on the current Certificate of Registered Ownership for the specified parcel is as follows:

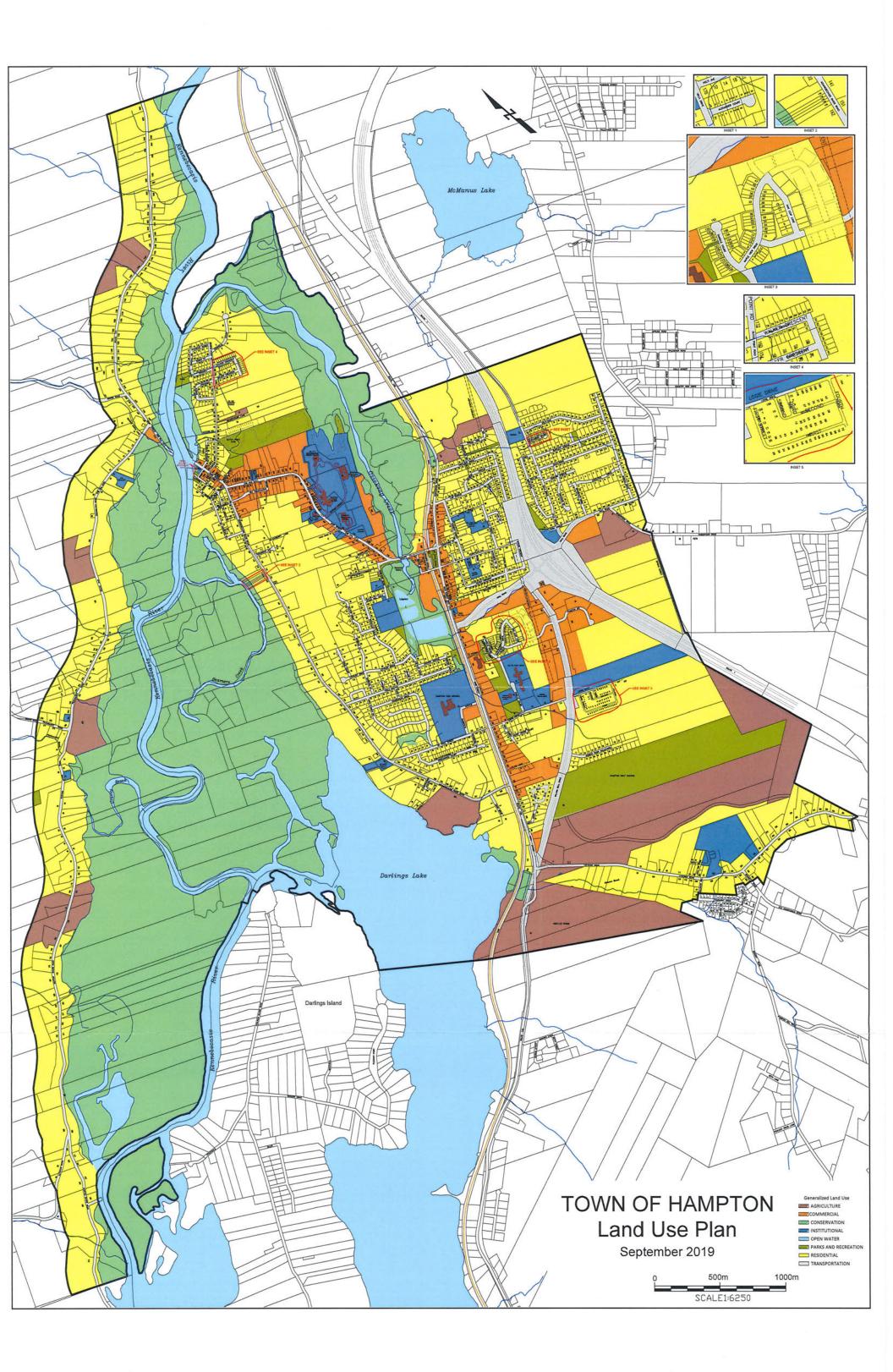

Addition: To add an encumbrance: T. A. Raymond Environmental Services Ltd. 1113 RTE 875 Searsville, NB E5P 3S9

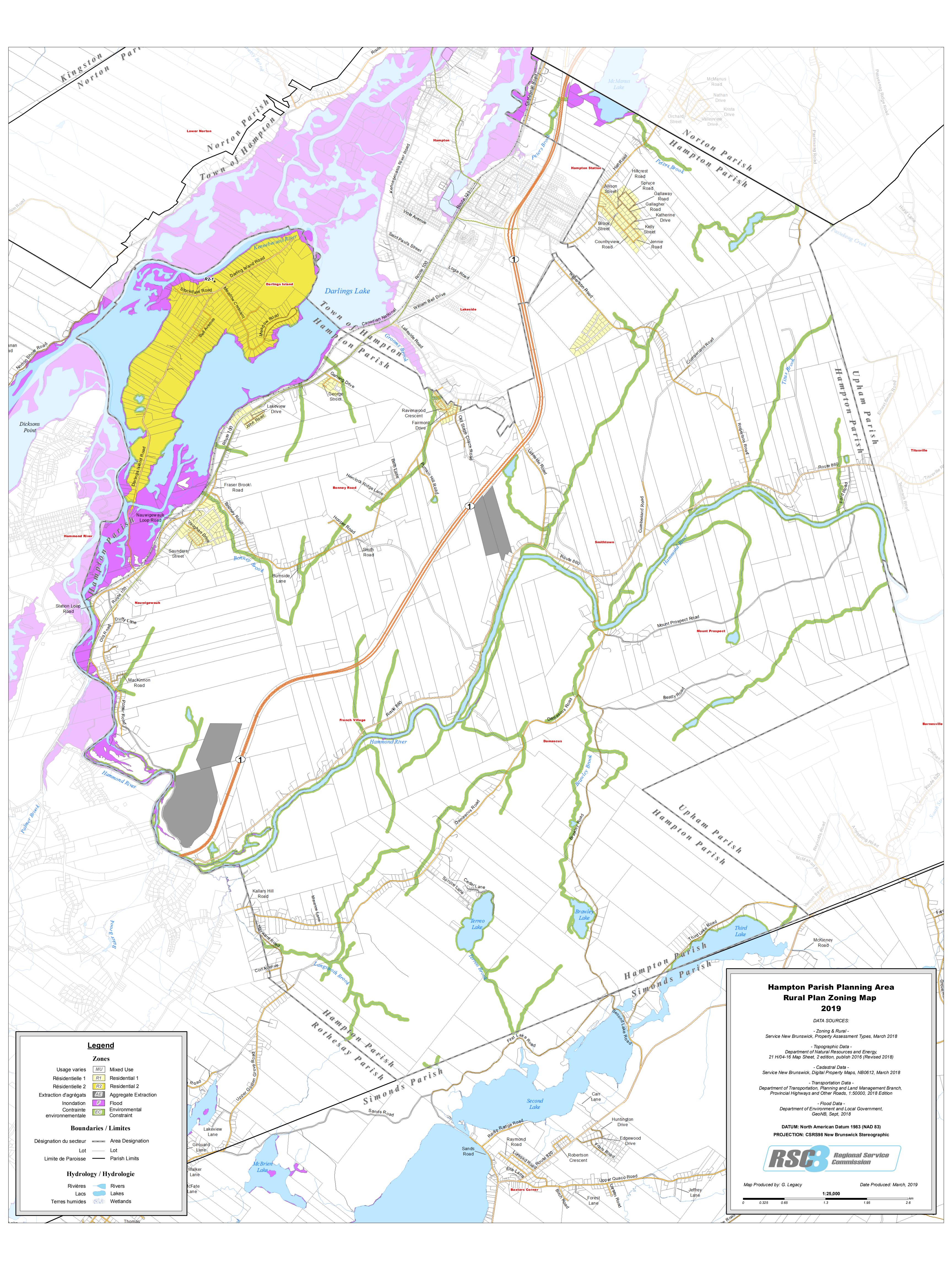
Date: July 5, 2021.

Subscriber:

ILAN SHARON D HERY

LOUGHERY LAW OFFICE 582 Main Street, Unit 3 Hampton, N.B., E5N 6C4

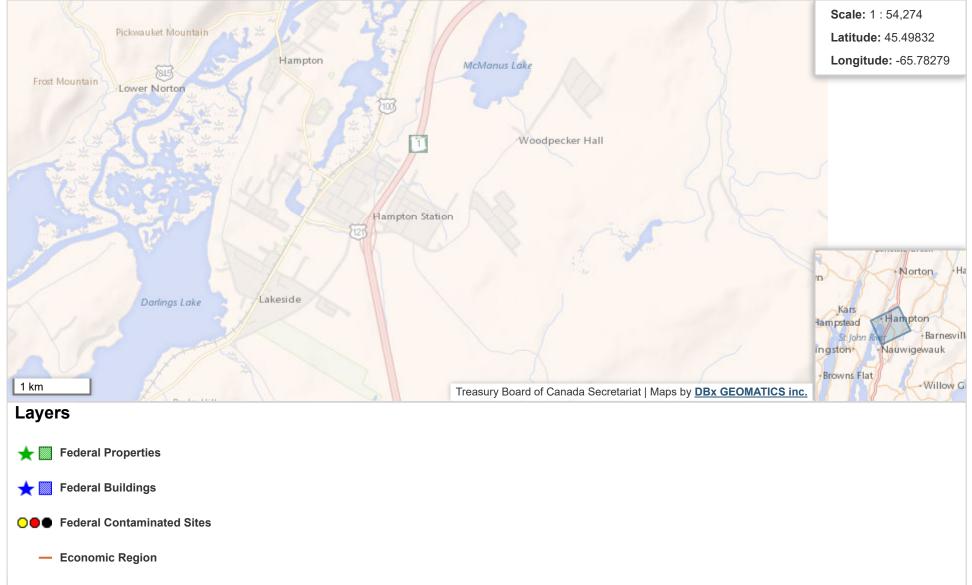




PreContactFeb2022 UndefinedSites SuspectedShipwrecks ▲ SuspectedPlaneCrash A RecordedPlaneCrash ProtoHistoricSite New Brunswick Portage Routes <all other values> —— <all other values> PreContactFeb2022_Buffer HistoricFeb2022_Buffer PortageBuffer4

----- <all other values> ----- Predicted Flow Channel Medium Potential1 MarinePaleoShoreline 28.0000001 - 38

Time: 8:06:21 PM Date: 2022-04-28



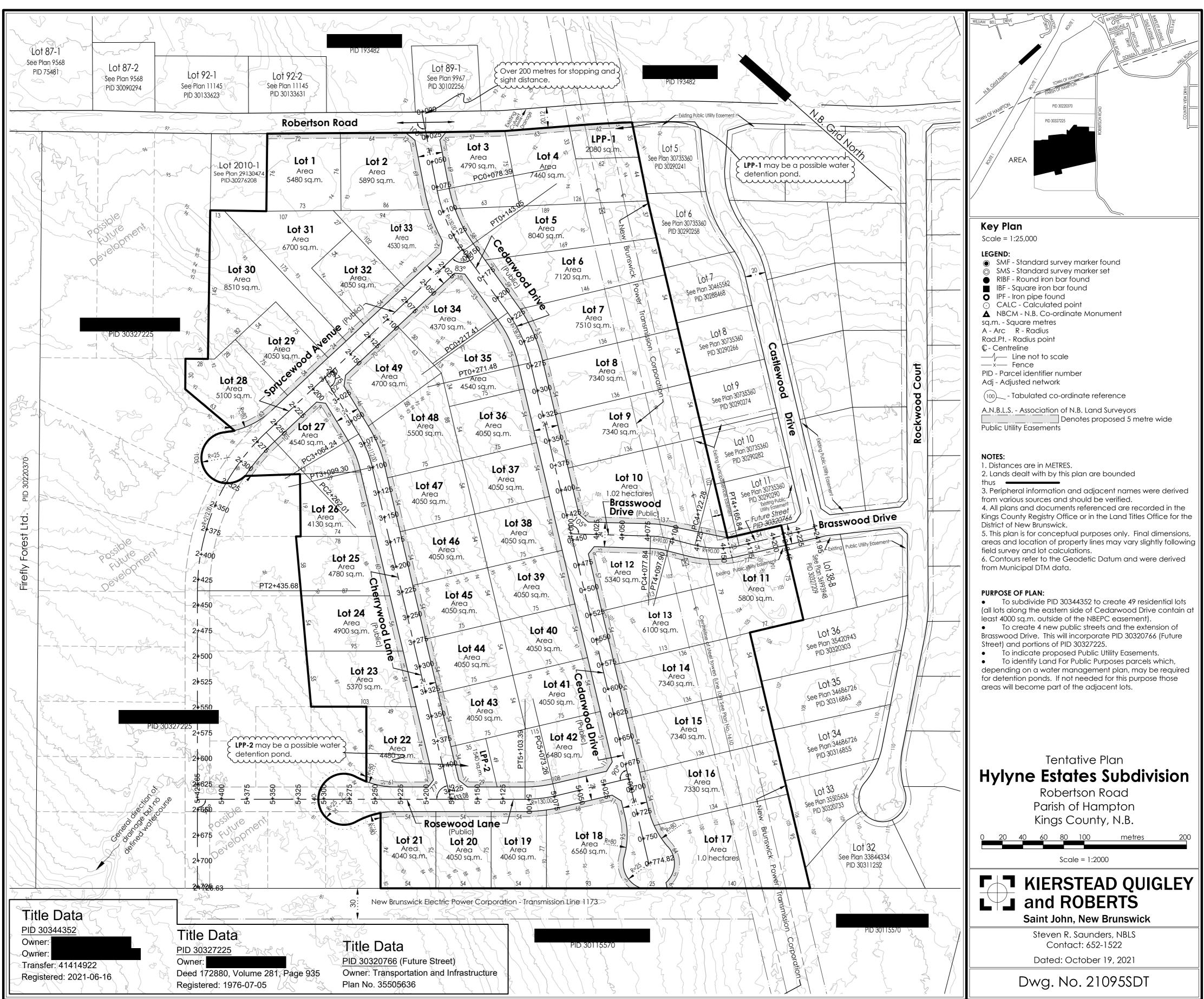
Treasury Board of Canada Secretariat

Home > OCG > Real Property Management > FCSI > DFRP/FCSI - Map Navigator

DFRP/FCSI - Map Navigator

Area: Kings Content: 0 Federal Property, 0 Federal Building, 0 Federal Contaminated Site

2


- Census Divisions
- Census Subdivisions
- Metropolitan Areas
- Federal Electoral Districts
- Treaty Areas
- ¹ This layer is visible only when the map scale is smaller than 1:3,000,000.
 - Suspected Active Closed
- ³ Google base maps are only available when the map scale is smaller than 1:60,000.

IMPORTANT NOTE: The tables below are currently not synchronized with the map content. Please click on the following button if you want to update the tables content: UPDATE TABLES

Federal Properties (0) / Parcels (0)	Federal Buildings (0)	Federal Contaminated Sites (0)	
No record found.			

APPENDIX D

Tentative Subdivision Plan

APPENDIX E

ACCDC 2022 Report and Summary Sheets

Common Name	Scientific Name	S-Rank	NBDERD General Status	Habitat	Probability of Nesting in Project Site	
Atlantic Salmon – Outer Bay of Fundy pop.	Salmo salar pop. 7	SNR	Endangered	Rocky runs and pools of small to large rivers. ¹	Low	
Wood Thrush	Hylocichla mustelina	S1S2B, S1S2M	S1S2M Threatened Saplings, trees or shrubs, usually in sugar maple or American beech. ²		Low-Moderate	
Chimney Swift	Chaetura pelagica	S2S3B, S2M	Threatened	Large hollow trees, stone or brick chimneys. ²	Low	
Bank Swallow	Riparia riparia	S2S3B, S2S3M	Endangered	Unconsolidated silt or sand deposits such as riverbanks, road cuts, lake and ocean bluffs. ²	Low	
Bobolink	Dolichonyx oryzivorus	S3B, S3M	Threatened	Grassland habitats, native grasslands, hayfields, and pastures. ²	Low	
American Eel	Anguilla rostrata	S4	Threatened	Widely distributed freshwater habitats, estuaries, and coastal marine waters. ²	Low	
Barn Swallow	Hirundo rustica	S2B, S2M	Threatened	Caves and cliffs as well as artificial structures including bridges, barns, and other outbuildings. ²	Low	
Rusty Blackbird	Euphagus carolinus	S3B, S3M	Fens, bogs, muskeg, ponds, and		Low	

Table F-2 Fauna Species at Risk with 5 km of the Project Site + Potential Use of Project Site

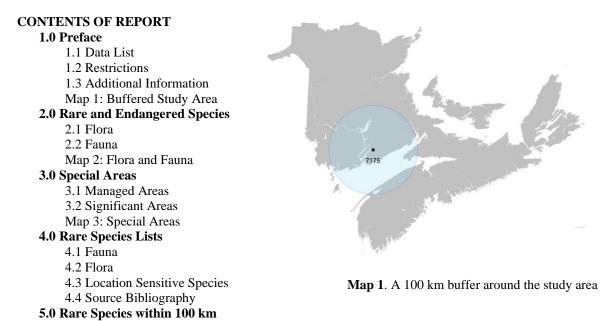
Olive-sided Flycatcher	Contopus cooperi	S3B, S3M	Threatened	Edges of coniferous or mixed forests with tall trees, alongside open areas. Burned forests with sanding trees and snags. ²	Low	
Canada Warbler	Wilsonia canadensis	ensis S3B, S3M Threatened Moist den gaps in th and well-c		Moist dense thickets near wetlands, mature forests with gaps in the canopy and well-developed shrub layer. ²	Moderate	
Common Nighthawk	Chordeiles minor	S3B, S4M	Threatened	Open area habitats, abandoned agriculture areas, disturbed areas, bogs, rock outcrops and gravel roofs. ²	Moderate	
Eastern Wood- Pewee	Contopus virens	S4B, S4M	Special Concern	Mid-canopy layer of forest clearings, edges of deciduous and mixed forests. ⁴	Moderate	
Eastern Cougar	Puma concolor pop. 1	SNA	Endangered	Endangered Varies – home range of 40 square kilometers. ¹		
Monarch	Danaus plexippus	S3B, S3M	S3M Special Concern Abandoned meadows, hedgerows		Low	
Bald Eagle	Haliaeetus leucocephalus	S3B	Endangered	Nests in forests near water bodies and avoids heavily developed areas. Require large trees for nesting. ⁵	Moderate	

Wood Turtle	Glyptemys insculpta	S2S3	Threatened	Beaches or streambanks with sand or sand/gravel bottoms with moderate to intense sun exposure. ²	Low
Peregrine Falcon – anatum/tundrius pop.	Falco peregrinus pop. 1	S1B, S3M	Endangered	Cliffs along rivers for nesting, open areas for foraging. ²	Low
Bat hibernaculum or bat species occurrence (Little Brown Myotis, Long- eared Myotis, Tri- coloued bat or Eastern Pipistrelle)	Myotis licifugus, Myotis septentrionalis, Perimyotis subflavus	-	Endangered	A bat hibernaculum is a site where bats hibernate over winter. Most often caves or abandoned mines and may contain both rare and non-rare species. ⁶	Low

1 https://explorer.natureserve.org/Taxon

2 https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports 3 https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/plans/mp-monarch-e-final.pdf 4 https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/cosewic/sr_Eastern%20Wood-pewee_2013_e.pdf 5 https://www.natureconservancy.ca/assets/images/graphics/nat/maps/b-eagle-map-NCC-1000px-custom.jpg 6 https://dnr.wi.gov/topic/EndangeredResources/Animals.asp?mode=detail&SpecCode=OBATCOLONY

Table F-2 Flora Species at Risk with 5 km of the Project Site + Potential Use of Project Site


Common Name	Scientific Name	S-Rank	NBDERD General Habitat Occu		Probability of Occurrence in Project Site
Butternut	Juglans cinerea	S1 Endangered		Sunny areas with rich and well-drained loam soil. ¹	Low-moderate

1 https://www.natureconservancy.ca/en/what-we-do/resource-centre/featured-species/plants/butternut.html

DATA REPORT 7175: Hampton, NB

Prepared 28 February 2022 by J. Pender, Data Manager

1.0 PREFACE

5.1 Source Bibliography

The Atlantic Canada Conservation Data Centre (AC CDC; <u>www.accdc.com</u>) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The AC CDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the AC CDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees.

Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the AC CDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

1.1 DATA LIST

Included datasets:	
<u>Filename</u>	<u>Contents</u>
HamptonNB_7175ob.xls	Rare or legally-protected Flora and Fauna in your study area
HamptonNB_7175ob100km.xls	A list of Rare and legally protected Flora and Fauna within 100 km of your study area
HamptonNB_7175msa.xls	Managed and Biologically Significant Areas in your study area
HamptonNB_7175ff_py.xls	Rare Freshwater Fish in your study area (DFO database)

1.2 RESTRICTIONS

The AC CDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting AC CDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The AC CDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) AC CDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) AC CDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an AC CDC data response.

1.3 ADDITIONAL INFORMATION

The accompanying Data Dictionary provides metadata for the data provided.

Please direct any additional questions about AC CDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries	Animals (Fauna)
Sean Blaney	John Klymko
Senior Scientist / Executive Director	Zoologist
(506) 364-2658	(506) 364-2660
sean.blaney@accdc.ca	john.klymko@accdc.ca
Data Management, GIS	Billing
James Churchill	Jean Breau
Conservation Data Analyst / Field Biologist	Financial Manager / Executive Assistant
(902) 679-6146	(506) 264 2657
(502) 675 6116	(506) 364-2657

Questions on the biology of Federal Species at Risk can be directed to AC CDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Hubert Askanas, Energy and Resource Development: (506) 453-5873.

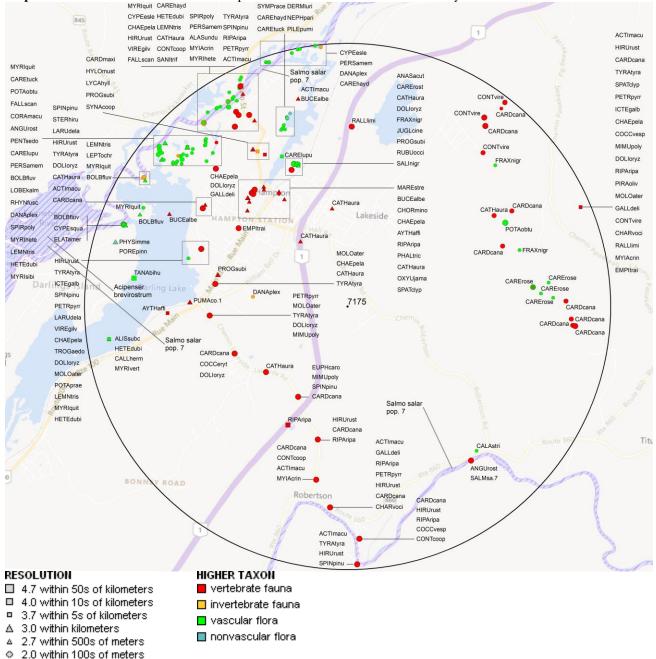
For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Donna Hurlburt, NS DLF: (902) 679-6886. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NS DLF Regional Biologist:

Western: Emma Vost	Western: Sarah Spencer	Central: Shavonne Meyer	Central : Kimberly George
(902) 670-8187	(902) 541-0081	(902) 893-0816	(902) 890-1046
Emma.Vost@novascotia.ca	Sarah.Spencer@novascotia.ca	<u>Shavonne.Meyer@novascotia.ca</u>	<u>Kimberly.George@novascotia.ca</u>
Eastern: Harrison Moore	Eastern: Maureen Cameron-MacMillan	Eastern: Elizabeth Walsh	
(902) 497-4119	(902) 295-2554	(902) 563-3370	
<u>Harrison.Moore@novascotia.ca</u>	<u>Maureen.Cameron-MacMillan@novascotia.ca</u>	<u>Elizabeth.Walsh@novascotia.ca</u>	

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Garry Gregory, PEI Dept. of Communities, Land and Environment: (902) 569-7595.

1.7 within 10s of meters

2.0 RARE AND ENDANGERED SPECIES


2.1 FLORA

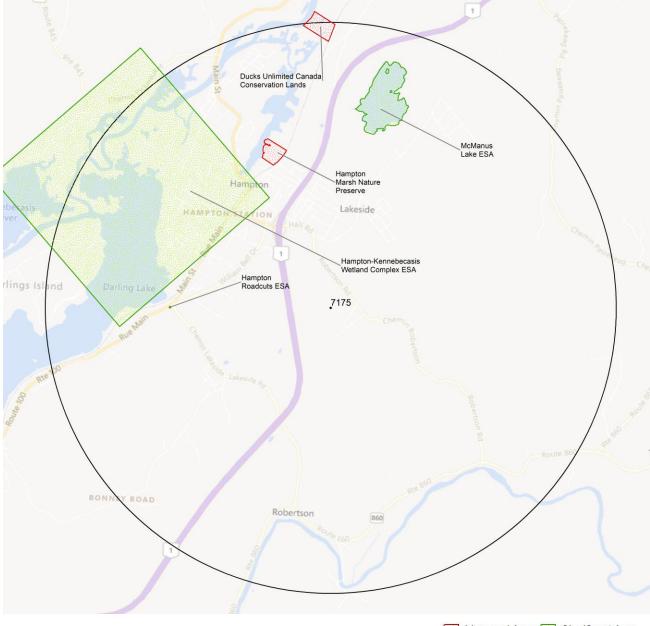
The study area contains 114 records of 36 vascular, 5 records of 4 nonvascular flora (Map 2 and attached: *ob.xls), excluding 'location-sensitive' species.

2.2 FAUNA

The study area contains 279 records of 42 vertebrate, 9 records of 4 invertebrate fauna (Map 2 and attached data files - see 1.1 Data List), excluding 'location-sensitive' species. Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

Map 2: Known observations of rare and/or protected flora and fauna within the study area.

3.0 SPECIAL AREAS


3.1 MANAGED AREAS

The GIS scan identified 2 managed areas in the vicinity of the study area (Map 3 and attached file: *msa.xls).

3.2 SIGNIFICANT AREAS

The GIS scan identified 3 biologically significant sites in the vicinity of the study area (Map 3 and attached file: *msa.xls).

Map 3: Boundaries and/or locations of known Managed and Significant Areas within the study area.

🧾 Managed Area 🛄 Significant Area

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

4.1 FLORA

1.1								
	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Ν	Porella pinnata	Pinnate Scalewort				S1S3	1	4.6 ± 1.0
Ν	Physcomitrium immersum	a Moss				S2	1	4.6 ± 1.0
Ν	Nephroma parile	Powdery Kidney Lichen				S3S4	1	3.6 ± 0.0
Ν	Dermatocarpon luridum	Brookside Stippleback Lichen				S3S4	2	3.8 ± 0.0
Р	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	1	2.8 ± 0.0
Р	Fraxinus nigra	Black Ash	Threatened			S4S5	3	2.9 ± 0.0
Р	Sanicula trifoliata	Large-Fruited Sanicle				S1	1	4.5 ± 5.0
Р	Alisma subcordatum	Southern Water Plantain				S1	1	4.6 ± 0.0
Ρ	Symphyotrichum racemosum	Small White Aster				S2	1	3.8 ± 0.0
Ρ	Persicaria amphibia var. emersa	Long-root Smartweed				S2	13	4.1 ± 0.0
Ρ	Carex rostrata	Narrow-leaved Beaked Sedge				S2	1	2.9 ± 0.0
Ρ	Cyperus squarrosus	Awned Flatsedge				S2	1	4.5 ± 0.0
Ρ	Callitriche hermaphroditica	Northern Water-starwort				S2S3	1	4.6 ± 2.0
Ρ	Elatine americana	American Waterwort				S2S3	1	4.5 ± 0.0
Ρ	Myriophyllum quitense	Andean Water Milfoil				S2S3	10	3.2 ± 0.0
Ρ	Potamogeton praelongus	White-stemmed Pondweed				S2S3	1	3.2 ± 0.0
Ρ	Tanacetum bipinnatum ssp. huronense	Lake Huron Tansy				S3	1	4.1 ± 10.0
Ρ	Cardamine maxima	Large Toothwort				S3	3	3.5 ± 0.0
Р	Penthorum sedoides	Ditch Stonecrop				S3	3	4.1 ± 0.0
Ρ	Myriophyllum heterophyllum	Variable-leaved Water Milfoil				S3	4	3.8 ± 0.0
Р	Myriophyllum verticillatum	Whorled Water Milfoil				S3	1	4.6 ± 0.0
Р	Fallopia scandens	Climbing False Buckwheat				S3	3	4.7 ± 0.0
Р	Rubus occidentalis	Black Raspberry				S3	1	2.9 ± 0.0
Р	Salix nigra	Black Willow				S3	1	2.9 ± 0.0
Р	Pilea pumila	Dwarf Clearweed				S3	3	3.6 ± 0.0
Р	Carex haydenii	Hayden's Sedge				S3	4	3.6 ± 0.0
Р	Carex Iupulina	Hop Sedge				S3	2	3.1 ± 5.0
Р	Carex rosea	Rosy Sedge				S3	5	3.5 ± 0.0
Р	Carex tuckermanii	Tuckerman's Sedge				S3	2	3.8 ± 0.0
Р	Cyperus esculentus var. leptostachyus	Perennial Yellow Nutsedge				S3	3	4.5 ± 0.0
Р	Rhynchospora fusca	Brown Beakrush				S3	2	4.3 ± 5.0
Р	Bolboschoenus fluviatilis	River Bulrush				S3	13	4.2 ± 0.0
Р	Lemna trisulca	Star Duckweed				S3	11	3.2 ± 0.0
Р	Heteranthera dubia	Water Stargrass				S3	6	3.2 ± 0.0
Р	Potamogeton obtusifolius	Blunt-leaved Pondweed				S3	2	3.4 ± 0.0
P	Lobelia kalmii	Brook Lobelia				S3S4	1	4.3 ± 1.0
P	Myriophyllum sibiricum	Siberian Water Milfoil				S3S4	1	4.6 ± 0.0
P	Spirodela polyrhiza	Great Duckweed				S3S4	5	4.2 ± 0.0
P	Corallorhiza maculata	Spotted Coralroot				S3S4	1	4.3 ± 1.0
P	Calamagrostis stricta	Slim-stemmed Reed Grass				S3S4	1	3.7 ± 0.0
•							•	

4.2 FAUNA

т.2	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Salmo salar pop. 7	Atlantic Salmon - Outer Bay of Fundy pop.	Endangered		Endangered	SNR	1	3.8 ± 0.0
А	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B,S1S2M	1	3.3 ± 7.0
А	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	45	2.4 ± 0.0
А	Riparia riparia	Bank Swallow	Threatened	Threatened		S2S3B,S2S3M	12	2.5 ± 0.0
А	Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	Threatened	S3B,S3M	11	2.3 ± 0.0
А	Anguilla rostrata	American Eel	Threatened		Threatened	S4	2	3.8 ± 0.0
А	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B,S2M	16	2.6 ± 0.0
А	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S3B,S3M	2	2.0 ± 0.0
А	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B,S3M	3	3.3 ± 0.0
А	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3B,S3M	21	2.0 ± 0.0
А	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	2	4.4 ± 0.0
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	1	2.5 ± 0.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S4B,S4M	6	3.9 ± 0.0
А	Sterna hirundo	Common Tern	Not At Risk			S3B,SUM	6	3.3 ± 0.0
А	Puma concolor pop. 1	Eastern Cougar	Data Deficient		Endangered	SNA	1	3.0 ± 1.0
А	Phalaropus tricolor	Wilson's Phalarope				S1B,S1M	1	2.8 ± 0.0
А	Progne subis	Purple Martin				S1B,S1M	3	2.5 ± 1.0
А	Oxyura jamaicensis	Ruddy Duck				S1B,S2S3M	3	2.6 ± 0.0
А	Aythya affinis	Lesser Scaup				S1B,S4M	5	2.8 ± 0.0
А	Empidonax traillii	Willow Flycatcher				S1S2B,S1S2M	3	2.5 ± 0.0
А	Troglodytes aedon	House Wren				S1S2B,S1S2M	2	3.0 ± 0.0
Α	Mimus polyglottos	Northern Mockingbird				S2B,S2M	4	2.0 ± 0.0
А	Mareca strepera	Gadwall				S2B,S3M	1	2.8 ± 0.0
А	Spatula clypeata	Northern Shoveler				S2S3B,S2S3M	8	2.6 ± 0.0
А	Myiarchus crinitus	Great Crested Flycatcher				S2S3B,S2S3M	3	3.3 ± 0.0
А	Petrochelidon pyrrhonota	Cliff Swallow				S2S3B,S2S3M	8	2.6 ± 0.0
А	Spinus pinus	Pine Siskin				S3	6	2.0 ± 0.0
А	Cathartes aura	Turkey Vulture				S3B,S3M	30	1.5 ± 0.0
А	Rallus limicola	Virginia Rail				S3B,S3M	2	3.4 ± 0.0
Α	Charadrius vociferus	Killdeer				S3B,S3M	6	3.8 ± 0.0
Α	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B,S3M	1	2.3 ± 0.0
Α	Vireo gilvus	Warbling Vireo				S3B,S3M	5	3.0 ± 0.0
A	Piranga olivacea	Scarlet Tanager				S3B,S3M	1	4.8 ± 7.0
A	Molothrus ater	Brown-headed Cowbird				S3B,S3M	6	2.5 ± 0.0
A	Icterus galbula	Baltimore Oriole				S3B,S3M	10	3.0 ± 0.0
A	Anas acuta	Northern Pintail				S3B,S5M	2	2.8 ± 0.0
A	Bucephala albeola	Bufflehead				S3M,S2N	7	2.8 ± 0.0
A	Synaptomys cooperi	Southern Bog Lemming				S3S4	2	3.5 ± 1.0
A	Tyrannus tyrannus	Eastern Kingbird				S3S4B,S3S4M	11	2.5 ± 0.0
A	Actitis macularius	Spotted Sandpiper				S3S4B,S5M	12	3.3 ± 0.0
A	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	4	3.6 ± 0.0
A	Larus delawarensis	Ring-billed Gull		0 10	0 10	S3S4B,S5M	3	3.0 ± 0.0
1	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S3B,S3M	5	1.8 ± 0.0
1	Lycaena hyllus	Bronze Copper				S3	1	3.4 ± 4.0
	Alasmidonta undulata	Triangle Floater				S3	2 1	4.4 ± 0.0
I	Leptodea ochracea	Tidewater Mucket				S3	1	4.6 ± 0.0

4.3 LOCATION SENSITIVE SPECIES

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting your study area are indicated below with "YES".

New Brunswick

New Brunswick Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Chrysemys picta picta	Eastern Painted Turtle	Special Concern		YES
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	YES
Haliaeetus leucocephalus	Bald Eagle		Endangered	YES
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.	Special Concern	Endangered	YES
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat hibernaculum or bat sp	ecies occurrence	[Endangered] ¹	[Endangered] ¹	YES

1 Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

4.4 SOURCE BIBLIOGRAPHY

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

recs CITATION

- 124 Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R. 2020. North American Breeding Bird Survey Dataset 1966 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9J6QUF6
- 61 eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
- Belliveau, A.G. 2018, Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs.
- 26 Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- 26 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 24 Stantec. 2014. Energy East Pipeline Corridor Species Occurrence Data. Stantec Inc., 4934 records.
- 21 Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 17 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 12 Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
- 6 Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- 6 Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
- 4 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 4 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.
- 4 Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
- 3 Dept of Fisheries & Oceans. 2001. Atlantic Salmon Maritime provinces overview for 2000. DFO.
- 3 eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
- 3 Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
- 3 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
- 3 Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
- 2 Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
- 2 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- 2 iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
- 1 Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
- 1 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.
- 1 Ducks Unlimited Canada (DUC). 2020. DUC owned properties in Atlantic Canada (v. DUC_Lands_Sept2020). DUC.
- 1 iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- 1 LaPaix, R.W. 2014. Trans-Canada Energy East Pipeline Environmental Assessment, Records from 2013-14. Stantec Consulting, 5 recs.
- 1 Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
- 1 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 1 Nature Trust of New Brunswick (NTNB). 2020. Nature Preserves and Conservation Easements (Received: 18 September, 2020). NTNB.
- 1 NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca.
- 1 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 1 Sollows, M.C., 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.

5.0 RARE SPECIES WITHIN 100 KM

A 100 km buffer around the study area contains 49249 records of 149 vertebrate and 2220 records of 95 invertebrate fauna; 8334 records of 366 vascular, 2378 records of 233 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs (including "location-sensitive" species). All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	209	3.3 ± 1.0	NB
Α	Myotis septentrionalis	Northern Long-eared Myotis	Endangered	Endangered	Endangered	S1	37	9.3 ± 1.0	NB
Α	Perimyotis subflavus	Eastern Pipistrelle	Endangered	Endangered	Endangered	S1	54	22.6 ± 0.0	NB
А	Eubalaena glacialis	North Atlantic Right Whale	Endangered	Endangered	Endangered	S1	2	95.6 ± 50.0	NS
A	Osmerus mordax pop. 2	Lake Utopia Smelt large- bodied pop.	Endangered	Threatened	Threatened	S1	2	84.8 ± 10.0	NB
Α	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1?B,S1?M	2	85.7 ± 0.0	NS
А	Charadrius melodus melodus	Piping Plover melodus ssp	Endangered	Endangered	Endangered	S1B,S1M	36	31.1 ± 0.0	NB
А	Dermochelys coriacea (Atlantic pop.)	Leatherback Sea Turtle - Atlantic pop.	Endangered	Endangered	Endangered	S1S2N	4	32.2 ± 50.0	NB
А	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy pop.	Endangered	Endangered	Endangered	S2	652	7.8 ± 50.0	NB
А	Salmo salar pop. 7	Atlantic Salmon - Outer Bay of Fundy pop.	Endangered		Endangered	SNR	432	3.8 ± 0.0	NB
А	Rangifer tarandus pop. 2	Woodland Caribou (Atlantic- Gasp ⊢⊏sie pop.)	Endangered	Endangered	Extirpated	SX	3	8.4 ± 1.0	NB
A	Sturnella magna	Eastern Meadowlark	Threatened	Threatened	Threatened	S1B,S1M	60	10.2 ± 0.0	NB
A	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B,S1S2M	41	16.0 ± 0.0	NB
A	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B,S1S2M	144	3.3 ± 7.0	NB
A	Asio flammeus	Short-eared Owl	Threatened	Special Concern	Special Concern	S2B,S2M	21	37.7 ± 0.0	NB
Α	Antrostomus vociferus	Eastern Whip-Poor-Will	Threatened	Threatened	Threatened	S2B,S2M	80	24.4 ± 7.0	NB
Α	Catharus bicknelli	Bicknell's Thrush	Threatened	Threatened	Threatened	S2B,S2M	10	35.4 ± 7.0	NB
А	Oceanodroma leucorhoa	Leach's Storm-Petrel	Threatened			S2B,SUM	9	55.6 ± 0.0	NB
А	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S2S3	1768	3.7 ± 0.0	NB
А	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	552	2.4 ± 0.0	NB
А	Riparia riparia	Bank Swallow	Threatened	Threatened		S2S3B,S2S3M	1007	2.5 ± 8.0	NB
А	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened		Threatened	S3	3	7.9 ± 0.0	NB
А	Dolichonyx oryzivorus	Bobolink	Threatened	Threatened	Threatened	S3B,S3M	1843	2.3 ± 0.0	NB
А	Limosa haemastica	Hudsonian Godwit	Threatened			S3S4M	92	39.9 ± 0.0	NB
А	Anguilla rostrata	American Eel	Threatened		Threatened	S4	7056	3.8 ± 0.0	NB
А	Tringa flavipes	Lesser Yellowlegs	Threatened			S4M	614	28.3 ± 0.0	NB
А	Coturnicops noveboracensis	Yellow Rail	Special Concern	Special Concern	Special Concern	S1?B,SUM	3	39.2 ± 7.0	NB
A	Histrionicus histrionicus pop. 1	Harlequin Duck - Eastern pop.	Special Concern	Special Concern	Endangered	S1B,S1S2N,S2M	128	63.9 ± 17.0	NB
A	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B,S2M	1386	2.6 ± 0.0	NB
А	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye - Eastern pop.	Special Concern	Special Concern	Special Concern	S2M,S2N	57	11.5 ± 0.0	NB
A	Balaenoptera physalus	Fin Whale	Special Concern	Special Concern		S2S3	5	32.4 ± 0.0	NB
Α	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S3	11	7.2 ± 0.0	NB
А	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	75	6.4 ± 1.0	NB
А	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S3B,S3M	125	2.0 ± 0.0	NB
А	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B,S3M	487	3.3 ± 0.0	NB
A	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3B,S3M	893	2.0 ± 0.0	NB
А	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	352	4.4 ± 0.0	NB
A	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	410	2.5 ± 0.0	NB
А	Phalaropus lobatus	Red-necked Phalarope	Special Concern	Special Concern		S3M	12	28.3 ± 0.0	NB
		•							

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	P
1	Phocoena phocoena	Harbour Porpoise	Special Concern		Spec.Concern	S4	50	32.7 ± 0.0	N
۱	Chrysemys picta picta	Eastern Painted Turtle	Special Concern			S4	97	4.3 ± 1.0	N
1	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S4B,S4M	996	3.9 ± 0.0	N
	Podiceps auritus	Horned Grebe	Special Concern	Special Concern	Special Concern	S4N,S4M	89	26.2 ± 4.0	N
	Hemidactylium scutatum	Four-toed Salamander	Not At Risk	oposiai oonooni	opoolal oolloolli	S1?	12	56.2 ± 0.0	N
	nemidaolynum soulalum	Peregrine Falcon -	NOLALINISK			511	12	JU.2 1 0.0	N
۱	Falco peregrinus pop. 1		Not At Risk	Special Concern	Endangered	S1B,S3M	403	3.6 ± 0.0	IN
		anatum/tundrius		•	0				
	Bubo scandiacus	Snowy Owl	Not At Risk			S1N,S2S3M	10	10.0 ± 0.0	Ν
	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B,S1S2M	19	22.4 ± 0.0	N
	Fulica americana	American Coot	Not At Risk			S1S2B,S1S2M	37	32.4 ± 0.0	N
	Aegolius funereus	Boreal Owl	Not At Risk			S1S2B,SUM	2	24.4 ± 0.0	N
	Sorex dispar	Long-tailed Shrew	Not At Risk			S2	5	32.8 ± 1.0	N
	Buteo lineatus	Red-shouldered Hawk	Not At Risk			S2B,S2M	41	9.4 ± 1.0	Ň
	Chlidonias niger	Black Tern	Not At Risk			S2B,S2M	347	7.4 ± 0.0	N
L.	Globicephala melas	Long-finned Pilot Whale	Not At Risk			S2S3	3	26.8 ± 0.0	N
	Lynx canadensis	Canadian Lynx	Not At Risk		Endangered	S3	20	18.0 ± 1.0	N
	Deemernethus fuerue Ouches / New Prunewick	Northern Dusky Salamander							N
١	Desmognathus fuscus - Quebec / New Brunswick	- Quebec / New Brunswick	Not At Risk			S3	47	25.4 ± 1.0	
	population	population							
		Humpback Whale (NW							Ν
۱	Megaptera novaeangliae		Not At Risk			S3	7	84.8 ± 0.0	IN IN
		Atlantic pop.)							
	Sterna hirundo	Common Tern	Not At Risk			S3B,SUM	187	3.3 ± 0.0	N
۱	Podiceps grisegena	Red-necked Grebe	Not At Risk			S3M,S2N	76	27.6 ± 2.0	N
	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4	1	32.9 ± 1.0	N
	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered	S4	1240	1.7 ± 0.0	N
	Canis lupus	Gray Wolf	Not At Risk		Extirpated	SX	4	32.7 ± 1.0	Ň
	Puma concolor pop. 1	Eastern Cougar	Data Deficient		Endangered	SNA	110	32.7 ± 1.0 3.0 ± 1.0	N
L .				-					
\	Calidris canutus rufa	Red Knot rufa subspecies	E,SC	Endangered	Endangered	S2M	357	31.3 ± 0.0	N
۱	Morone saxatilis	Striped Bass	E,SC			S3	8645	33.6 ± 10.0	N
		Atlantic Walrus - Nova							N
		Scotia-Newfoundland-Gulf of							
۱	Odobenus rosmarus pop. 5	St. Lawrence population	Х			SX	1	86.6 ± 5.0	
	.	(DU3)				0 4	10	40.0.00	
\	Thryothorus Iudovicianus	Carolina Wren				S1	16	13.0 ± 0.0	N
	Salvelinus alpinus	Arctic Char				S1	3	39.6 ± 0.0	N
	Vireo flavifrons	Yellow-throated Vireo				S1?B,S1?M	16	33.5 ± 1.0	N
	Tringa melanoleuca	Greater Yellowlegs				S1?B.S5M	1073	27.4 ± 0.0	N
	Aythya americana	Redhead				S1B,S1M	8	26.6 ± 7.0	Ň
	Gallinula galeata	Common Gallinule				S1B.S1M	50	31.3 ± 1.0	N
L .									
L Contraction of the second seco	Antigone canadensis	Sandhill Crane				S1B,S1M	15	5.9 ± 7.0	١
1	Bartramia longicauda	Upland Sandpiper				S1B,S1M	54	22.4 ± 0.0	N
	Phalaropus tricolor	Wilson's Phalarope				S1B,S1M	48	2.8 ± 0.0	Ν
	Leucophaeus atricilla	Laughing Gull				S1B.S1M	10	27.4 ± 0.0	Ν
	Progne subis	Purple Martin				S1B,S1M	238	2.5 ± 1.0	Ň
	Oxvura iamaicensis	Ruddy Duck				S1B,S1M S1B.S2S3M	64	2.5 ± 1.0 2.6 ± 0.0	N
	Uria aalge	Common Murre				S1B,S3N,S3M	13	48.1 ± 15.0	N
	Aythya affinis	Lesser Scaup				S1B,S4M	206	2.8 ± 0.0	١
	Aythya marila	Greater Scaup				S1B,S4M,S2N	41	16.7 ± 0.0	1
	Eremophila alpestris	Horned Lark				S1B,S4N,S5M	46	15.7 ± 7.0	1
	Sterna paradisaea	Arctic Tern				S1B,SUM	6	18.5 ± 0.0	1
	Fratercula arctica	Atlantic Puffin				S1B,SUN,SUM	13	48.1 ± 15.0	, 1
	Chroicocephalus ridibundus	Black-headed Gull				S1N,S2M	10	8.4 ± 0.0	١
	Branta bernicla	Brant				S1N,S2S3M	43	29.5 ± 0.0	٩
	Butorides virescens	Green Heron				S1S2B,S1S2M	22	30.3 ± 7.0	١
-	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B,S1S2M	9	8.7 ± 0.0	Ň
	Empidonax traillii	Willow Flycatcher				S1S2B,S1S2M	139	2.5 ± 0.0	Ň
۱.						01020,010210	199	2.0 ± 0.0	N
\	Stelgidopteryx serripennis	Northern Rough-winged				S1S2B,S1S2M	19	39.2 ± 7.0	Ń
		Swallow							

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Troglodytes aedon	House Wren				S1S2B,S1S2M	25	3.0 ± 0.0	NB
Ą	Rissa tridactyla	Black-legged Kittiwake				S1S2B,S4N,S5M	11	70.4 ± 0.0	NS
Ň	Calidris bairdii	Baird's Sandpiper				S1S2M	58	31.2 ± 0.0	NB
	Cistothorus palustris	Marsh Wren				S2B,S2M	423	14.1 ± 0.0	NB
						S2B,S2M	142	2.0 ± 0.0	NB
A	Mimus polyglottos	Northern Mockingbird							
A	Toxostoma rufum	Brown Thrasher				S2B,S2M	89	26.2 ± 7.0	NB
A	Pooecetes gramineus	Vesper Sparrow				S2B,S2M	99	16.9 ± 7.0	NB
Ą	Mareca strepera	Gadwall				S2B,S3M	168	2.8 ± 0.0	NB
A	Alca torda	Razorbill				S2B,S3N,S3M	12	40.0 ± 0.0	NB
•	Disisely successful star	Dire Createrate				S2B,S4S5N,S4S5	40	40.0 . 0.0	NB
A	Pinicola enucleator	Pine Grosbeak				Μ	42	19.0 ± 0.0	
A	Tringa solitaria	Solitary Sandpiper				S2B.S5M	190	15.7 ± 7.0	NB
Ą	Anser caerulescens	Snow Goose				S2M	6	29.5 ± 0.0	NB
A	Phalacrocorax carbo	Great Cormorant				S2N,S2M	42	29.5 ± 0.0	NB
A	Somateria spectabilis	King Eider				S2N,S2M	5	29.5 ± 0.0	NB
	,								
A	Larus hyperboreus	Glaucous Gull				S2N,S2M	117	16.5 ± 14.0	NB
A	Asio otus	Long-eared Owl				S2S3	18	38.0 ± 7.0	NB
4	Picoides dorsalis	American Three-toed				S2S3	14	56.1 ± 0.0	NB
		Woodpecker				0200	14	50.1 ± 0.0	
A	Spatula clypeata	Northern Shoveler				S2S3B,S2S3M	280	2.6 ± 0.0	NB
A	Myiarchus crinitus	Great Crested Flycatcher				S2S3B,S2S3M	358	3.3 ± 0.0	NB
A	Petrochelidon pyrrhonota	Cliff Swallow				S2S3B,S2S3M	539	2.6 ± 0.0	NB
A	Pluvialis dominica	American Golden-Plover				S2S3M	129	28.3 ± 0.0	NB
A	Calcarius Iapponicus	Lapland Longspur				S2S3N,SUM	20	27.4 ± 0.0	NB
A	Cepphus grylle	Black Guillemot				S3	120	29.5 ± 0.0	NB
A	Loxia curvirostra	Red Crossbill				S3	177	15.7 ± 7.0	NB
A	Spinus pinus	Pine Siskin				S3	437	2.0 ± 0.0	NB
A	Prosopium cylindraceum	Round Whitefish				S3	1	60.6 ± 0.0	NB
A	Salvelinus namaycush	Lake Trout				S3	4	46.5 ± 0.0	NB
A	Sorex maritimensis	Maritime Shrew				S3	1	85.7 ± 0.0	NS
A	Eptesicus fuscus	Big Brown Bat				S3	48	25.8 ± 1.0	NB
A	Cathartes aura	Turkey Vulture				S3B,S3M	383	1.5 ± 0.0	NB
A	Rallus limicola	Virginia Rail				S3B.S3M	323	3.4 ± 0.0	NB
A	Charadrius vociferus	Killdeer				S3B,S3M	789	3.8 ± 0.0	NB
A	Tringa semipalmata	Willet				S3B,S3M	88	28.3 ± 0.0	NB
A		Black-billed Cuckoo				S3B,S3M	185	20.3 ± 0.0 2.3 ± 0.0	NB
	Coccyzus erythropthalmus								
A	Vireo gilvus	Warbling Vireo				S3B,S3M	283	3.0 ± 0.0	NB
A	Piranga olivacea	Scarlet Tanager				S3B,S3M	122	4.8 ± 7.0	NB
4	Passerina cyanea	Indigo Bunting				S3B,S3M	106	5.9 ± 7.0	NB
A	Molothrus ater	Brown-headed Cowbird				S3B,S3M	325	2.5 ± 0.0	NB
Ą	Icterus galbula	Baltimore Oriole				S3B,S3M	262	3.0 ± 0.0	NB
A	Somateria mollissima	Common Eider				S3B,S4M,S3N	565	22.4 ± 5.0	NB
Ą	Setophaga tigrina	Cape May Warbler				S3B,S4S5M	170	5.9 ± 7.0	NB
A	Anas acuta	Northern Pintail				S3B,S5M	66	2.8 ± 0.0	NB
						S3B,S5M,S4S5N	92	17.2 ± 5.0	NB
A	Mergus serrator	Red-breasted Merganser							
A	Arenaria interpres	Ruddy Turnstone				S3M	359	28.3 ± 0.0	NB
A	Phalaropus fulicarius	Red Phalarope				S3M	5	55.6 ± 0.0	NB
A	Melanitta americana	Black Scoter				S3M,S1S2N	222	26.2 ± 4.0	NB
A	Bucephala albeola	Bufflehead				S3M,S2N	627	2.8 ± 0.0	NB
A	Calidris maritima	Purple Sandpiper				S3M,S3N	174	26.7 ± 6.0	NB
A	Uria lomvia	Thick-billed Murre				S3N,S3M	13	47.2 ± 8.0	NB
A.	Synaptomys cooperi	Southern Bog Lemming				S3S4	95	3.5 ± 1.0	NB
A	Tyrannus tyrannus	Eastern Kingbird				S3S4B,S3S4M	705	2.5 ± 0.0	NB
A								2.5 ± 0.0 3.3 ± 0.0	NB
	Actitis macularius	Spotted Sandpiper				S3S4B,S5M	873		
A	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	1042	3.6 ± 0.0	NB
A	Larus delawarensis	Ring-billed Gull				S3S4B,S5M	296	3.0 ± 0.0	NB
A	Setophaga striata	Blackpoll Warbler				S3S4B,S5M	60	13.1 ± 7.0	NB NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	P
<u>،</u>	Calidris pusilla	Semipalmated Sandpiper			-	S3S4M	1353	27.4 ± 0.0	N
	Calidris melanotos	Pectoral Sandpiper				S3S4M	226	27.4 ± 0.0	N
	Calidris alba	Sanderling				S3S4M,S1N	1086	27.6 ± 2.0	N
	Morus bassanus	Northern Gannet				SHB,S5M	73	29.5 ± 0.0	N
		Bur Oak - Red Maple /				0112,00111	10	20.0 1 0.0	N
	Quercus macrocarpa - Acer rubrum / Onoclea sensibilis -	Sensitive Fern - Northern				S2	1	50.4 ± 0.0	1.1
	Carex arcta Forest					52	1	50.4 ± 0.0	
		Clustered Sedge Forest							
	Acer saccharinum / Onoclea sensibilis - Lysimachia	Silver Maple / Sensitive Fern							Ν
;	terrestris Forest	 Swamp Yellow Loosestrife 				S3	1	63.1 ± 0.0	
		Forest							
	Acer saccharum - Fraxinus americana / Polystichum	Sugar Maple - White Ash /				S3S4	1	7.9 ± 0.0	Ν
	acrostichoides Forest	Christmas Fern Forest				0004		7.9±0.0	
	Bombus (Psithyrus) bohemicus	Gypsy Cuckoo Bumble Bee	Endangered	Endangered		S1	18	23.6 ± 5.0	N
	Gomphus ventricosus	Skillet Clubtail	Endangered	Endangered	Endangered	S1S2	59	38.1 ± 0.0	N
	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S3B.S3M	378	1.8 ± 0.0	N
	Bombus affinis	Rusty-patched Bumble Bee	Endangered	Endangered	oposial concom	SH	1	82.4 ± 5.0	N
	Bombus ammis		Lindangered	Lindangered		511	•	02.4 1 0.0	N
	Bombus suckleyi	Suckley's Cuckoo Bumble	Threatened			SNR	1	33.2 ± 5.0	N
	Cisindala marrininannia	Bee Cabblestone Tiger Bactle	Onesial Oran	Endongered	Endona	64	105	45.0.00	
	Cicindela marginipennis	Cobblestone Tiger Beetle	Special Concern	Endangered	Endangered	S1	185	45.8 ± 0.0	N
	Ophiogomphus howei	Pygmy Snaketail	Special Concern	Special Concern	Special Concern	S2	14	80.7 ± 0.0	N
	Alasmidonta varicosa	Brook Floater	Special Concern	Special Concern	Special Concern	S2	9	70.0 ± 1.0	N
	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S2	104	17.5 ± 0.0	N
	Bombus terricola	Yellow-banded Bumblebee	Special Concern	Special Concern		S3?	193	9.4 ± 10.0	- N
	Coccinella transversoguttata richardsoni	Transverse Ladv Beetle	Special Concern	•		SH	18	17.1 ± 2.0	N
	Appalachina sayana	Spike-lip Crater	Not At Risk			S3?	2	25.2 ± 1.0	Ň
	Conotrachelus juglandis	a Weevil				S1	3	78.4 ± 0.0	N
	Haematopota rara	Shy Cleg				S1	1	82.9 ± 1.0	N
						S1	1	95.2 ± 0.0	N
	Lycaena dorcas	Dorcas Copper					•		
	Erora laeta	Early Hairstreak				S1	4	89.7 ± 7.0	٢
	Arigomphus furcifer	Lilypad Clubtail				S1	20	42.5 ± 0.0	Ν
	Polites origenes	Crossline Skipper				S1?	8	32.9 ± 0.0	Ν
	Plebejus saepiolus	Greenish Blue				S1S2	7	68.9 ± 2.0	N
	Ophiogomphus colubrinus	Boreal Snaketail				S1S2	36	51.4 ± 0.0	N
	Cicindela ancocisconensis	Appalachian Tiger Beetle				S2	1	87.5 ± 0.0	N
	Encyclops caerulea	a Longhorned Beetle				S2	1	83.2 ± 0.0	Ν
	Scaphinotus viduus	a Ground Beetle				S2	2	23.3 ± 0.0	N
	Brachyleptura circumdata	a Longhorned Beetle				S2	6	56.3 ± 0.0	N
						S2 S2	27		N
	Satyrium calanus	Banded Hairstreak						39.3 ± 0.0	
	Satyrium calanus falacer	Banded Hairstreak				S2	1	79.5 ± 1.0	Ν
	Strymon melinus	Grey Hairstreak				S2	7	21.2 ± 0.0	Ν
	Aeshna clepsydra	Mottled Darner				S2	13	18.6 ± 0.0	N
	Somatochlora tenebrosa	Clamp-Tipped Emerald				S2	8	58.0 ± 0.0	Ν
	Ladona exusta	White Corporal				S2	3	64.7 ± 0.0	N
	Hetaerina americana	American Rubyspot				S2	11	41.3 ± 0.0	Ν
	Ischnura posita	Fragile Forktail				S2	15	60.1 ± 0.0	Ň
	Callophrys henrici	Henry's Elfin				S2S3	19	65.6 ± 0.0	N
	Celithemis martha	Martha's Pennant				S2S3 S2S3	6	29.8 ± 0.0	N
							1		
	Sphaeroderus nitidicollis	a Ground Beetle				S3	•	56.3 ± 0.0	N
	Lepturopsis biforis	a Longhorned Beetle				S3	1	32.9 ± 1.0	١
	Orthosoma brunneum	a Longhorned Beetle				S3	3	51.1 ± 5.0	Ν
	Elaphrus americanus	a Ground Beetle				S3	2	64.8 ± 0.0	Ν
	Semanotus terminatus	A Long-horned Beetle				S3	1	78.9 ± 0.0	N
	Desmocerus palliatus	Elderberry Borer				S3	9	26.6 ± 0.0	Ν
	Agonum excavatum	a Ground Beetle				S3	1	64.8 ± 0.0	Ň
	Clivina americana	a Ground Beetle				S3	1	64.8 ± 0.0	N
	Lachnocrepis parallela	a Ground Beetle				S3	1	91.8 ± 0.0	
							•		N
	Dyschirius setosus	a Ground Beetle				S3	3	91.8 ± 0.0	N
	Harpalus fulvilabris	a Ground Beetle				S3	1	85.3 ± 0.0	N

Taxonomic

Froup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot		# recs	Distance (km)	F
	Olisthopus parmatus	a Ground Beetle				S3	1	56.3 ± 0.0	Ν
	Paratachys scitulus	a Ground Beetle				S3	1	64.8 ± 0.0	N
	Amara pallipes	a Ground Beetle				S3	1	91.6 ± 0.0	N
	Carabus serratus	a Ground Beetle				S3	2	62.9 ± 0.0	N
	Coccinella hieroglyphica kirbyi	a Ladybird Beetle				S3	1	32.9 ± 1.0	Ň
	Hippodamia parenthesis	Parenthesis Lady Beetle				S3	8	32.9 ± 1.0 32.9 ± 1.0	N
						S3	1		N
	Stenocorus vittiger	a Longhorned Beetle					•	64.8 ± 0.0	
	Gnathacmaeops pratensis	a Longhorned Beetle				S3	5	32.9 ± 1.0	١
	Pogonocherus mixtus	a Longhorned Beetle				S3	1	32.9 ± 1.0	١
	Badister neopulchellus	a Ground Beetle				S3	1	64.8 ± 0.0	1
	Calathus gregarius	a Ground Beetle				S3	1	61.0 ± 1.0	1
	Gonioctena americana	a Leaf Beetle				S3	1	91.6 ± 0.0	1
	Gonotropis dorsalis	A Fungus Weevil				S3	1	78.9 ± 0.0	1
	Naemia seriata	a Ladybird beetle				S3	10	51.1 ± 0.0	i
		A Click Beetle				S3	10		i
	Beckerus appressus							55.8 ± 0.0	
	Saperda lateralis	a Longhorned Beetle				S3	2	39.4 ± 0.0	1
	Trachysida aspera	a Longhorned Beetle				S3	1	80.0 ± 0.0	1
	Enoclerus muttkowskii	a Checkered Beetle				S3	1	91.4 ± 0.0	
	Hesperia sassacus	Indian Skipper				S3	15	32.9 ± 1.0	
	Euphyes bimacula	Two-spotted Skipper				S3	12	50.6 ± 0.0	
	Lycaena hyllus	Bronze Copper				S3	54	3.4 ± 4.0	
	Satyrium acadica	Acadian Hairstreak				S3	13	32.8 ± 7.0	
	Callophrys polios	Hoary Elfin				S3	19	32.9 ± 5.0	
	Plebejus idas	Northern Blue				S3	8	67.8 ± 0.0	
	Plebejus idas empetri	Crowberry Blue				S3	35	44.6 ± 2.0	
	Speyeria aphrodite	Aphrodite Fritillary				S3	30	13.5 ± 0.0	
	Boloria bellona	Meadow Fritillary				S3	56	29.4 ± 1.0	
	Polygonia satyrus	Satyr Comma				S3	22	40.0 ± 2.0	
	Polygonia gracilis	Hoary Comma				S3	6	46.1 ± 7.0	
	Nymphalis I-album	Compton Tortoiseshell				S3	33	23.2 ± 7.0	
	Gomphus vastus	Cobra Clubtail				S3	86	19.6 ± 0.0	
	Gomphus abbreviatus	Spine-crowned Clubtail				S3	30	27.3 ± 0.0	
	Gomphaeschna furcillata	Harlequin Darner				S3	7	65.8 ± 0.0	
	Dorocordulia lepida	Petite Emerald				S3	25	29.0 ± 0.0	
	Somatochlora cingulata	Lake Emerald				S3	7	24.6 ± 0.0	
	Somatochlora forcipata	Forcipate Emerald				S3	9	56.4 ± 0.0	
	Williamsonia fletcheri	Ebony Boghaunter				S3	10	48.9 ± 0.0	
	Lestes eurinus	Amber-Winged Spreadwing				S3	26	48.0 ± 1.0	
	Lestes vigilax	Swamp Spreadwing				S3	25	40.0 ± 1.0 29.0 ± 0.0	
	Enallagma geminatum	Skimming Bluet				S3	21	37.1 ± 0.0	
	Enallagma signatum	Orange Bluet				S3	21	42.8 ± 0.0	
	Stylurus scudderi	Zebra Clubtail				S3	78	19.6 ± 0.0	
	Alasmidonta undulata	Triangle Floater				S3	50	4.4 ± 0.0	
	Leptodea ochracea	Tidewater Mucket				S3	153	4.6 ± 0.0	
	Striatura ferrea	Black Striate				S3	1	81.9 ± 1.0	
	Neohelix albolabris	Whitelip				S3	2	25.2 ± 0.0	
	Spurwinkia salsa	Saltmarsh Hydrobe				S3	34	10.9 ± 0.0	
	,								
	Pantala hymenaea	Spot-Winged Glider				S3B,S3M	6	45.6 ± 1.0	
	Satyrium liparops	Striped Hairstreak				S3S4	25	18.9 ± 0.0	
	Cupido comyntas	Eastern Tailed Blue				S3S4	55	16.2 ± 0.0	
	Erioderma mollissimum	Graceful Felt Lichen	Endangered	Endangered	Endangered	SH	2	59.4 ± 1.0	
	Erioderma pedicellatum (Atlantic pop.)	Boreal Felt Lichen - Atlantic pop.	Endangered	Endangered	Endangered	SH	2	71.2 ± 0.0	I
	Peltigera hydrothyria	Eastern Waterfan	Threatened	Threatened		S1	717	54.2 ± 0.0	
	Pannaria lurida	Wrinkled Shingle Lichen	Threatened	Threatened		S1?	6	80.9 ± 0.0	1
	Anzia colpodes	Black-foam Lichen	Threatened	Threatened		S1S2	13	38.7 ± 0.0	
	Fuscopannaria leucosticta	White-rimmed Shingle Lichen	Threatened			S2	12	23.3 ± 0.0	I

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Pectenia plumbea	Blue Felt Lichen	Special Concern	Special Concern	Special Concern	S1	362	23.8 ± 0.0	NB
N	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk			S2S3	25	19.1 ± 0.0	NB
Ν	Imbribryum muehlenbeckii	Muehlenbeck's Bryum Moss				S1	1	34.0 ± 1.0	NB
Ν	Dicranoweisia crispula	Mountain Thatch Moss				S1	1	65.7 ± 0.0	NB
Ν	Didymodon rigidulus var. gracilis	a moss				S1	1	62.1 ± 1.0	NB
Ν	Sphagnum macrophyllum	Sphagnum				S1	4	42.8 ± 0.0	NB
Ν	Syntrichia ruralis	a Moss				S1	1	35.7 ± 0.0	NB
N	Coscinodon cribrosus	Sieve-Toothed Moss				S1	1	35.3 ± 0.0	NB
N	Enchylium tenax	Soil Tarpaper Lichen				S1	1	69.1 ± 0.0	NS
N	Sticta fuliginosa	Peppered Moon Lichen				S1	13	68.7 ± 0.0	NS
N	Cladonia straminea	Reptilian Pixie-cup Lichen				S1	5	54.7 ± 1.0	NB
N	Ephebe hispidula	Dryside Rockshag Lichen				S1	1	34.7 ± 1.0 80.3 ± 0.0	NS
N	Ephebe perspinulosa	Thread Lichen				S1	1	80.9 ± 0.0	NS
N							3		NB
	Coccocarpia palmicola	Salted Shell Lichen				S1		68.1 ± 1.0	
N	Peltigera collina	Tree Pelt Lichen				S1	1	94.1 ± 0.0	NS
N	Peltigera malacea	Veinless Pelt Lichen				S1	1	57.3 ± 1.0	NB
Ν	Bryoria bicolor	Electrified Horsehair Lichen				S1	1	57.3 ± 1.0	NB
Ν	Hygrobiella laxifolia	Lax Notchwort				S1?	1	54.8 ± 1.0	NB
N	Bartramia ithyphylla	Straight-leaved Apple Moss				S1?	2	54.8 ± 0.0	NB
N	Ptychostomum pallens	Pale Bryum				S1?	1	95.0 ± 0.0	NS
N	Pseudocalliergon trifarium	Three-ranked Spear Moss				S1?	1	41.6 ± 0.0	NB
Ν	Dichelyma falcatum	a Moss				S1?	2	40.2 ± 1.0	NB
Ν	Dicranum bonjeanii	Bonjean's Broom Moss				S1?	1	81.9 ± 1.0	NB
Ν	Dicranum condensatum	Condensed Broom Moss				S1?	1	65.5 ± 0.0	NB
N	Entodon brevisetus	a Moss				S1?	1	63.7 ± 10.0	NB
N	Oxyrrhynchium hians	Light Beaked Moss				S1?	4	33.2 ± 0.0	NB
N	Homomallium adnatum	Adnate Hairy-gray Moss				S1?	3	63.7 ± 10.0	NB
N	Plagiothecium latebricola	Alder Silk Moss				S1?	2	40.7 ± 0.0	NB
N	Niphotrichum ericoides	Dense Rock Moss				S1?	1	95.7 ± 3.0	NB
N		Wrinkle-leaved Moss				S1?	2	35.7 ± 0.0	NB
N	Rhytidium rugosum	a Moss				S1?	2	75.9 ± 1.0	NB
N	Seligeria recurvata					S1?	3 1		NB
	Splachnum pennsylvanicum	Southern Dung Moss				-		71.3 ± 1.0	
N	Euopsis granatina	Lesser Rockbud Lichen				S1?	1	77.4 ± 1.0	NS
Ν	Heterodermia squamulosa	Scaly Fringe Lichen				S1?	14	40.6 ± 0.0	NB
Ν	Pilophorus fibula	New England Matchstick				S1?	1	73.0 ± 0.0	NB
		Lichen							
N	Spilonema revertens	Rock Hairball Lichen				S1?	4	80.7 ± 0.0	NS
N	Peltigera venosa	Fan Pelt Lichen				S1?	1	62.8 ± 0.0	NB
N	Cladonia oricola	Cladonia Lichen				S1?	2	55.9 ± 0.0	NB
N	Cephaloziella spinigera	Spiny Threadwort				S1S2	2	85.3 ± 0.0	NB
Ν	Odontoschisma francisci	Holt's Notchwort				S1S2	4	62.1 ± 1.0	NB
Ν	Harpanthus flotovianus	Great Mountain Flapwort				S1S2	2	55.0 ± 1.0	NB
Ν	Jungermannia obovata	Egg Flapwort				S1S2	2	20.3 ± 0.0	NB
N	Pallavicinia Iyellii	Lyell's Ribbonwort				S1S2	3	33.0 ± 1.0	NB
N	Radula tenax	Tenacious Scalewort				S1S2	1	66.4 ± 0.0	NB
N	Reboulia hemisphaerica	Purple-margined Liverwort				S1S2	1	62.0 ± 0.0	NB
N	Brachythecium acuminatum	Acuminate Ragged Moss				S1S2	5	37.4 ± 100.0	NB
N	Ptychostomum salinum	Saltmarsh Bryum				S1S2	2	62.0 ± 1.0	NB
N	Pseudocampylium radicale	Long-stalked Fine Wet Moss				S1S2 S1S2	2	83.0 ± 1.0	NB
N		a Moss				S1S2 S1S2		83.0 ± 1.0 27.8 ± 0.0	NB
	Tortula obtusifolia Distichium inclinatum						1		
N	Distichium inclinatum	Inclined Iris Moss				S1S2	5	62.0 ± 0.0	NB
N	Ditrichum pallidum	Pale Cow-hair Moss				S1S2	2	49.1 ± 1.0	NB
N	Drummondia prorepens	a Moss				S1S2	1	97.9 ± 0.0	NS
N	Hygrohypnum bestii	Best's Brook Moss				S1S2	6	43.2 ± 0.0	NB
Ν	Sphagnum platyphyllum	Flat-leaved Peat Moss				S1S2	1	80.7 ± 0.0	NS
N	Timmia norvegica	a moss				S1S2	3	21.1 ± 0.0	NB
Ν	Timmia norvegica var. excurrens	a moss				S1S2	1	62.0 ± 0.0	NB
N	Tomentypnum falcifolium	Sickle-leaved Golden Moss				S1S2	1	62.2 ± 1.0	NB

Crown	Scientific Nome	Common Nama	COSEWIC	SADA	Broy Logal Brot	Droy Dority Dools	# ****	Distance (km)	Dres
Group N	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank S1S2	# recs 7	Distance (km) 54.4 ± 0.0	Prov NB
1	Tortella humilis	Small Crisp Moss					•		
	Pseudotaxiphyllum distichaceum	a Moss				S1S2	3	70.3 ± 1.0	NB
	Hamatocaulis vernicosus	a Moss				S1S2	3	19.2 ± 100.0	NB
N	Haplocladium microphyllum	Tiny-leaved Haplocladium Moss				S1S2	1	76.4 ± 3.0	NS
1	Umbilicaria vellea	Grizzled Rocktripe Lichen				S1S2	1	62.1 ± 1.0	NB
l	Cystocoleus ebeneus	Rockgossamer Lichen				S1S2	1	77.3 ± 0.0	NS
	Pilophorus cereolus	Powdered Matchstick Lichen				S1S2	3	73.0 ± 0.0	NB
1	Peltigera scabrosa	Greater Toad Pelt Lichen				S1S2	4	64.8 ± 1.0	NB
	Calypogeia neesiana	Nees' Pouchwort				S1S3	1	8.6 ± 1.0	NB
1	Fuscocephaloziopsis connivens	Forcipated Pincerwort				S1S3	1	19.6 ± 0.0	NB
1	Cephaloziella elachista	Spurred Threadwort				S1S3	1	41.8 ± 5.0	NB
Ì	Porella pinnata	Pinnate Scalewort				S1S3	1	4.6 ± 1.0	NB
1	Tritomaria scitula	Mountain Notchwort				S1S3	1	68.2 ± 1.0	NB
1	Amphidium mougeotii	a Moss				S133 S2	13	20.9 ± 1.0	NB
		a Moss					8		
1	Anomodon viticulosus					S2		9.6 ± 0.0	NB
1	Cirriphyllum piliferum	Hair-pointed Moss				S2	4	39.5 ± 0.0	NB
	Dicranella palustris	Drooping-Leaved Fork Moss				S2	10	17.4 ± 100.0	NB
l	Didymodon ferrugineus	Rusty Beard Moss				S2	2	10.0 ± 1.0	NB
1	Ditrichum flexicaule	Flexible Cow-hair Moss				S2	1	20.9 ± 1.0	NB
1	Anomodon tristis	a Moss				S2	4	61.2 ± 10.0	NB
I	Hypnum pratense	Meadow Plait Moss				S2	1	38.7 ± 0.0	NB
1	Isopterygiopsis pulchella	Neat Silk Moss				S2	8	61.3 ± 0.0	NB
1	Isothecium myosuroides	Slender Mouse-tail Moss				S2	3	20.9 ± 1.0	NB
	Meesia triquetra	Three-ranked Cold Moss				S2	2	37.4 ± 100.0	NB
l	Orthotrichum speciosum	Showy Bristle Moss				S2	4	81.6 ± 0.0	NS
1	Physcomitrium immersum	a Moss				S2	7	4.6 ± 1.0	NB
1	Platydictya jungermannioides	False Willow Moss				S2	5	55.5 ± 0.0	NB
1	Pohlia elongata	Long-necked Nodding Moss				S2	10	54.4 ± 0.0	NB
1	Seligeria calcarea	Chalk Brittle Moss				S2	3	20.9 ± 1.0	NB
1	Sphagnum centrale	Central Peat Moss				S2	6	54.4 ± 0.0	NB
1	Sphagnum lindbergii	Lindberg's Peat Moss				S2	8	22.4 ± 5.0	NB
1	Sphagnum flexuosum	Flexuous Peatmoss				S2	2	62.1 ± 0.0	NB
1	Tayloria serrata	Serrate Trumpet Moss				S2	8	25.6 ± 1.0	NB
1	Tetrodontium brownianum	Little Georgia				S2 S2	7	25.0 ± 1.0 61.1 ± 10.0	NB
4		Entire-leaved Nitrogen Moss				S2 S2	3		NB
	Tetraplodon mnioides	6						63.5 ± 0.0	
1	Thamnobryum alleghaniense	a Moss				S2	22	21.1 ± 0.0	NB
1	Tortula mucronifolia	Mucronate Screw Moss				S2	1	35.0 ± 0.0	NB
1	Ulota phyllantha	a Moss				S2	6	61.7 ± 1.0	NB
1	Anomobryum julaceum	Slender Silver Moss				S2	5	30.6 ± 0.0	NB
1	Cladonia macrophylla	Fig-leaved Lichen				S2	3	64.0 ± 1.0	NB
1	Leptogium corticola	Blistered Jellyskin Lichen				S2	3	63.9 ± 0.0	NB
1	Leptogium milligranum	Stretched Jellyskin Lichen				S2	1	81.0 ± 0.0	NS
1	Nephroma laevigatum	Mustard Kidney Lichen				S2	12	55.3 ± 0.0	NB
1	Peltigera lepidophora	Scaly Pelt Lichen				S2	2	62.8 ± 0.0	NB
1	Andreaea rothii	a Moss				S2?	6	26.7 ± 0.0	NB
I	Anomodon minor	Blunt-leaved Anomodon				S2?	1	68.4 ± 1.0	NB
	Prochuthacium discotrum	Moss				600	0	20.0.00	
1	Brachythecium digastrum	a Moss				S2?	2	39.8 ± 0.0	NB
	Ptychostomum pallescens	Tall Clustered Bryum				S2?	2	34.3 ± 1.0	NB
l.	Dichelyma capillaceum	Hairlike Dichelyma Moss				S2?	1	64.1 ± 3.0	NB
1	Dicranum spurium	Spurred Broom Moss				S2?	6	57.2 ± 0.0	NB
1	Hygrohypnum montanum	a Moss				S2?	2	39.8 ± 1.0	NB
1	Schistostega pennata	Luminous Moss				S2?	3	17.4 ± 100.0	NB
1	Seligeria campylopoda	a Moss				S2?	1	19.2 ± 100.0	NB
1	Seligeria diversifolia	a Moss				S2?	2	30.6 ± 0.0	NB
٧	Sphagnum angermanicum	a Peatmoss				S2?	3	60.3 ± 10.0	NB

roup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
	Plagiomnium rostratum	Long-beaked Leafy Moss				S2?	7	21.1 ± 0.0	NB
	Ramalina labiosorediata	Chalky Ramalina Lichen				S2?	1	64.9 ± 1.0	NB
	Collema leptaleum	Crumpled Bat's Wing Lichen				S2?	1	99.5 ± 0.0	NB
	Nephroma arcticum	Arctic Kidney Lichen				S2?	2	57.6 ± 1.0	NB
	Ptychostomum cernuum	Swamp Bryum				S2S3	2	22.4 ± 4.0	NB
	Piychosiomum cemuum					3233	2	22.4 ± 4.0	NB
	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	16	22.9 ± 0.0	NВ
	Drepanocladus polygamus	Polygamous Hook Moss				S2S3	1	57.1 ± 0.0	NB
	Palustriella falcata	a Moss				S2S3	3	20.9 ± 1.0	NB
	Didymodon rigidulus	Rigid Screw Moss				S2S3	11	34.0 ± 0.0	NB
	Ephemerum serratum	a Moss				S2S3	5	35.4 ± 0.0	NE
	Fissidens bushii	Bush's Pocket Moss				S2S3	6	34.0 ± 0.0	NE
	Hypnum cupressiforme var. filiforme	a Moss				S2S3	1	80.9 ± 0.0	NS
	Neckera complanata	a Moss				S2S3	7	20.9 ± 1.0	NE
	Orthotrichum elegans	Showy Bristle Moss				S2S3	2	68.4 ± 0.0	NE
	Pohlia proligera	Cottony Nodding Moss				S2S3	5	61.7 ± 1.0	NE
	Codriophorus fascicularis	Clustered Rock Moss				S2S3	3	54.7 ± 0.0	NB
	Racomitrium affine	a Moss				S2S3	1	64.5 ± 1.0	NE
	Saelania glaucescens	Blue Dew Moss				S2S3 S2S3	2	65.7 ± 0.0	NE
							4		
	Scorpidium scorpioides	Hooked Scorpion Moss				S2S3	-	22.9 ± 0.0	NE
	Sphagnum subfulvum	a Peatmoss				S2S3	4	62.2 ± 1.0	NE
	Taxiphyllum deplanatum	Imbricate Yew-leaved Moss				S2S3	3	65.9 ± 1.0	NE
	Zygodon viridissimus	a Moss				S2S3	3	65.9 ± 1.0	NE
	Schistidium agassizii	Elf Bloom Moss				S2S3	5	54.8 ± 0.0	NE
	Loeskeobryum brevirostre	a Moss				S2S3	15	20.9 ± 1.0	NE
	Cyrtomnium hymenophylloides	Short-pointed Lantern Moss				S2S3	7	33.9 ± 0.0	NE
	, , , , ,	Snowbed Icelandmoss							NE
	Cetrariella delisei	Lichen				S2S3	2	84.5 ± 0.0	INL
	Cladonia acuminata	Scantily Clad Pixie Lichen				S2S3	2	59.4 ± 1.0	NE
	Cladonia ramulosa	Bran Lichen				S2S3	4	62.4 ± 1.0	NE
	Cladonia sulphurina	Greater Sulphur-cup Lichen				S2S3	5	56.6 ± 0.0	NE
	Parmeliopsis ambigua	Green Starburst Lichen				S2S3	1	56.8 ± 1.0	NE
	Sphaerophorus globosus	Northern Coral Lichen				S2S3	12	55.5 ± 1.0	NE
	Cynodontium tenellum	Delicate Dogtooth Moss				S3	1	70.3 ± 1.0	N
	Hypnum curvifolium	Curved-leaved Plait Moss				S3	16	54.7 ± 0.0	NE
	Tortella fragilis	Fragile Twisted Moss				S3	1	62.0 ± 0.0	NE
	Schistidium maritimum	a Moss				S3	7	61.7 ± 1.0	NE
	Hymenostylium recurvirostre	Hymenostylium Moss				S3	10	61.7 ± 1.0	N
	Collema nigrescens	Blistered Tarpaper Lichen				S3	1	71.6 ± 3.0	N
	Solorina saccata	Woodland Owl Lichen				S3	7	56.8 ± 1.0	N
	Normandina pulchella	Rimmed Elf-ear Lichen				S3	17	58.0 ± 1.0	N
	Cladonia farinacea	Farinose Pixie Lichen				S3	5	64.0 ± 1.0	N
	Cladonia strepsilis	Olive Cladonia Lichen				S3	5	5.9 ± 0.0	NE
	Hypotrachyna catawbiensis	Powder-tipped Antler Lichen				S3	17	60.9 ± 0.0	N
	Scytinium lichenoides	Tattered Jellyskin Lichen				S3	7	62.1 ± 1.0	N
	Nephroma bellum	Naked Kidney Lichen				S3	3	55.8 ± 1.0	N
	Nephroma resupinatum	a lichen				S3	1	81.7 ± 0.0	N
		Lustrous Pelt Lichen				S3	3	56.7 ± 1.0	
	Peltigera degenii								NE
	Usnea strigosa	Bushy Beard Lichen				S3	15	14.9 ± 0.0	NE
	Stereocaulon condensatum	Granular Soil Foam Lichen				S3	10	53.3 ± 0.0	NE
	Leptogium laceroides	Short-bearded Jellyskin				S3	7	62.2 ± 1.0	N
		Lichen Membranaus Balt Lieben				S3	17		NE
	Peltigera membranacea	Membranous Pelt Lichen						33.9 ± 0.0	
	Cladonia botrytes	Wooden Soldiers Lichen				S3	1	84.5 ± 0.0	NE
	Cladonia carneola	Crowned Pixie-cup Lichen				S3	2	64.0 ± 1.0	NE
	Cladonia deformis	Lesser Sulphur-cup Lichen				S3	8	54.7 ± 1.0	NE
	Aulacomnium androgynum	Little Groove Moss				S3?	7	20.9 ± 1.0	NB
	Aulacommun anulogymum					001		20.9 ± 1.0	

_							
- 1	ax	o	n	n	m	IC	

		a						-	_
roup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pr
	Rhytidiadelphus loreus	Lanky Moss				S3?	4	59.6 ± 0.0	NE
	Sphagnum lescurii	a Peatmoss				S3?	9	19.5 ± 0.0	NE
	Sphagnum inundatum	a Sphagnum				S3?	2	16.6 ± 0.0	NE
	Scytinium subtile	Appressed Jellyskin Lichen				S3?	5	28.8 ± 0.0	NE
	Rostania occultata	Crusted Tarpaper Lichen				S3?	5	71.6 ± 3.0	NS
	Stereocaulon subcoralloides	Coralloid Foam Lichen				S3?	1	64.9 ± 1.0	NE
	Anomodon rugelii	Rugel's Anomodon Moss				S3S4	4	81.3 ± 0.0	NS
	Anomodon rugen	Lesser Bird's-claw Beard				0004	-	01.0 ± 0.0	NS
	Barbula convoluta	Moss				S3S4	3	77.5 ± 0.0	
	Brachytheciastrum velutinum	Velvet Ragged Moss				S3S4	2	55.4 ± 1.0	NE
	Calliergon giganteum	Giant Spear Moss				S3S4	1	80.5 ± 0.0	NS
	Dicranella cerviculata	a Moss				\$3\$4	5	59.9 ± 2.0	NE
	Dicranella varia	a Moss				S3S4	1	90.2 ± 3.0	NS
	Dicranum majus	Greater Broom Moss				S3S4	23	55.9 ± 0.0	NE
		a Dicranum Moss							NE
	Dicranum leioneuron					S3S4	1	59.7 ± 0.0	
	Encalypta ciliata	Fringed Extinguisher Moss				S3S4	1	62.2 ± 0.0	NE
	Fissidens bryoides	Lesser Pocket Moss				S3S4	5	9.5 ± 5.0	NE
	Elodium blandowii	Blandow's Bog Moss				S3S4	2	29.4 ± 0.0	N
	Heterocladium dimorphum	Dimorphous Tangle Moss				S3S4	5	65.1 ± 0.0	N
	Isopterygiopsis muelleriana	a Moss				S3S4	21	20.9 ± 1.0	N
	Myurella julacea	Small Mouse-tail Moss				S3S4	4	20.9 ± 1.0	N
	Physcomitrium pyriforme	Pear-shaped Urn Moss				S3S4	11	32.6 ± 0.0	N
							4		N
	Pogonatum dentatum	Mountain Hair Moss				S3S4		61.8 ± 0.0	
	Sphagnum compactum	Compact Peat Moss				S3S4	1	95.1 ± 0.0	Ν
	Sphagnum quinquefarium	Five-ranked Peat Moss				S3S4	5	20.9 ± 1.0	N
	Sphagnum torreyanum	a Peatmoss				S3S4	5	43.5 ± 0.0	N
	Sphagnum austinii	Austin's Peat Moss				S3S4	2	47.6 ± 1.0	N
	Sphagnum contortum	Twisted Peat Moss				S3S4	2	22.8 ± 0.0	N
	Splachnum rubrum	Red Collar Moss				S3S4	1	28.4 ± 1.0	N
		Geniculate Four-tooth Moss				S3S4	15	40.3 ± 0.0	N
	Tetraphis geniculata					3334	15	40.3 ± 0.0	N
	Tetraplodon angustatus	Toothed-leaved Nitrogen Moss				S3S4	3	26.2 ± 0.0	IN
	Weissia controversa	Green-Cushioned Weissia				S3S4	6	20.4 ± 1.0	N
	Abietinella abietina	Wiry Fern Moss				S3S4	1	62.0 ± 0.0	N
	Trichostomum tenuirostre	Acid-Soil Moss				S3S4	7	34.0 ± 0.0	N
	Pannaria rubiginosa	Brown-eyed Shingle Lichen				S3S4	13	28.8 ± 0.0	N
	Pseudocyphellaria holarctica	Yellow Specklebelly Lichen				S3S4	67	32.2 ± 0.0	N
	Ramalina thrausta	Angelhair Ramalina Lichen				S3S4	12	54.7 ± 1.0	N
	Hypogymnia vittata	Slender Monk's Hood Lichen				S3S4	27	55.5 ± 1.0	N
	Scytinium teretiusculum	Curly Jellyskin Lichen				S3S4	7	81.1 ± 0.0	N
	Montanelia panniformis	Shingled Camouflage Lichen				S3S4	5	57.3 ± 1.0	N
	Cladonia terrae-novae	Newfoundland Reindeer				S3S4	4	55.9 ± 0.0	N
	Cladonia floerkeana	Lichen Gritty British Soldiers Lichen				S3S4	5	5.9 ± 0.0	N
	Vahliella leucophaea	Shelter Shingle Lichen				S3S4	12	61.0 ± 0.0	N
	Xylopsora friesii	a Lichen				S3S4	1	62.1 ± 1.0	N
	Nephroma parile	Powdery Kidney Lichen Brown-gray Moss-shingle				S3S4	18	3.6 ± 0.0	N N
	Protopannaria pezizoides	Lichen				S3S4	28	34.0 ± 0.0	
	Usnea subrubicunda	Reddish Beard Lichen				S3S4	2	70.2 ± 3.0	N
	Fuscopannaria sorediata	a Lichen				S3S4	1	90.1 ± 1.0	N
	Stereocaulon paschale	Easter Foam Lichen				S3S4	1	69.3 ± 1.0	N
		Mealy-rimmed Shingle							N
	Pannaria conoplea	Lichen				S3S4	20	60.6 ± 0.0	
	Physcia tenella	Fringed Rosette Lichen				S3S4	1	67.6 ± 0.0	N
	Anaptychia palmulata	Shaggy Fringed Lichen				S3S4	25	32.3 ± 0.0	N
	Peltigera neopolydactyla	Undulating Pelt Lichen				S3S4	9	56.7 ± 1.0	N

Froup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pr
1	Hypocenomyce scalaris	Common Clam Lichen				S3S4	1	64.9 ± 1.0	NE
l	Dermatocarpon luridum	Brookside Stippleback				S3S4	121	3.8 ± 0.0	NE
	·	Lichen							
	Grimmia anodon	Toothless Grimmia Moss				SH SH	2	32.6 ± 10.0	NE
	Leucodon brachypus	a Moss				SH	7	62.7 ± 0.0	NE
	Thelia hirtella	a Moss					1	37.4 ± 100.0	NE NE
	Cyrto-hypnum minutulum	Tiny Cedar Moss Butternut	Fodoogorod	Endongorod	Endongorod	SH	3 150	60.4 ± 10.0 2.8 ± 0.0	N
	Juglans cinerea		Endangered Threatened	Endangered	Endangered	S1 S1	74	2.8 ± 0.0 66.3 ± 0.0	N
	Polemonium vanbruntiae Fraxinus nigra	Van Brunt's Jacob's-ladder Black Ash	Threatened	Threatened	Threatened	S4S5	219	66.3 ± 0.0 2.9 ± 0.0	N
	5			Special Concern	Endongorod	S2	219		N
	lsoetes prototypus Symphyotrichum anticostense	Prototype Quillwort Anticosti Aster	Special Concern Special Concern	Special Concern Special Concern	Endangered Endangered	52 S2S3	20 6	36.7 ± 0.0 34.0 ± 0.0	N
	Pterospora andromedea	Woodland Pinedrops	Special Concern	Special Concern	Endangered	S1	19	34.0 ± 0.0 90.6 ± 0.0	N
	Cryptotaenia canadensis	Canada Honewort			Linuarigereu	S1	19	30.0 ± 0.0 33.7 ± 1.0	N
	Sanicula trifoliata	Large-Fruited Sanicle				S1	1	4.5 ± 5.0	N
	Antennaria parlinii ssp. fallax	Parlin's Pussytoes				S1	5	4.5 ± 3.0 32.7 ± 1.0	N
	Antennaria parililii ssp. railax Antennaria howellii ssp. petaloidea	Pussy-Toes				S1	2	32.7 ± 1.0 35.0 ± 5.0	N
	Bidens discoidea	Swamp Beggarticks				S1	4	56.5 ± 0.0	N
	Pseudognaphalium obtusifolium	Eastern Cudweed				S1	4	50.5 ± 0.0 63.0 ± 0.0	N
	Helianthus decapetalus	Ten-rayed Sunflower				S1	, 14	93.9 ± 0.0	N
	Hieracium paniculatum	Panicled Hawkweed				S1	14	93.9 ± 0.0 18.1 ± 0.0	N
	Hieracium paniculatum Hieracium robinsonii	Robinson's Hawkweed				S1	12	54.4 ± 0.0	N
		Multi-rayed Goldenrod				S1 S1	12	54.4 ± 0.0 94.4 ± 0.0	N
	Solidago multiradiata	,				S1 S1	19		N
	Barbarea orthoceras	American Yellow Rocket				S1 S1	10	27.7 ± 1.0	N
	Cardamine parviflora	Small-flowered Bittercress						15.6 ± 0.0	N
	Cardamine concatenata	Cut-leaved Toothwort				S1 S1	3	75.7 ± 0.0	
	Draba arabisans	Rock Whitlow-Grass					29	5.3 ± 1.0	N
	Draba cana	Lance-leaved Draba				S1	10	89.4 ± 0.0	N
	Draba glabella	Rock Whitlow-Grass				S1	14	20.9 ± 1.0	N
	Mononeuria groenlandica	Greenland Stitchwort				S1	2	46.4 ± 0.0	N
	Chenopodiastrum simplex	Maple-leaved Goosefoot				S1	11	39.7 ± 1.0	N
	Blitum capitatum	Strawberry-Blite				S1	4	9.1 ± 1.0	N
	Suaeda rolandii	Roland's Sea-Blite				S1	4	67.8 ± 0.0	N
	Hypericum virginicum	Virginia St. John's-wort				S1	2	29.7 ± 0.0	N
	Corema conradii	Broom Crowberry				S1	31	35.0 ± 10.0	N
	Vaccinium boreale	Northern Blueberry				S1	2	64.9 ± 0.0	N
	Vaccinium corymbosum	Highbush Blueberry				S1	1	99.2 ± 1.0	N
	Hylodesmum glutinosum	Large Tick-trefoil				S1	15	91.6 ± 0.0	N
	Lespedeza capitata	Round-headed Bush-clover				S1	11	49.3 ± 0.0	N
	Gentiana rubricaulis	Purple-stemmed Gentian				S1	2	77.0 ± 0.0	N
	Lomatogonium rotatum	Marsh Felwort				S1	3	95.9 ± 0.0	N
	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1	2	68.1 ± 0.0	N
	Pycnanthemum virginianum	Virginia Mountain Mint				S1	4	14.6 ± 0.0	N
	Polygonum douglasii	Douglas Knotweed				S1	1	35.9 ± 0.0	N
	Lysimachia quadrifolia	Whorled Yellow Loosestrife				S1	14	14.9 ± 0.0	N
	Primula laurentiana	Laurentian Primrose				S1	59	55.9 ± 0.0	Ν
	Ranunculus sceleratus	Cursed Buttercup				S1	6	39.6 ± 0.0	N
	Amelanchier fernaldii	Fernald's Serviceberry				S1	1	88.9 ± 1.0	N
	Crataegus jonesiae	Jones' Hawthorn				S1	4	80.7 ± 1.0	N
	Dryas integrifolia	Entire-leaved Mountain				S1	15	95.9 ± 0.0	N
	, ,	Avens							
	Potentilla canadensis	Canada Cinquefoil				S1	1	73.7 ± 0.0	N
	Rubus flagellaris	Northern Dewberry				S1	7	39.1 ± 1.0	N
	Galium brevipes	Limestone Swamp Bedstraw				S1	2	34.0 ± 0.0	Ν
	Salix myrtillifolia	Blueberry Willow				S1	25	96.6 ± 0.0	Ν
	Saxifraga paniculata ssp. laestadii	Laestadius' Saxifrage				S1	47	20.5 ± 0.0	N
	Agalinis tenuifolia	Slender Agalinis				S1	9	76.6 ± 0.0	N
,	Agalinis purpurea var. parviflora	Small-flowered Purple False				S1	10	10.8 ± 1.0	N

Taxonomic

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pr
		Foxglove							
0	Gratiola lutea	Golden Hedge-hyssop				S1	2	45.9 ± 0.0	NE
)	Pedicularis canadensis	Canada Lousewort				S1	4	84.4 ± 0.0	NE
	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	31	79.8 ± 0.0	NS
	Alisma subcordatum	Southern Water Plantain				S1	4	4.6 ± 0.0	NE
	Carex atlantica ssp. atlantica	Atlantic Sedge				S1	4	43.2 ± 0.0	N
	Carex backii	Rocky Mountain Sedge				S1	8	35.1 ± 0.0	N
	Carex merritt-fernaldii	Merritt Fernald's Sedge				S1	1	70.8 ± 0.0	N
	Carex scirpoidea	Scirpuslike Sedge				S1	6	33.2 ± 0.0	N
	Carex sterilis	Sterile Sedge				S1	2	69.8 ± 2.0	N
		Inflated Narrow-leaved				-			N
	Carex grisea	Sedge				S1	13	8.3 ± 0.0	
	Carex saxatilis	Russet Sedge				S1	14	12.6 ± 10.0	N
	Cyperus diandrus	Low Flatsedge				S1	7	76.6 ± 1.0	N
	Cyperus lupulinus ssp. macilentus	Hop Flatsedge				S1	, 64	45.8 ± 0.0	N
	Rhynchospora capillacea	Slender Beakrush				S1	3	45.0 ± 0.0 95.1 ± 0.0	N
						-			
	Scirpus pendulus	Hanging Bulrush Narrow-leaved Blue-eyed-				S1	6	39.8 ± 0.0	N N
	Sisyrinchium angustifolium	grass				S1	13	35.8 ± 1.0	IN
	Juncus greenei	Greene's Rush				S1	1	79.8 ± 0.0	N
	Juncus subtilis	Creeping Rush				S1	1	31.0 ± 5.0	N
	Allium canadense	Canada Garlic				S1	11	15.1 ± 0.0	N
	Goodyera pubescens	Downy Rattlesnake-Plantain				S1	16	47.2 ± 0.0	N
	Goodyera pubescens	North American White				51	10	47.2 ± 0.0	N
	Malaxis monophyllos var. brachypoda	Adder's-mouth				S1	1	69.9 ± 0.0	IN
	Malaxis monophyllos	White Adder's-mouth				S1	1	81.2 ± 0.0	Ν
	Platanthera flava	Southern Rein-Orchid				S1	1	81.2 ± 0.0	N
	Platanthera flava var. herbiola	Pale Green Orchid				S1	26	64.3 ± 0.0	N
	Platanthera macrophylla	Large Round-Leaved Orchid				S1	11	27.1 ± 0.0	N
	Spiranthes casei	Case's Ladies'-Tresses				S1	6	90.8 ± 0.0	N
	Bromus pubescens	Hairy Wood Brome Grass				S1	6	50.3 ± 0.0	N
	Cinna arundinacea	Sweet Wood Reed Grass				S1	5	16.4 ± 0.0	Ν
	Danthonia compressa	Flattened Oat Grass				S1	19	35.9 ± 1.0	N
	Dichanthelium dichotomum	Forked Panic Grass				S1	1	13.0 ± 1.0	N
	Festuca subverticillata	Nodding Fescue				S1	2	72.5 ± 1.0	N
	Glyceria obtusa	Atlantic Manna Grass				S1	2	66.4 ± 0.0	N
	Sporobolus compositus	Rough Dropseed				S1	17	93.8 ± 1.0	N
	Potamogeton friesii	Fries' Pondweed				S1	6	36.2 ± 5.0	N
	Potamogeton nodosus	Long-leaved Pondweed				S1	8	45.4 ± 0.0	N
	Potamogeton strictifolius	Straight-leaved Pondweed				S1	2	5.1 ± 2.0	N
	Xyris difformis	Bog Yellow-eyed-grass				S1	3	29.9 ± 0.0	N
	Asplenium ruta-muraria var. cryptolepis	Wallrue Spleenwort				S1	4	29.5 ± 0.0 20.5 ± 0.0	N
	1 21 1					S1	4		N
	Cystopteris laurentiana	Laurentian Bladder Fern						35.3 ± 1.0	
	Dryopteris filix-mas ssp. brittonii	Britton's Male Fern				S1	2	83.1 ± 1.0	N
	Huperzia selago	Northern Firmoss				S1	1	69.3 ± 1.0	N
	Sceptridium oneidense	Blunt-lobed Moonwort				S1	4	61.5 ± 5.0	N
	Schizaea pusilla	Little Curlygrass Fern				S1	32	39.9 ± 0.0	N
	Cuscuta campestris	Field Dodder				S1?	3	47.3 ± 5.0	N
	Polygonum aviculare ssp. neglectum	Narrow-leaved Knotweed				S1?	4	79.9 ± 0.0	N
	Carex laxiflora	Loose-Flowered Sedge				S1?	2	69.4 ± 7.0	N
	Wolffia columbiana	Columbian Watermeal				S1?	6	58.9 ± 0.0	N
	Micranthes virginiensis	Early Saxifrage				S1S2	10	90.7 ± 0.0	N
	Potamogeton bicupulatus	Snailseed Pondweed				S1S2	5	50.7 ± 0.0 50.4 ± 0.0	N
	Selaginella rupestris	Rock Spikemoss				S1S2	23	35.4 ± 1.0	N
	Coryphopteris simulata	Bog Fern				S1S2 S1S2	31	50.6 ± 0.0	N
						S1S2 S1S3	2		
	Cuscuta cephalanthi	Buttonbush Dodder Smooth-fruited Russet						21.6 ± 0.0	N N
	Eriophorum russeolum ssp. albidum					S1S3	8	76.8 ± 0.0	IN
	· · · · · · · · · · · · · · · · · · ·	Cottongrass							

Taxonomic

Group									
	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Spiranthes arcisepala	Appalachian Ladies'-tresses				S1S3	11	40.9 ± 0.0	NB
Р	Spiranthes incurva	Sphinx Ladies'-tresses				S1S3	1	92.9 ± 0.0	NB
Р	Neottia bifolia	Southern Twayblade			Endangered	S2	27	65.9 ± 0.0	NB
Р	Solidago racemosa	Racemose Goldenrod			0	S2	14	92.9 ± 0.0	NB
P	Ionactis linariifolia	Flax-leaved Aster				S2	1	87.5 ± 0.0	NB
Þ	Symphyotrichum racemosum	Small White Aster				S2	11	3.8 ± 0.0	NB
P	Pseudognaphalium macounii	Macoun's Cudweed				S2	7	35.3 ± 0.0	NB
P						S2 S2			
	Impatiens pallida	Pale Jewelweed					10	33.6 ± 0.0	NB
P	Alnus serrulata	Smooth Alder				S2	12	33.8 ± 0.0	NB
P	Boechera stricta	Drummond's Rockcress				S2	25	5.4 ± 0.0	NB
P	Sagina nodosa	Knotted Pearlwort				S2	20	34.0 ± 0.0	NB
P	Sagina nodosa ssp. borealis	Knotted Pearlwort				S2	1	53.1 ± 0.0	NB
Р	Stellaria longifolia	Long-leaved Starwort				S2	9	16.8 ± 1.0	NB
2	Atriplex glabriuscula var. franktonii	Frankton's Saltbush				S2	4	27.7 ± 1.0	NB
P	Oxybasis rubra	Red Goosefoot				S2	4	32.2 ± 1.0	NB
Þ	Hypericum x dissimulatum	Disguised St. John's-wort				S2	3	65.5 ± 0.0	NB
		Orange-fruited Tinker's					0		NB
Ρ	Triosteum aurantiacum	Weed				S2	12	70.9 ± 0.0	ND
Р						<u>.</u>		50.0.00	
	Viburnum lentago	Nannyberry				S2	1	59.2 ± 0.0	NB
Ρ	Viburnum recognitum	Northern Arrow-Wood				S2	2	89.8 ± 0.0	NB
P	Shepherdia canadensis	Soapberry				S2	42	95.9 ± 0.0	NB
Р	Astragalus eucosmus	Elegant Milk-vetch				S2	10	9.7 ± 0.0	NB
P	Oxytropis campestris var. johannensis	Field Locoweed				S2	35	21.4 ± 50.0	NB
>	Quercus macrocarpa	Bur Oak				S2	112	12.1 ± 0.0	NB
2	Gentiana linearis	Narrow-Leaved Gentian				S2	5	82.5 ± 5.0	NB
2	Myriophyllum humile	Low Water Milfoil				S2	9	56.7 ± 1.0	NB
0	Proserpinaca palustris	Marsh Mermaidweed				S2	18	16.7 ± 0.0	NB
5	Hedeoma pulegioides	American False Pennyroyal				S2 S2	12	10.7 ± 0.0 14.5 ± 1.0	NB
		, ,							
P	Nuphar x rubrodisca	Red-disk Yellow Pond-lily				S2	12	17.2 ± 0.0	NB
Р	Aphyllon uniflorum	One-flowered Broomrape				S2	14	9.5 ± 1.0	NB
5	Polygaloides paucifolia	Fringed Milkwort				S2	19	46.2 ± 1.0	NB
P	Persicaria amphibia var. emersa	Long-root Smartweed				S2	49	4.1 ± 0.0	NB
Р	Persicaria careyi	Carey's Smartweed				S2	14	14.0 ± 5.0	NB
Р	Podostemum ceratophyllum	Horn-leaved Riverweed				S2	8	62.6 ± 0.0	NB
P	Anemone multifida	Cut-leaved Anemone				S2	1	96.1 ± 0.0	NB
Þ	Anemone parviflora	Small-flowered Anemone				S2	9	96.6 ± 0.0	NB
P	Hepatica americana	Round-lobed Hepatica				S2	36	23.8 ± 1.0	NB
P	Ranunculus flabellaris	Yellow Water Buttercup				S2	18	28.4 ± 0.0	NB
	Crataegus scabrida	Rough Hawthorn				S2	9	14.5 ± 1.0	NB
Р	Crataegus succulenta	Fleshy Hawthorn				S2	1	83.0 ± 5.0	NB
P	Cephalanthus occidentalis	Common Buttonbush				S2	21	43.0 ± 0.0	NB
P	Agalinis neoscotica	Nova Scotia Agalinis				S2	7	85.3 ± 3.0	NS
>	Euphrasia randii	Rand's Eyebright				S2	13	48.5 ± 0.0	NB
2	Scrophularia lanceolata	Lance-leaved Figwort				S2	7	14.6 ± 0.0	NB
2	Dirca palustris	Eastern Leatherwood				S2	10	53.2 ± 1.0	NB
P	Phryma leptostachya	American Lopseed				S2	3	96.7 ± 1.0	NB
5	Verbena urticifolia	White Vervain				S2	14	90.7 ± 2.0	NB
5	Viola novae-angliae	New England Violet				S2	13	16.0 ± 0.0	NB
5									NB
	Symplocarpus foetidus	Eastern Skunk Cabbage				S2	81	6.3 ± 5.0	
	Carex comosa	Bearded Sedge				S2	10	81.2 ± 1.0	NS
	Carex granularis	Limestone Meadow Sedge				S2	6	33.6 ± 5.0	NB
0	Carex gynocrates	Northern Bog Sedge				S2	1	35.9 ± 1.0	NB
)	Carex hirtifolia	Pubescent Sedge				S2	5	15.8 ± 0.0	NB
Р	Carex livida	Livid Sedge				S2	2	20.9 ± 0.0	NB
2	Carex plantaginea	Plantain-Leaved Sedge				S2	5	60.3 ± 0.0	NB
_		Narrow-leaved Beaked							NB
Р	Carex rostrata	Sedge				S2	2	2.9 ± 0.0	
Р	Carex salina	Sedge Saltmarsh Sedge				S2	2	36.5 ± 1.0	NB
r.	Carex Sallia	Salunaish Seuge				52	2	30.3 ± 1.0	IND

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
	Carex sprengelii	Longbeak Sedge			E	S2	4	29.4 ± 0.0	NB
b	Carex tenuiflora	Sparse-Flowered Sedge				S2	2	65.8 ± 10.0	NB
b	Carex albicans var. emmonsii	White-tinged Sedge				S2	9	34.6 ± 0.0	NB
)	Cyperus squarrosus	Awned Flatsedge				S2	46	4.5 ± 0.0	NB
,	Eriophorum gracile	Slender Cottongrass				S2	9	38.0 ± 0.0	NB
,	Blysmopsis rufa	Red Bulrush				S2 S2	9 1	34.0 ± 0.0	NB
)									
	Elodea nuttallii	Nuttall's Waterweed				S2	7	16.6 ± 0.0	NB
•	Juncus vaseyi	Vasey Rush				S2	6	63.5 ± 0.0	NB
)	Allium tricoccum	Wild Leek				S2	62	9.3 ± 0.0	NB
•	Najas gracillima	Thread-Like Naiad				S2	6	55.9 ± 0.0	NB
•	Galearis rotundifolia	Small Round-leaved Orchid				S2	3	93.0 ± 0.0	NB
•	Calypso bulbosa var. americana	Calypso				S2	7	22.2 ± 0.0	NB
•	Coeloglossum viride	Long-bracted Frog Orchid				S2	20	5.6 ± 5.0	NB
,	Cypripedium parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	7	10.8 ± 1.0	NB
	Spiranthes lucida	Shining Ladies'-Tresses				S2	, 14	5.6 ± 5.0	NB
)	Spiranthes ochroleuca	Yellow Ladies'-tresses				S2	7	62.6 ± 0.0	NB
))	Dichanthelium linearifolium	Narrow-leaved Panic Grass				S2	15	24.1 ± 0.0	NB
	Elymus canadensis	Canada Wild Rye				S2	19	34.0 ± 0.0	NB
	Leersia virginica	White Cut Grass				S2	42	28.0 ± 0.0	NE
•	Piptatheropsis canadensis	Canada Ricegrass				S2	5	53.4 ± 0.0	NB
	Puccinellia phryganodes ssp. neoarctica	Creeping Alkali Grass				S2	5	66.4 ± 0.0	NE
	Poa glauca	Glaucous Blue Grass				S2	18	35.3 ± 2.0	NE
	Puccinellia nutkaensis	Alaska Alkaligrass				S2	5	41.0 ± 1.0	NE
	Schizachyrium scoparium	Little Bluestem				S2	54	17.2 ± 0.0	NE
	Zizania aquatica	Southern Wild Rice				S2	2	34.0 ± 0.0	NE
	Zizania aquatica var. aquatica	Eastern Wild Rice				S2	5	16.2 ± 0.0	NE
	Piptatheropsis pungens	Slender Ricegrass				S2	4	66.1 ± 0.0	NE
	Potamogeton vaseyi	Vasey's Pondweed				S2	5	36.2 ± 1.0	NE
	Asplenium trichomanes	Maidenhair Spleenwort				S2	24	33.6 ± 0.0	NE
	Anchistea virginica	Virginia chain fern				S2	13	84.4 ± 0.0	NE
	Woodsia alpina	Alpine Cliff Fern				S2	11	20.5 ± 0.0	NE
		Sitka Ground-cedar				S2 S2	1		NE
	Diphasiastrum sitchense							85.8 ± 5.0	
	Selaginella selaginoides	Low Spikemoss				S2	12	35.3 ± 6.0	NE
	Toxicodendron radicans var. radicans	Eastern Poison Ivy				S2?	14	15.7 ± 0.0	NE
	Symphyotrichum novi-belgii var. crenifolium	New York Aster				S2?	6	33.0 ± 0.0	NE
	Humulus lupulus var. lupuloides	Common Hop				S2?	4	80.3 ± 0.0	NE
	Rubus x recurvicaulis	arching dewberry				S2?	5	16.4 ± 1.0	NE
	Galium obtusum	Blunt-leaved Bedstraw				S2?	6	16.4 ± 1.0	NE
	Salix myricoides	Bayberry Willow				S2?	7	63.0 ± 0.0	NE
	Platanthera huronensis	Fragrant Green Orchid				S2?	4	58.3 ± 0.0	NE
							•		
	Solidago altissima	Tall Goldenrod				S2S3	6	10.5 ± 1.0	NE
	Callitriche hermaphroditica	Northern Water-starwort				S2S3	8	4.6 ± 2.0	NE
	Lonicera oblongifolia	Swamp Fly Honeysuckle				S2S3	1	49.4 ± 6.0	NE
	Elatine americana	American Waterwort				S2S3	7	4.5 ± 0.0	NE
	Bartonia paniculata	Branched Bartonia				S2S3	1	43.4 ± 0.0	NE
	Bartonia paniculata ssp. iodandra	Branched Bartonia				S2S3	38	36.1 ± 1.0	NE
	Geranium robertianum	Herb Robert				S2S3	52	5.3 ± 1.0	N
	Myriophyllum quitense	Andean Water Milfoil				S2S3	71	3.2 ± 0.0	N
	Epilobium coloratum	Purple-veined Willowherb				S2S3	16	32.7 ± 1.0	N
	Rumex persicarioides	Peach-leaved Dock				S2S3	1	99.1 ± 1.0	N
	Rumex pallidus	Seabeach Dock				S2S3	8	32.2 ± 0.0	N
	Rumex occidentalis	Western Dock				S2S3	1	79.9 ± 1.0	N
	Rubus pensilvanicus	Pennsylvania Blackberry				S2S3	27	31.9 ± 0.0	N
	Galium labradoricum	Labrador Bedstraw				S2S3	3	64.7 ± 0.0	N
	Carex adusta	Lesser Brown Sedge				S2S3	13	18.7 ± 1.0	NE
						S2S3			NE
	Corallorhiza maculata var. occidentalis	Spotted Coralroot					13	50.9 ± 1.0	
	Corallorhiza maculata var. maculata Neottia auriculata	Spotted Coralroot Auricled Twayblade				S2S3 S2S3	7 9	18.7 ± 1.0	NE NE
								39.1 ± 1.0	

_					
- 1	'ах	or	۱O	m	IC

Taxonomic									_
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Spiranthes cernua	Nodding Ladies'-Tresses				S2S3	26	51.4 ± 0.0	NB
Р	Eragrostis pectinacea	Tufted Love Grass				S2S3	13	15.9 ± 1.0	NB
Р	Stuckenia filiformis	Thread-leaved Pondweed				S2S3	6	20.4 ± 0.0	NB
Р	Potamogeton praelongus	White-stemmed Pondweed				S2S3	11	3.2 ± 0.0	NB
Р	Isoetes tuckermanii ssp. acadiensis	Acadian Quillwort				S2S3	7	70.7 ± 0.0	NB
P	Ophioglossum pusillum	Northern Adder's-tongue				S2S3	8	35.7 ± 1.0	NB
P	Panax trifolius	Dwarf Ginseng				S3	32	36.9 ± 0.0	NB
P	Artemisia campestris ssp. caudata	Tall Wormwood				S3	131	34.0 ± 0.0	NB
P									NB
P	Artemisia campestris	Field Wormwood				S3	24	45.5 ± 0.0	
	Bidens hyperborea	Estuary Beggarticks				S3	1	34.0 ± 0.0	NB
Р	Erigeron hyssopifolius	Hyssop-leaved Fleabane				S3	107	15.5 ± 0.0	NB
Р	Nabalus racemosus	Glaucous Rattlesnakeroot				S3	72	15.1 ± 0.0	NB
Р	Tanacetum bipinnatum ssp. huronense	Lake Huron Tansy				S3	24	4.1 ± 10.0	NB
Р	Symphyotrichum boreale	Boreal Aster				S3	13	10.1 ± 0.0	NB
Р	Betula pumila	Bog Birch				S3	41	34.0 ± 0.0	NB
P	Turritis glabra	Tower Mustard				S3	2	34.0 ± 0.0	NB
P	Arabis pycnocarpa	Cream-flowered Rockcress				S3	24	15.6 ± 1.0	NB
P						S3	24 47		NB
P	Cardamine maxima	Large Toothwort						3.5 ± 0.0	
	Subularia aquatica ssp. americana	American Water Awlwort				S3	13	54.7 ± 0.0	NB
Р	Lobelia cardinalis	Cardinal Flower				S3	217	34.0 ± 0.0	NB
Р	Stellaria humifusa	Saltmarsh Starwort				S3	17	40.3 ± 0.0	NB
Р	Ceratophyllum echinatum	Prickly Hornwort				S3	20	5.1 ± 2.0	NB
Р	Hudsonia tomentosa	Woolly Beach-heath				S3	4	34.0 ± 0.0	NB
Р	Cornus obligua	Silky Dogwood				S3	89	17.3 ± 0.0	NB
P	Crassula aquatica	Water Pygmyweed				S3	3	28.8 ± 0.0	NB
P	Rhodiola rosea	Roseroot				S3	115	12.4 ± 5.0	NB
P									NB
P	Penthorum sedoides	Ditch Stonecrop				S3	84	4.1 ± 0.0	
•	Elatine minima	Small Waterwort				S3	22	11.9 ± 0.0	NB
Р	Astragalus alpinus	Alpine Milk-vetch				S3	2	34.0 ± 0.0	NB
Р	Astragalus alpinus var. brunetianus	Alpine Milk-Vetch				S3	2	93.0 ± 0.0	NB
Р	Hedysarum americanum	Alpine Hedysarum				S3	3	9.9 ± 0.0	NB
Р	Gentianella amarella ssp. acuta	Northern Gentian				S3	3	34.6 ± 5.0	NB
Р	, Geranium bicknellii	Bicknell's Crane's-bill				S3	24	5.9 ± 0.0	NB
P	Myriophyllum farwellii	Farwell's Water Milfoil				S3	16	31.3 ± 0.0	NB
P	Myriophyllum heterophyllum	Variable-leaved Water Milfoil				S3	82	3.8 ± 0.0	NB
P	Myriophyllum verticillatum	Whorled Water Milfoil				S3	24	4.6 ± 0.0	NB
P									
P	Teucrium canadense	Canada Germander				S3	3	85.2 ± 5.0	NS
	Stachys hispida	Smooth Hedge-Nettle				S3	12	9.7 ± 0.0	NB
Р	Utricularia radiata	Little Floating Bladderwort				S3	35	41.0 ± 0.0	NB
P	Nuphar microphylla	Small Yellow Pond-lily				S3	28	14.3 ± 1.0	NB
P	Epilobium hornemannii	Hornemann's Willowherb				S3	7	56.0 ± 0.0	NB
Р	Epilobium hornemannii ssp. hornemannii	Hornemann's Willowherb				S3	1	57.4 ± 0.0	NB
Р	Epilobium strictum	Downy Willowherb				S3	18	7.4 ± 0.0	NB
P	Polygala sanguinea	Blood Milkwort				S3	45	36.7 ± 0.0	NB
P	Persicaria arifolia	Halberd-leaved Tearthumb				S3	29	28.5 ± 0.0	NB
P									NB
•	Persicaria punctata	Dotted Smartweed				S3	8	56.0 ± 0.0	
P	Fallopia scandens	Climbing False Buckwheat				S3	44	4.7 ± 0.0	NB
Р	Littorella americana	American Shoreweed				S3	17	15.1 ± 1.0	NB
Р	Primula mistassinica	Mistassini Primrose				S3	13	9.6 ± 0.0	NB
Р	Pyrola minor	Lesser Pyrola				S3	5	32.3 ± 1.0	NB
Р	Clematis occidentalis	Purple Clematis				S3	30	29.6 ± 5.0	NB
P	Ranunculus gmelinii	Gmelin's Water Buttercup				S3	32	16.3 ± 1.0	NB
P	Thalictrum confine	Northern Meadow-rue				S3	83	10.3 ± 1.0 10.1 ± 0.0	NB
P						S3			NB
•	Amelanchier canadensis	Canada Serviceberry					20	20.3 ± 1.0	
Р	Rosa palustris	Swamp Rose				S3	26	21.6 ± 5.0	NB
-		Black Raspberry				S3	21	2.9 ± 0.0	NB
Р	Rubus occidentalis								
P P P	Rubus occidentails Sanguisorba canadensis Galium boreale	Canada Burnet Northern Bedstraw				S3 S3	17 6	63.1 ± 0.0 25.7 ± 1.0	NB NB

Taxonomic

Taxonomic			000514/10					D ¹	-
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Salix nigra	Black Willow				S3	177	2.9 ± 0.0	NB
Р	Salix pedicellaris	Bog Willow				S3	51	16.7 ± 0.0	NB
P	Salix interior	Sandbar Willow				S3	35	34.0 ± 0.0	NB
P	Comandra umbellata	Bastard's Toadflax				S3	2	34.0 ± 0.0	NB
Р	Parnassia glauca	Fen Grass-of-Parnassus				S3	2	34.0 ± 0.0	NB
P	Boehmeria cylindrica	Small-spike False-nettle				S3	54	56.1 ± 0.0	NB
P	Pilea pumila	Dwarf Clearweed				S3	44	3.6 ± 0.0	NB
P						S3	8		NB
	Viola adunca	Hooked Violet						34.0 ± 0.0	
P	Viola nephrophylla	Northern Bog Violet				S3	22	10.1 ± 0.0	NB
Р	Carex arcta	Northern Clustered Sedge				S3	54	15.4 ± 0.0	NB
P	Carex capillaris	Hairlike Sedge				S3	24	26.3 ± 0.0	NB
P	Carex chordorrhiza	Creeping Sedge				S3	25	42.0 ± 0.0	NB
Р	Carex conoidea	Field Sedge				S3	19	10.5 ± 1.0	NB
Р	Carex eburnea	Bristle-leaved Sedge				S3	19	16.6 ± 0.0	NB
P	Carex exilis	Coastal Sedge				S3	111	20.2 ± 0.0	NB
P	Carex garberi	Garber's Sedge				S3	2	10.3 ± 0.0	NB
P	Carex haydenii	Hayden's Sedge				S3	90	3.6 ± 0.0	NB
Р	Carex lupulina	Hop Sedge				S3	91	3.1 ± 5.0	NB
Р	Carex michauxiana	Michaux's Sedge				S3	71	20.9 ± 0.0	NB
P	Carex ormostachya	Necklace Spike Sedge				S3	10	42.6 ± 1.0	NB
Р	Carex rosea	Rosy Sedge				S3	33	3.5 ± 0.0	NB
Р	Carex tenera	Tender Sedge				S3	51	13.7 ± 0.0	NB
P	Carex tuckermanii	Tuckerman's Sedge				S3	90	3.8 ± 0.0	NB
P		Wiegand's Sedge				S3			NB
	Carex wiegandii						161	33.7 ± 1.0	
P	Carex recta	Estuary Sedge				S3	8	43.3 ± 0.0	NB
P	Carex atratiformis	Scabrous Black Sedge				S3	2	34.0 ± 0.0	NB
Р	Cyperus dentatus	Toothed Flatsedge				S3	225	14.5 ± 0.0	NB
Р	Cyperus esculentus var. leptostachyus	Perennial Yellow Nutsedge				S3	83	4.5 ± 0.0	NB
Р	Eleocharis intermedia	Matted Spikerush				S3	2	47.8 ± 0.0	NB
P	Eleocharis quinqueflora	Few-flowered Spikerush				S3	8	20.9 ± 0.0	NB
P	Rhynchospora capitellata	Small-headed Beakrush				S3	22	43.5 ± 0.0	NB
P	Rhynchospora fusca	Brown Beakrush				S3	30	4.3 ± 5.0	NB
F P									
	Trichophorum clintonii	Clinton's Clubrush				S3	49	26.3 ± 0.0	NB
Р	Bolboschoenus fluviatilis	River Bulrush				S3	58	4.2 ± 0.0	NB
Р	Schoenoplectus torreyi	Torrey's Bulrush				S3	42	17.2 ± 0.0	NB
P	Lemna trisulca	Star Duckweed				S3	31	3.2 ± 0.0	NB
Р	Triantha glutinosa	Sticky False-Asphodel				S3	10	10.2 ± 0.0	NB
P	Cypripedium reginae	Showy Lady's-Slipper				S3	8	25.0 ± 0.0	NB
P	Liparis loeselii	Loesel's Twayblade				S3	18	20.3 ± 0.0	NB
P	Platanthera blephariglottis	White Fringed Orchid				S3	209	20.3 ± 0.0 34.0 ± 0.0	NB
P									
	Platanthera grandiflora	Large Purple Fringed Orch	a			S3	60	16.7 ± 0.0	NB
Ρ	Bromus latiglumis	Broad-Glumed Brome				S3	23	33.5 ± 2.0	NB
P	Calamagrostis pickeringii	Pickering's Reed Grass				S3	146	20.9 ± 0.0	NB
P	Dichanthelium depauperatum	Starved Panic Grass				S3	38	46.1 ± 0.0	NB
P	Muhlenbergia richardsonis	Mat Muhly				S3	9	93.9 ± 0.0	NB
P	Heteranthera dubia	Water Stargrass				S3	58	3.2 ± 0.0	NB
P	Potamogeton obtusifolius	Blunt-leaved Pondweed				S3	15	3.4 ± 0.0	NB
- D									NB
	Potamogeton richardsonii	Richardson's Pondweed				S3	35	14.9 ± 0.0	
Р	Xyris montana	Northern Yellow-Eyed-Gras	SS			S3	83	22.8 ± 0.0	NB
Р	Zannichellia palustris	Horned Pondweed				S3	8	14.5 ± 0.0	NB
P	Adiantum pedatum	Northern Maidenhair Fern				S3	17	23.8 ± 1.0	NB
P	Cryptogramma stelleri	Steller's Rockbrake				S3	3	15.6 ± 1.0	NB
5	Asplenium viride	Green Spleenwort				S3	23	20.3 ± 0.0	NB
5	Dryopteris fragrans	Fragrant Wood Fern				S3	69	28.8 ± 1.0	NB
F P		Goldie's Woodfern				S3	5		NB
-	Dryopteris goldiana	Smooth Cliff Fern						96.1 ± 5.0	
-		Smooth Cliff Forn				S3	67	23.8 ± 1.0	NB
Р	Woodsia glabella								
P P P	Equisetum palustre Isoetes tuckermanii ssp. tuckermanii	Marsh Horsetail				S3 S3	9 18	26.5 ± 0.0	NB NB

Taxonomic	
Group	Sciontific

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
P	Isoetes tuckermanii	Tuckerman's Quillwort			-	S3	2	34.0 ± 0.0	NB
Р	Diphasiastrum x sabinifolium	Savin-leaved Ground-cedar				S3	19	33.4 ± 0.0	NB
Р	Huperzia appressa	Mountain Firmoss				S3	38	31.5 ± 1.0	NB
Р	Sceptridium dissectum	Dissected Moonwort				S3	29	15.0 ± 0.0	NB
Р	Botrychium lanceolatum ssp. angustisegmentum	Narrow Triangle Moonwort				S3	15	22.9 ± 0.0	NB
Р	Botrychium simplex	Least Moonwort				S3	5	58.6 ± 0.0	NB
Р	Polypodium appalachianum	Appalachian Polypody				S3	37	25.3 ± 0.0	NB
Р	Utricularia resupinata	Inverted Bladderwort				S3?	16	21.6 ± 1.0	NB
Р	Crataegus submollis	Quebec Hawthorn				S3?	12	6.8 ± 1.0	NB
Р	Mertensia maritima	Sea Lungwort				S3S4	34	26.5 ± 0.0	NB
Р	Lobelia kalmii	Brook Lobelia				S3S4	18	4.3 ± 1.0	NB
Р	Suaeda calceoliformis	Horned Sea-blite				S3S4	6	28.0 ± 0.0	NB
Р	Myriophyllum sibiricum	Siberian Water Milfoil				S3S4	36	4.6 ± 0.0	NB
Р	Stachys pilosa	Hairy Hedge-Nettle				S3S4	7	26.3 ± 0.0	NB
Р	Utricularia gibba	Humped Bladderwort				S3S4	27	25.7 ± 0.0	NB
Р	Rumex fueginus	Tierra del Fuego Dock				S3S4	8	89.5 ± 0.0	NB
Р	Drymocallis arguta	Tall Wood Beauty				S3S4	30	10.5 ± 0.0	NB
Р	Rubus chamaemorus	Cloudberry				S3S4	100	19.9 ± 1.0	NB
Р	Geocaulon lividum	Northern Comandra				S3S4	15	24.7 ± 0.0	NB
Р	Juniperus horizontalis	Creeping Juniper				S3S4	14	34.0 ± 0.0	NB
Р	Cladium mariscoides	Smooth Twigrush				S3S4	51	23.0 ± 0.0	NB
Р	Eriophorum russeolum	Russet Cottongrass				S3S4	61	44.3 ± 1.0	NB
Р	Eriophorum russeolum ssp. russeolum	Russet Cottongrass				S3S4	26	76.8 ± 0.0	NB
Р	Triglochin gaspensis	Gasp				S3S4	16	39.7 ± 1.0	NB
Р	Spirodela polyrhiza	Great Duckweed				S3S4	41	4.2 ± 0.0	NB
Р	Corallorhiza maculata	Spotted Coralroot				S3S4	30	4.3 ± 1.0	NB
Р	Calamagrostis stricta	Slim-stemmed Reed Grass				S3S4	10	3.7 ± 0.0	NB
Р	Distichlis spicata	Salt Grass				S3S4	4	39.0 ± 0.0	NB
Р	Potamogeton oakesianus	Oakes' Pondweed				S3S4	40	16.4 ± 5.0	NB
Р	Montia fontana	Water Blinks				SH	3	83.3 ± 0.0	NS
Р	Solidago caesia	Blue-stemmed Goldenrod				SX	2	32.7 ± 1.0	NB
Р	Celastrus scandens	Climbing Bittersweet				SX	2	96.1 ± 1.0	NB
Р	Carex swanii	Swan's Sedge				SX	22	75.6 ± 2.0	NS

5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

recs CITATION

- 16404 Epworth, W. 2016. Species at Risk records, 2014-2016. Fort Folly Habitat Recovery Program, 38 recs.
- 6484 Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.
- 5841 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 4650 eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
- 3181 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 2745 Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R. 2020. North American Breeding Bird Survey Dataset 1966 2019: U.S. Geological Survey data release,
- https://doi.org/10.5066/P9J6QUF6
- 1880 iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
- 1824 Berrigan, L. 2019. Maritimes Marsh Monitoring Project 2013, 2014, 2016, 2017, and 2018 data. Bird Studies Canada, Sackville, NB.
- 815 Askanas, H. 2016. New Brunswick Wood Turtle Database. New Brunswick Department of Energy and Resource Development.
- 593 Stantec. 2014. Energy East Pipeline Corridor Species Occurrence Data. Stantec Inc., 4934 records.
- 560 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
- 546 Chapman, C.J. 2019. Atlantic Canada Conservation Data Centre 2019 botanical fieldwork. Atlantic Canada Conservation Data Centre, 11729 recs.
- 475 eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
- 449 Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
- 438 Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.

# recs	CITATION
433	Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
408	Chapman-Lam, C.J. 2021. Atlantic Canada Conservation Data Centre 2020 botanical fieldwork. Atlantic Canada Conservation Data Centre, 17309 recs.
407	Churchill, J.L. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre, 2318 recs.
394	Benedict, B. Connell Herbarium Specimens (Data) . University New Brunswick, Fredericton. 2003.
348	Eaton, S. 2014. Nova Scotia Wood Turtle Database. Environment and Climate Change Canada, 4843 recs.
343	Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).
334	Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
305	Brunelle, PM. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
298	Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.
286	Churchill, J.L. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre, 907 recs.
285	Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
278	Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
267	Blaney, C.S. & Mazerolle, D.M. 2011. NB WTF Fieldwork on Magaguadavic & Lower St Croix Rivers. Atlantic Canada Conservation Data Centre, 4585 recs.
259	Churchill, J.L. 2019. Atlantic Canada Conservation Data Centre Fieldwork 2019. Atlantic Canada Conservation Data Centre.
258	Belliveau, A.G. 2020. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2019, 2020. E.C. Smith Herbarium.
249	Sollows, M.C., 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
245	Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
241	Klymko, J. 2018. Maritimes Butterfly Atlas database. Atlantic Canada Conservation Data Centre.
238	Paquet, Julie. 2018. Atlantic Canada Shorebird Survey (ACSS) database 2012-2018. Environment Canada, Canadian Wildlife Service.
215	Mazerolle, D.M. 2020. Atlantic Canada Conservation Data Centre botanical fieldwork 2019. Atlantic Canada Conservation Data Centre.
212	Mazerolle, D.M. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 13515 recs.
211	Blaney, C.S. 2020. Sean Blaney 2020 field data. Atlantic Canada Conservation Data Centre, 4407 records.
208	Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.
203	Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
201	Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar, 2007, 6914 recs.
192	Churchill, J.L.; Klymko, J.D. 2016. Bird Species at Risk Inventory on the Acadia Research Forest, 2016. Atlantic Canada Conservation Data Centre, 1043 recs.
184	Blaney, C.S. & Mazerolle, D.M. 2011. Field data from NCC properties at Musquash Harbour NB & Goose Lake NS. Atlantic Canada Conservation Data Centre, 1739 recs.
184	Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
181	Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
179	Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
177	Phinney, Lori. 2020. Pre- and post White-nose Syndrome bat acoustic monitoring, NS. Mersey Tobeatic Research Institute, 1279 recs.
170	Riley, J. 2020. Digby County lichen observations. Pers. comm. to J.L. Churchill.
169	Klymko, J. 2020. Atlantic Canada Conservation Data Centre zoological fieldwork 2019. Atlantic Canada Conservation Data Centre.
166	Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
165	Klymko, J. 2019. Atlantic Canada Conservation Data Centre zoological fieldwork 2018. Atlantic Canada Conservation Data Centre.
160	Epworth, W. 2012. Species at Risk records, 2009-11. Fort Folly Habitat Recovery Program, 162 recs.
157	Parks Canada, 2010. Specimens in or near National Parks in Atlantic Canada. Canadian National Museum, 3925 recs.
151	iNaturalist. 2018. iNaturalist Data Export 2018. iNaturalist.org and iNaturalist.ca, Web site: 11700 recs.
148	Belliveau, A.G. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
144	Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
129	Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
128	Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.

- 128 Gravel, Mireille. 2010. Coordonnées GPS et suivi des tortues marquées, 2005-07. Kouchibouguac National Park, 480 recs.
- 124 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2013. Atlantic Canada Conservation Data Centre Fieldwork 2013. Atlantic Canada Conservation Data Centre, 9000+ recs.
- 120 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.
- 118 Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.
- 114 Bishop, G. & Papoulias, M.; Arnold (Chaplin), M. 2005. Grand Lake Meadows field notes, Summer 2005. New Brunswick Federation of Naturalists, 1638 recs.
- 109 Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs.
- 109 Richardson, Leif. 2018. Maritimes Bombus records from various sources. Richardson, Leif.
- 101 Porter, Caitlin. 2021. Field data for 2020 in various locations across the Maritimes. Atlantic Canada Conservation Data Centre, 3977 records.
- 101 Riley, J. 2019. Digby County lichen observations. Pers. comm. to J.L. Churchill, 50 recs.
- 100 Boyne, A.W. 2000. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 168 recs.
- 99 Clayden, S. Digitization of Wolfgang Maass Nova Scotia forest lichen collections, 1964-2004. New Brunswick Museum. 2018.
- 98 iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- 96 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 93 Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
- 91 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 90 Belliveau, A.G. 2018. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2018. E.C. Smith Herbarium, 6226 recs.
- 90 Blaney, C.S. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.

# recs	CITATION
--------	----------

- 87 Honeyman, K. 2019. Unique Areas Database, 2018. J.D. Irving Ltd.
- 87 Mazerolle, D.M. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 78 Beardmore, T. 2017. Wood turtle data: observations May 2017. Nashwaaksis Stream, NB. Natural Resources Canada, 78 records.
- 78 Nussey, Pat & NCC staff. 2019. AEI tracked species records, 2016-2019. Chapman, C.J. (ed.) Atlantic Canada Conservation Data Centre, 333.
- 77 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2015. Atlantic Canada Conservation Data Centre Fieldwork 2015. Atlantic Canada Conservation Data Centre, # recs.
- 77 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 75 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
- 72 Robinson, S.L. 2015. 2014 field data.
- 70 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.
- 67 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- 67 Klymko, J. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre.
- 66 Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs.
- 65 NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca.
- 62 Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).
- 60 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 59 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 58 McNeil, J.A. 2016. Blandings Turtle (Emydoidea blandingii), Eastern Ribbonsnake (Thamnophis sauritus), Wood Turtle (Glyptemys insculpta), and Snapping Turtle (Chelydra serpentina) sightings, 2016. Mersey Tobeatic Research Institute, 774 records.
- 58 Thomas, A.W. 1996. A preliminary atlas of the butterflies of New Brunswick. New Brunswick Museum.
- 57 Belliveau, A.G., Churchill, J.L. 2019. Compilation of flora and fauna observation records from Isle Haute, Nova Scotia. Acadia University; Atlantic Canada Conservation Data Centre, 522 recs.
- 55 Klymko, J.J.D. 2016. 2015 field data. Atlantic Canada Conservation Data Centre.
- 54 e-Butterfly. 2016. Export of Maritimes records and photos. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 51 Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
- 50 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 46 Wisniowski, C. & Dowding, A. 2019. NB species occurrence data for 2016-2018. Nature Trust of New Brunswick.
- 44 McLean, K. 2019. Wood Turtle observations . Clean Annapolis River Project.
- 42 Neily, T.H. 2019. Tom Neily NS Bryophyte records (2009-2013). T.H. Neily, Atlantic Canada Conservation Data Centre, 1029 specimen records.
- 41 Wissink, R. 2006. Fundy National Park Digital Database. Parks Canada, 41 recs.
- 40 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 39 Brazner, J. 2016. Nova Scotia Forested Wetland Bird Surveys. Nova Scotia Department of Lands and Forestry.
- 39 McLean, K. 2020. Species occurrence records from Clean Annapolis River Project fieldwork in 2020. Clean Annapolis River Project, 206 records.
- 38 Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs.
- 37 Klymko, J.J.D.; Robinson, S.L. 2014. 2013 field data. Atlantic Canada Conservation Data Centre.
- 36 Blaney, C.S. 2019. Sean Blaney 2019 field data. Atlantic Canada Conservation Data Centre, 4407 records.
- 36 Cowie, F. 2007. Electrofishing Population Estimates 1979-98. Canadian Rivers Institute, 2698 recs.
- 36 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2009. New Brunswick Dept Natural Resources, 19 recs (14 active).
- 36 Spicer, C.D. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 211 recs.
- 34 Klymko, J.J.D. 2018. 2017 field data. Atlantic Canada Conservation Data Centre.
- 34 Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012.
- 32 Benjamin, L.K. (compiler). 2012. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 4965 recs.
- 32 McNeil, J.A. 2018. Wood Turtle records, 2018. Mersey Tobeatic Research Institute, 68 recs.
- 31 Jobin, C. & Clow, A., Van Dijk, J. 2019. Eastern Waterfan data, Mount Allison Fundy Field Camp 2019. Chapman, C.J. (ed.) Fundy National Park and Mount Allison University, 31 recs.
- 31 Sabine, M. 2016. Black Ash records from the NB DNR Forest Development Survey. New Brunswick Department of Natural Resources.
- 30 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 29 Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs.
- 29 Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013.
- 29 Scott, F.W. 2002. Nova Scotia Herpetofauna Atlas Database. Acadia University, Wolfville NS, 8856 recs.
- 26 McLean, K. 2020. Wood Turtle observations . Clean Annapolis River Project.
- 26 Porter, Caitlin. 2020. Observations for 26 EcoGifts sites in southwest New Brunswick. Atlantic Canada Conservation Data Centre, 1073 records.
- 25 Pronych, G. & Wilson, A. 1993. Atlas of Rare Vascular Plants in Nova Scotia. Nova Scotia Museum, Halifax NS, I:1-168, II:169-331. 1446 recs.
- 24 Beardmore, T. 2017. 2017 Butternut observations. Natural Resources Canada.
- 24 Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
- 24 East Coast Aquatics Inc. 2021. Species at Risk records from Spicer North Mountain Quarry Expansion Environmental Assessment. East Coast Aquatics, 44 records.
- 24 Wisniowski, C. & Dowding, A. 2020. NB species occurrence data for 2020. Nature Trust of New Brunswick.
- 23 Epworth, W. 2013. Species at Risk records, 2013. Fort Folly Habitat Recovery Program, 27 recs.
- 23 Patrick, Allison. 2021. Animal and plant records from NCC properties from 2019 and 2020. Nature Conservancy Canada.
- 23 Webster, R.P. 2004. Lepidopteran Records for National Wildlife Areas in New Brunswick. Webster, 1101 recs.
- 22 Basquill, S.P., Porter, C. 2019. Bryophyte and lichen specimens submitted to the E.C. Smith Herbarium. NS Department of Lands and Forestry.
- 22 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.

recs CITATION

- 22 Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs.
- 22 Sollows, M.C., 2009. NBM Science Collections databases: Coccinellid & Cerambycid Beetles. New Brunswick Museum, Saint John NB, download Feb. 2009, 569 recs.
- 20 Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998. The Butterflies of Canada. University of Toronto Press. 280 pp+plates.
- 20 McLean, K. 2019. Species At Risk observations. Clean Annapolis River Project.
- 19 Klymko, J.J.D. 2016. 2014 field data. Atlantic Canada Conservation Data Centre.
- 19 Munro, Marian K. Tracked lichen specimens, Nova Scotia Provincial Museum of Natural History Herbarium. Atlantic Canada Conservation Data Centre. 2019.
- 18 McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick. New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
- 17 Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
- 16 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- 16 Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.
- 16 Caissie, A. Herbarium Records. Fundy National Park, Alma NB. 1961-1993.
- 16 Tingley, S. (compiler). 2001. Butterflies of New Brunswick. , Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.
- 16 Toms, B. 2018. Bat Species data from www.batconservation.ca for Nova Scotia. Mersey Tobeatic Research Institute, 547 Records.
- 15 Sabine, M. 2016. NB DNR staff incidental Black Ash observations. New Brunswick Department of Natural Resources.
- 14 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000.
- 14 Chapman, C.J. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 11171 recs.
- 14 Clayden, S.R. 2005. Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia). Committee on the Status of Endangered Wildlife in Canada, 27 recs.
- 14 Webster, R.P. Database of R.P. Webster butterfly collection. 2017.
- 13 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.
- 13 Wissink, R. 2000. Rare Plants of Fundy: maps. Parks Canada, 20 recs.
- 12 Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs.
- 12 Manthorne, A. 2019. Incidental aerial insectivore observations. Birds Canada.
- 12 Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp.
- 11 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99. , Pers. comm. to K.A. Bredin. 91 recs.
- 11 Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- 11 Haughian, S.R. 2018. Description of Fuscopannaria leucosticta field work in 2017. New Brunswick Museum, 314 recs.
- 11 Mersey Tobetic Research Institute. 2021. 2020 Monarch records from the MTRI monitoring program. Mersey Tobetic Research Institute, 72 records.
- 11 Neily, T. H. 2018. Lichen and Bryophyte records, AEI 2017-2018. Tom Neily; Atlantic Canada Conservation Data Centre.
- 10 Amirault, D.L. & Stewart, J. 2007. Piping Plover Database 1894-2006. Canadian Wildlife Service, Sackville, 3344 recs, 1228 new.
- 10 Belliveau, A.G. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 10695 recs.
- 10 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active).
- 10 Neily, T.H. Tom Neily NS Sphagnum records (2009-2014). T.H. Neily, Atlantic Canada Conservation Data Centre. 2019.
- 10 Noseworthy, J. 2013. Van Brunt's Jacob's-ladder observations along tributary of Dipper Harbour Ck. Nature Conservancy of Canada, 10 recs.
- 10 Zinck, M. & Roland, A.E. 1998. Roland's Flora of Nova Scotia. Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp.
- 9 Bredin, K.A. 2001. WTF Project: Freshwater Mussel Fieldwork in Freshwater Species data. Atlantic Canada Conservation Data Centere, 101 recs.
- 9 Richardson, D., Anderson, F., Cameron, R, McMullin, T., Clayden, S. 2014. Field Work Report on Black Foam Lichen (Anzia colpodes). COSEWIC.
- 9 Wisniowski, C. 2018. Optimizing wood turtle conservation in New Brunswick through collaboration, strategic planning, and landowner outreach. Nature Trust of New Brunswick, 10 records.
- 8 Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
- 8 Hinds, H.R. 1992. Rare Vascular Plants of Fundy National Park. , 10 recs.
- 8 King, Amelia. 2020. Belleisle Watershed Coalition Turtle Watch Data. Belleisle Watershed Coalition.
- 8 Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
- 8 Patrick, A.; Horne, D.; Noseworthy, J. et. al. 2017. Field data for Nova Scotia and New Brunswick, 2015 and 2017. Nature Conservancy of Canada.
- 8 Shortt, R. Connell Herbarium Black Ash specimens. University New Brunswick, Fredericton. 2019.
- 8 Spicer, C.D. 2001. Powerline Corridor Botanical Surveys, Charlotte & Saint John Counties. A M E C International, 1269 recs.
- 8 Webster, R.P. 2006. Survey for Suitable Salt Marshes for the Maritime Ringlet, New Populations of the Cobblestone Tiger Beetle, & New Localities of Three Rare Butterfly Species. New Brunswick WTF Report, 28 recs.
- 8 Westwood, A., Staicer, C. 2016. Nova Scotia landbird Species at Risk observations. Dalhousie University.
- 7 Blaney, C.S.; Mazerolle, D.M. 2011. Fieldwork 2011. Atlantic Canada Conservation Data Centre. Sackville NB.
- 7 Klymko, J. Dataset of butterfly records at the New Brunswick Museum not yet accessioned by the museum. Atlantic Canada Conservation Data Centre. 2016.
- 7 Oldham, M.J. 2000. Oldham database records from Maritime provinces. Oldham, M.J; ONHIC, 487 recs.
- 7 Popma, T.M. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 113 recs.
- 7 Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- 7 Webster, R.P. Atlantic Forestry Centre Insect Collection, Maritimes butterfly records. Natural Resources Canada. 2014.
- 6 Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000
- ⁶ Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
- 6 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.
- 6 Christie, D.S. 2000. Christmas Bird Count Data, 1997-2000. Nature NB, 54 recs.
- 6 Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
- 6 e-Butterfly. 2019. Export of Maritimes records and photos. McFarland, K. (ed.) e-butterfly.org.
- 6 Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.

# recs	
6	McNeil, J.A. 2019. Snapping Turtle records, 2019. Mersey Tobeatic Research Institute.
6	Neily, T.H. & Pepper, C.; Toms, B. 2020. Nova Scotia lichen database [as of 2020-03-18]. Mersey Tobeatic Research Institute.
6	Parker, M.S.R. 2011. Hampton Wind Farm 2010: significant floral/faunal observations., 13 recs.
5	Bastien, D. 2017. Rare Peatland plant observations. Pers. comm. to H. Askanas, New Brunswick Department of Energy and Resource Development.
5	Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
5	Cameron, R.P. 2018. Degelia plumbea records. Nova Scotia Environment.
5	Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.
5	e-Butterfly. 2018. Selected Maritimes butterfly records from 2016 and 2017. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
5	Ferguson, D.C. 1954. The Lepidoptera of Nova Scotia. Part I, macrolepidoptera. Proceedings of the Nova Scotian Institute of Science, 23(3), 161-375.
5	G.Proulx, R. Newell, A. Mills, D. Bayne. 2018. Selaginella rupestris records, Digby Co. Nova Scotia Lands and Forestry, 1387601 recs.
5	NatureServe Canada. 2018. iNaturalist Butterfly Data Export. iNaturalist.org and iNaturalist.ca.
5	Neily, T.H. & Pepper, C.; Toms, B. 2020. Nova Scotia lichen database [as of 2020-05-25]. Mersey Tobeatic Research Institute, 668 recs.
4	Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08.
4	Clayden, S.R. 2020. Email to Sean Blaney regarding Pilophorus cereus and P. fibula at Fidele Lake area, Charlotte County, NB. pers. comm., 2 records.
4	Gravel, Mireille. 2010. Coordonnées des tortues des bois Salmon River Road, 2005. Kouchibouquac National Park, 4 recs.
4	Hicklin, P.W. 1995. The Maritime Shorebird Survey Newsletter. Calidris, No. 3. 6 recs.
4	LaPaix, R.W. 2014. Trans-Canada Energy East Pipeline Environmental Assessment, Records from 2013-14. Stantec Consulting, 5 recs.
4	Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
4	Majka, C.G. & McCorquodale, D.B. 2006. The Coccinellidae (Coleoptera) of the Maritime Provinces of Canada: new records, biogeographic notes, and conservation concerns. Zootaxa. Zootaxa, 1154: 49-68. 7 recs.
4	Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs.
4	NS DNR. 2017. Black Ash records from NS DNR Permanent Sample Plots (PSPs), 1965-2016. NS Dept of Natural Resources.
4	Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
4	Phillips, B. 2017. Emails to John Klymko regarding Eastern Waterfan (Peltigera hydrothyria) occurrences in Fundy National Park. Fundy Biosphere Reserve, 3 recs.
4	Phinney, Lori; Toms, Brad; et. al. 2016. Bank Swallows (Riparia riparia) in Nova Scotia: inventory and assessment of colonies. Merset Tobeiatc Research Institute, 25 recs.
3	Adams, J. & Herman, T.B. 1998. Thesis, Unpublished map of C. insculpta sightings. Acadia University, Wolfville NS, 88 recs.
3	Benjamin, L.K. 2009. NSDNR Fieldwork & Consultants Reports. Nova Scotia Dept Natural Resources, 143 recs.
3	Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip., 135 rec.
3	Bishop, G., Bagnell, B.A. 2004. Site Assessment of Musquash Harbour, Nature Conservancy of Canada Property - Preliminary Botanical Survey. B&B Botanical, 12pp.
3	Catling, P.M. 1981. Taxonomy of autumn-flowering Spiranthes species of southern Nova Scotia in Can. J. Bot., 59:1250-1273. 30 recs.
3	Clayden, S.R. 2006. Pseudevernia cladonia records. NB Museum. Pers. comm. to S. Blaney, Dec, 4 recs.
3	Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp.
3	Forbes, G. 2001. Bog Lemming, Phalarope records, NB., Pers. comm. to K.A. Bredin. 6 recs.
3	Klymko, J.J.D. 2012. Insect field work & submissions. Atlantic Canada Conservation Data Centre, 852 recs.
3	Lautenschlager, R.A. 2005. Survey for Species at Risk on the Canadian Forest Service's Acadia Research Forest near Fredericton, New Brunswick. Atlantic Canada Conservation Data Centre, 6. 3 recs.
3	Majka, C. 2009. Université de Moncton Insect Collection: Carabidae, Cerambycidae, Coccinellidae. Université de Moncton, 540 recs.
3	Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2014.
3	Nash, Vicky. 2018. Hammond River Angling Association Wood Turtle observations. Hammond River Angling Association, 3 recs.
3	Paquet, Julie. 2019. Atlantic Canada Shorebird Survey ACSS database for 2019. Environment Canada, Canadian Wildlife Service.
3	Riley, J. 2020. Digby County Pannaria lurida observations. Pers. comm. to J.L. Churchill.
3	Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs.
2	Amiro, Peter G. 1998. Atlantic Salmon: Inner Bay of Fundy SFA 22 & part of SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-12. 4 recs.
2	Anon. 2017. Export of Maritimes Butterfly records. Global Biodiversity Information Facility (GBIF).
2	Anon. Dataset of butterfly records for the Maritime provinces. Museum of Comparative Zoology, Harvard University. 2017.
2	Bagnell, B.A. 2003. Update to New Brunswick Rare Bryophyte Occurrences. B&B Botanical, Sussex, 5 recs.
2	Basquill, S.P. 2018. Various specimens, NS DNR field work, NS Department of Natural Resources, 10.
2	Belliveau, A.G. 2010. Validus specimens, No Drivensid work, No Department of National Resolution, No. 1997
2	Boyne, A.W. 2000. Harlequin Duck Surveys. Canadian Wildlife Service, Sackville, unpublished data. 5 recs.
2	Cameron, R.P. 2009. Cyanolichen database. Nova Scotta Environment & Labour, 1724 recs.
2	Clayden, S.R.; Goltz, J.P. 2018. Emails to Sean Blaney on occurrence of Polygonum douglasii at Big Bluff, Kings Co., New Brunswick. pers. comm., 1 record.
2	Clayden, S.K., Boliz, S.F. 2018. Emails to Sean Blaney on occurrence of Polygonalin douglasinal big blan, Kings CC., New Blanswick. pers. comm., Theorem. Clerc, P. 2011. Notes on the genus Usnea Adanson (lichenized Ascomycota). III. Bibliotheca Lichenologica, 106, 41-51.
2	Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line. 2 recs.

- Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs. 2 Edsall, J. 1993. Spring 1993 Report. New Brunswick Bird Info Line, 3 recs.
- 2
- 2
- 2
- Goltz, J. 2017. Harlequin Duck observations. New Brunswick Department of Agriculture, Aquaculture and Fisheries. Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs. Hinds, H.R. 1999. A Vascular Plant Survey of the Musquash Estuary in New Brunswick., 12pp. Madden, A. 1998. Wood Turtle records in northern NB. New Brunswick Dept of Natural Resources & Energy, Campbellton, Pers. comm. to S.H. Gerriets. 16 recs. 2
- Manning, I. 2020. Peregrine Falcon nest site observations. pers. comm. to J. Churchill. 2
- Nature Trust of New Brunswick. 2020. Nature Trust of New Brunswick 2020 staff observations of species occurence data. Nature Trust of New Brunswick, 133 records. 2
- NatureServe Canada. 2018. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca. 2

# recs	CITATION
0	Perrin, J., Russel, J. 1912. Catalogue of Butterflies and Moths, Mostly Collected in the Neighborhood of Halifax and Digby, Nova Scotia. Proceedings and Transactions of the Nova Scotian Institute of Science, 12(3)

2 258-290.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

- 2 Phinney, L. 2019. Little Brown Myotis maternal colony counts and birdSAR, 2019. Mersey Tobeatic Research Institute.
- 2 Walker, E.M. 1942. Additions to the List of Odonates of the Maritime Provinces. Proc. Nova Scotian Inst. Sci., 20. 4: 159-176. 2 recs.
- 2 Webster, R.P. Email to John Klymko detailing records of butterflies collected by Reggie Webster in June 2017. Webster, R.P. 2017.
- 2 White, S. 2019. Notable species sightings, 2018. East Coast Aquatics.
- 1 Amirault, D.L. & McKnight, J. 2003. Piping Plover Database 1991-2003. Canadian Wildlife Service, Sackville, unpublished data. 7 recs.
- 1 Amirault, D.L. 1997-2000. Unpublished files. Canadian Wildlife Service, Sackville, 470 recs.
- 1 Basset, I.J. & Crompton, C.W. 1978. The Genus Suaeda (Chenopodiaceae) in Canada. Canadian Journal of Botany, 56: 581-591.
- 1 Belliveau, A.G. 2020. Email to Colin Chapman on new NS locations for Allium tricoccum. Chapman, C.J. (ed.) Acadia University.
- 1 Belliveau, A.G. E.C. Smith Herbarium Specimen Database 2019. E.C. Smith Herbarium, Acadia University. 2019.
- 1 Benjamin, L.K. 2012. NSDNR fieldwork & consultant reports 2008-2012. Nova Scotia Dept Natural Resources, 196 recs.
- 1 Blaney, C.S. 1999. Fieldwork 1999. Atlantic Canada Conservation Data Centre. Sackville NB, 292 recs.
- 1 Blaney, C.S. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre.
- 1 Brazner, J.; Hill, N. 2018. Plant observations along the Cornwallis River, Nova Scotia. Nova Scotia Department of Lands and Forestry.
- 1 Bredin, K.A. 2000. NB & NS Bog Project, fieldwork. Atlantic Canada Conservation Data Centre, Sackville, 1 rec.
- 1 Bredin, K.A. 2001. NB Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 16 recs.
- 1 Brunelle, P.-M. 2005. Wood Turtle observations. Pers. comm. to S.H. Gerriets, 21 Sep. 3 recs, 3 recs.
- 1 Calhoun, J.C. Butterfly records databased at the McGuire Center for Lepidoptera and Biodiversity. Calhoun, J.C. 2020.
- 1 Cameron, R.P. 2009. Erioderma pedicellatum database, 1979-2008. Dept Environment & Labour, 103 recs.
- 1 Clark, R. 2021. Email to S. Blaney, re: Wood Turtle observation from near Hunters Home, Queens Co., NB., May 20 2021. Rosemarie Clark <rsmr_clrk.luvsfam@hotmail.ca>, 1 record.
- 1 Clayden, S.R. 2007. NBM Science Collections. Pers. comm. to D. Mazerolle, 1 rec.
- 1 Clayden, S.R. 2020. Email regarding Blue Felt Lichen (Pectenia plumbea) occurrences in New Brunswick, from Stephen Clayden to Sean Blaney. pers. comm., 2 records.
- 1 Cook, K. 2016. Wood Turtle record. Pers comm. to Nova Scotia Department of Lands and Forestry.
- 1 COSEWIC (Committee on the Status of Wildlife in Canada). 2013. COSEWIC Assessment and Status Report on the Eastern Waterfan Peltigera hydrothyria in Canada. COSEWIC, 46 pp.
- 1 Crowell, M.J. Plant specimens from Nictaux, NS sent to Sean Blaney for identification. Jacques Whitford Limited. 2005.
- 1 Dadswell, M.J. 1979. Status Report on Shortnose Sturgeon (Acipenser brevirostrum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 15 pp.
- Daury, R.W. & Bateman, M.C. 1996. The Barrow's Goldeneye (Bucephala islandica) in the Atlantic Provinces and Maine. Canadian Wildlife Service, Sackville, 47pp.
- Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces. , Science Stock Status Report D3-22. 13 recs.
- 1 Doucet, D.A. & Edsall, J. 2007. Ophiogomphus howei records. Atlantic Canada Conservation Data Centre, Sackville NB, 21 recs.
- Edsall, J. 1993. Summer 1993 Report. New Brunswick Bird Info Line, 2 recs.
- Forbes, G.J. 2020. Email regarding a Snapping Turtle (Chelydra serpentina) occurrence in New Brunswick, from Graham Forbes to John Klymko. pers. comm, 1 record.
- Gautreau-Daigle, H. 2007. Rare plant records from peatland surveys. Coastal Zones Research Institute, Shippagan NB. Pers. comm. to D.M. Mazerolle, 39 recs.
- Goltz, J.P. 2001. Botany Ramblings April 29-June 30, 2001. N.B. Naturalist, 28 (2): 51-2. 8 recs.
- Hicklin, P.W. 1990. Shorebird Concentration Sites (unpubl. data). Canadian Wildlife Service, Sackville, 296 sites, 30 spp.
- Hill, N. 2014. 2014 Monarch email report, Bridgetown, NS. Fern Hill Institute for Plant Conservation.
- Hill, N.M. 1994. Status report on the Long's bulrush Scirpus longii in Canada. Committee on the Status of Endangered Wildlife in Canada, 7 recs.
- Hill, N.M., Myra, M. 2017. Email to Sean Blaney regarding rich intervale flora on Nictaux River. Fern Hill Institute, 3 records.
- Hinds, H.R. 2000. Rare plants of Fundy in Rare Plants of Fundy: maps. Wissink, R. (ed.) Parks Canada, 2 recs.
- Holder, M. & Kingsley, A.L. 2000. Peatland Insects in NB & NS: Results of surveys in 10 bogs during summer 2000. Atlantic Canada Conservation Data Centre, Sackville, 118 recs.
- Jessop, B. 2004. Acipenser oxyrinchus locations. Dept of Fisheries & Oceans, Atlantic Region, Pers. comm. to K. Bredin. 1 rec.
- Jolicoeur, G. 2008. Anticosti Aster at Chapel Bar, St John River. QC DOE? Pers. comm. to D.M. Mazerolle, 1 rec.
- Kirkland, G.L. Jr. & Schmidt, D.F. 1982. Abundance, habitat, reproduction & morphology of forest-dwelling small mammals of NS & south-eastern NB. Can. Field-Nat., 96(2): 156-162. 1 rec.
- Kirkland, G.L. Jr., Schmidt, D.F. & Kirkland, C.J. 1979. First record of the long-tailed shrew (Sorex dispar) in New Brunswick. Can. Field-Nat., 93: 195-198. 1 rec.
- 1 Klymko, J. Univeriste de Moncton insect collection butterfly record dataset. Atlantic Canada Conservation Data Centre. 2017.
- Klymko, J., Sabine, D. 2015. Verification of the occurrence of Bombus affinis (Hymenoptera: Apidae) in New Brunswick, Canada. Journal of and Acadian Entomological Society, 11: 22-25.
- Klymko, J.J.D.; Robinson, S.L. 2012. 2012 field data. Atlantic Canada Conservation Data Centre, 447 recs.
- LaFlamme, C. 2008. Disovery of Goodyera pubescens at Springdale, NB. Amec Earth and Environmental. Pers. comm. to D.M. Mazerolle, 1 rec.
- 1 Loo, J. & MacDougall, A. 1994. GAP analysis: Summary Report. Fundy Model Forest, 2 recs.
- 1 MacFarlane, Wayne. 2018. Skunk Cabbage observation on Long Island, Kings Co. NB. Pers. comm., 1 records.
- 1 MacKinnon, D.S. 2013. Email report of Peregrine Falcon nest E of St. Martins NB. NS Department of Environment and Labour, 1 record.
- 1 Majka, C.G. 1967. The butterflies of Albert County. Bulletin of the Moncton Naturalists Club, 13-20.
- 1 Manning, I. 2020. Peregrine Falcon observation. Pers. comm. to J.L. Churchill.
- 1 McAlpine, D.F. & Collingwood, L. 1989. Rare Salamander Survey in Fundy National Park. Fundy National Park, Internal Documents, 1 rec.
- 1 McAlpine, D.F. & Cox, S.L., McCabe, D.A., Schnare, J.-L. 2004. Occurrence of the Long-tailed Shrew (Sorex dispar) in the Nerepis Hills NB. Northeastern Naturalist, vol 11 (4) 383-386. 1 rec.
- 1 McAlpine, D.F. 1983. Species Record Cards. Fundy National Park, Library, 1 rec.
- 1 McIntosh, W. 1904. Supplementary List of the Lepidoptera of New Brunswick. Bulletin of the Natural History Society of New Brunswick, 23: 355-357.
- 1 McNeil, J.A. 2019. Eastern Painted Turtle trapping records, 2019. Mersey Tobeatic Research Institute.
- 1 McNeil, J.A. 2020. Snapping Turtle and Eastern Painted Turtle records, 2020. Mersey Tobeatic Research Institute.

CITATION # recs

- Neily, T.H. & Pepper, C.; Toms, B. 2013. Nova Scotia lichen location database. Mersey Tobeatic Research Institute, 1301 records. 1
- Nye, T. 2002. Wood Turtle observations in Westmorland, Queens Cos., Pers. com. to S.H. Gerriets, Dec. 3. 3 recs. 1
- Ogden, K. Nova Scotia Museum butterfly specimen database. Nova Scotia Museum. 2017. 1
- Parker, M. 2018. East Coast Aquatics ACCDC 2018 Report. East Coast Aquatics, 12 records. 1
- Poirier, Nelson. 2012. Geranium robertianum record for NB. Pers. comm. to S. Blaney, Sep. 6, 1 rec. 1
- 1 Powell, B.C. 1967. Female sexual cycles of Chrysemy spicta & Clemmys insculpta in Nova Scotia. Can. Field-Nat., 81:134-139. 26 recs. 1
- Richardson, D., Anderson, F., Cameron, R, Pepper, C., Clayden, S. 2015. Field Work Report on the Wrinkled Shingle lichen (Pannaria lurida). COSEWIC.
- Robicheau, C. 2019. Atlantic Canada Conservation Data Centre Fieldwork 2019. Atlantic Canada Conservation Data Centre. 1
- Sabine, D.L. & Goltz, J.P. 2006. Discovery of Utricularia resupinata at Little Otter Lake, CFB Gagetown. Pers. comm. to D.M. Mazerolle, 1 rec. 1
- Sabine, D.L. 2004. Specimen data: Whittaker Lake & Marvsville NB, Pers. comm. to C.S. Blanev. 2pp. 4 recs. 1
- Sabine, D.L. 2012. Bronze Copper records, 2003-06. New Brunswick Dept of Natural Resources, 5 recs. 1
- Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier. 1
- Sabine, M. 2016. Black Ash records from NB DNR permanent forest sampling Plots, New Brunswick Department of Natural Resources, 39 recs. 1
- Simpson, D. Collection sites for Black Ash seed lots preserved at the National Tree Seed Centre in Fredericton NB. National Tree Seed Centre, Canadian Forest Service. 2016. 1
- Smith, M. 2013. Email to Sean Blaney regarding Schizaea pusilla at Caribou Plain Bog, Fundy NP. pers. comm., 1 rec. 1
- Spicer, C.D. & Harries, H. 2001. Mount Allison Herbarium Specimens. Mount Allison University, 128 recs. 1
- Staicer, C. & Bliss, S.; Achenbach, L. 2017. Occurrences of tracked breeding birds in forested wetlands. , 303 records. 1
- Steeves, R. 2004. Goodyera pubescens occurrence from Colpitts Brook, Albert Co., Pers. comm. to C.S. Blaney. 1 rec. 1
- 1 Taylor, Eric B. 1997. Status of the Sympatric Smelt (genus Osmerus) Populations of Lake Utopia, New Brunswick. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
- 1 Toner, M. 2005. Listera australis population at Bull Pasture Plains. NB Dept of Natural Resources. Pers. comm. to S. Blaney, 8 recs.
- Toner, M. 2009. Wood Turtle Sightings. NB Dept of Natural Resources. Pers. comm. to S. Gerriets, Jul 13 & Sep 2, 2 recs. 1
- Toner, M. 2011. Wood Turtle sighting. NB Dept of Natural Resources. Pers. com. to S. Gerriets, Sep 2, photo, 1 rec. 1
- Torenvliet, Ed. 2010. Wood Turtle roadkill. NB Dept of Transport. Pers. com. to R. Lautenschlager, Aug. 20, photos, 1 rec. 1
- Tremblay, E. 2006. Kouchibouguac National Park Digital Database. Parks Canada, 105 recs. 1
- Vinison, Neil. 2018. Record of Saxifraga paniculata from Fundy NP, emailed to S. Blaney 19 July 2018. Pers. comm. 1
- Vinson, N. 2018. Email to S. Blaney regarding new occurrence of Saxifraga paniculata on Point Wolfe River. Parks Canada, 1 record. 1
- Vinson, N. 2019. Eastern Waterfan record from Long Reach Brook, Fundy National Park, June 12, 2019. Parks Canada Agency, Fundy National Park, 1 record. 1
- Vinson, Neil, 2016, Emails to Sean Blaney regarding vellow flower (Primula veris) and coastal habitat leaf rosettes (Primula laurentiana) in Fundy National Park, pers, comm., 2 rec. 1
- Webster, R.P. Reggie Webster's records of Encyclops caerulea . pers. collection. 2018. 1
- White, S. 2018. Notable species sightings, 2016-2017. East Coast Aquatics. 1
- Wissink, R. 2000. Four-toed Salamander Survey results, 2000. Fundy National Park, Internal Documents, 1 rec. 1

APPENDIX F

Wetland Delineation and WESP Data Sheets

Project Site: Hylyne Date: August 12 2022 Sample Point: Wetland 1 Applicant/Owner: Tony Raymond Field Investigator(s): Jennifer Hachey, Laura Moore Coordinates: County: 45°30'29.78"N, 65°48'38.51"W Kings PID: 30344352 Do normal environmental conditions exist on-site Ves No if no explain: Atypical Situation?
Yes Vo Explain: \square Yes \blacksquare No Explain: Is this a potential **Problem Area**? — Wetland Determination-(Check One Only For Each Criteria) Dominant Hydrophytic Vegetation Wetland Wetland Hydrology ✓ Yes □ No Determination Hydric Soils ✓ Yes □ No 🗸 Yes 🗌 No Wetland Type: Forested swamp Rational for Determination: Vegetation composition = Vegetation = **Dominance Test Worksheet** Tree Stratum: (Plot size: 10m) % Cover Dominant Indicator 1. Thuja occidentalis 10 х FACW # of Dominant Species that 2. Acer rubrum 5 FAC are OBL, FACW, FAC: 5 3. Populus balsamifera 30 Х FACW 4. Betula populifolia 10 Х FAC Total # of Dominant Species 5. across all strata: 6 55 = Total Cover % of Dominant Species that Shrub Stratum: (Plot size: 5m) % Cover Dominant Indicator are OBL, FACW, FAC: 83.00 1. Prunus virginiana 5 FACU х 2. Betula populifolia 5 FAC **Prevalence Index Worksheet:** Х 3. Total % Cover of: Multiply by: 4. **OBL** Species: x 1 = x 1 = FACW Species: 5. FAC Species: 10 = Total Cover x 1 = FACU Species: x 1 = Herb Stratum: (Plot size: 1.5m) Column Totals: x 1 = % Cover Dominant Indicator 1. Onoclea sensibilis FACW Prevalence Index = B/A =5 10 2. Rubus idaeus FACх 3. Equisetum sylvaticum 5 FACW Hydrophytic Vegetation Indicators: 4. Maianthemum canadense FACU Rapid Test for Hydrophytic Vegetation 5 \checkmark 5. Trientalis borealis Dominance Test is > 50% 5 FAC \checkmark Prevalence Index is $\leq 3.0^{\circ}$ 6. Dryopteris atropalustris 5 OBL Morphological Adaptations¹ (explain) 7. Problematic Hydrophytic Vegetation' (explain) 8. Indicators of hydric soil and wetland hydrology 9. must be present, unless disturbed or problematic 10. 35 = Total Cover Hydrophytic Vegetation Present? Yes No Comments:

Primary Hydrological Indicators: (minimum of one is required: check all that appN) Staturation (A3) Aquatic Fauna (B13) Aquatic Table (A2) Aquatic Fauna (B13) Staturation (A3) Math Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1) Selement Deposits (B2) Oxtidere Rhizospheres on Living Roots (C3) Drift Deposits (B3) Presence of Reduced from (C4) Algal Mat or Crust (B4) Recent from reduction in filled Soils (C6) Innuation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Secondary Indicators: (minimum of two required) Geomorphic Position (D2) Markac Soil Cracks (B6) Staturation Visible on Aerial Imagery (C9) Field Observations: Sturate Over Stracks (B6) Geomorphic Position (D2) Saturation Visible on Aerial Imagery (C9) Field Observations: Wetland Hydrolody Present? Ives I No Subrace Water Present? Yes I No Depth: Texture Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Texture Remarks 0-12 organic Color (moist) % Type Loc Texture Remarks		Hydrology		
High Water Table (A2) Aquatic Fauna (B13) Gaturation (A3) Mail Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sectiment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Drift Deposits (B3) Presence of Reduced from (C4) Raja Mat or Cruss (B4) Recent from reduction in tilled Solis (C6) Thin Muck Surface (C7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Stunted or Stressed Plants (D1) Drainage Patterns (B10) Geomorphic Position (D2) Moss Trim Lines (B16) Stunted or Stressed Plants (D1) Drainage Patterns (B10) Geomorphic Position (D2) Mass Trim Lines (B16) Shallow Aquitard (D3) Surface Water Present? Yes _ No Vaster Table Present? Yes _ No Vaster Table Present? Yes _ No Vaster Table Present? Yes _ No Depth: Yes _ No Depth: Yes _ No Coord (moist) Color (moist) Yes _ No Depth (m) Matrix Redox Features Color (moist) Color (moist) Yes _ No Depth (m) Matrix Redox Elevent or confirm t	Primary H	ydrological Indicators: (minimum of one is required; of	check a	all that apply)
Saturation (A3) Mair Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1) Diff Deposits (B3) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron reduction in tilled Solis (C6) Hundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (minimum of two required) Genomorphic Position (D2) Burlace Soil Cracks (B6) Stunted or Stressed Plants (D1) Genomorphic Position (D2) Shallow Aquitard (D3) Dry-Season Water Table (C2) Microtopographic Relief (D4) FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) Field Observations: Surface Water Present? Water Table Present? Yes □ No Depth: Water Table Present? West Present? Profile Redox Features Profile Redox Features Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Color (moist) % Color (moist) *1222 Organic *22-27 TOYR 6/2 *1222 Organic		Surface Water (A1)	\checkmark	Water Stained Leaves (B9)
Saturation (A3) Mait Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxid/2zed Rhizospheres on Living Roots (C3) Partin Deposits (B5) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron reduction in tilled Soils (C6) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (minimum of two required) Genomorphic Position (D2) Drihage Patterns (B10) Genomorphic Position (D2) Drivins Burrows (C8) Staturation Nisble on Aerial Imagery (C9) Field Observations: Surface Water Present? Surface Water Present? Yes		High Water Table (A2)		Aquatic Fauna (B13)
Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron reduction in tilled Soils (C6) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Surface Soil Cracks (B6) Secondary Indicators: (minimum of two required) Surface Soil Cracks (B6) Drinage Pattern (B10) Geomorphic Position (D2) Moss Trin Lines (B16) Shallow Aquitard (D3) Microtopographic Relief (D4) Craylish Burrows (C8) Surface Vater Table (C2) Microtopographic Relief (D4) Saturation Visible on Aerial Imagery (C9) FAC-Neutral Test (D5) Field Observations: Surface Non Depth: Surface Vater Present? Vest No Depth: Matrix Redox Features Color (moist) Color (moist) % Type! Ortaganic Color (moist) % Type: Cocr Texture Profile Description: Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains *Location: PL=Pore Lining, M=Matrix <			Π	
Sediment Deposits (B2) ○ Did/Zed Rhizospheres on Living Roots (C3) Postit Deposits (B3) Presence of Reduced Iron (C4) Algal Mat or Crust (B4) Recent Iron reduction in tilled Soils (C6) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (Intimuum of two required) Other (Explain in Remarks) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) Darinage Patterns (B10) Geomorphic Position (D2) Shallow Aquitard (D3) Dry-Season Water Table (C2) Surface Water Present? Yets ⊇ No Depth: Water Table Present? Yets ⊇ No Depth: Yets ⊇ No Depth: Image: Soil Profile Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Matrix Redox Features Color (moist) Type Or graphic Zizz27 TOYR 6/6 Saturation America (S1) Profile Seconder (C4) Profile Seconder (C4) Seconder Water Table profile Profile Profile Descrute Texture			_	
□ Drift Deposits (B3) □ Presence of Reduced Iron (C4) □ Algal Mat or Crust (B4) □ Recent from reduction in tilled Soils (C6) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (minimum of two required) □ Thin Muck Surface (C7) □ Dinage Patterns (B10) □ Geomorphic Position (D2) □ Moss Trim Lines (B16) □ Shallow Aquitard (D3) □ Dry-Season Water Table (C2) □ Microtopographic Relief (D4) □ Crayfish Burrows (C8) □ FAC-Neutral Test (D5) Suface Water Present? □ ves □ No Depth: 1 Comments: 1 Coor (moist) % Type! Wetland Hydrolody Present? □ ves □ No Profile Description: Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Profile Description: Color (moist) % Type! Loc Texture Remarks 0:12 organic 12:22 TOYR 6/6 □ □ Textur				
Algal Matrix Crust (B4) Recent from reducing in tilled Soils (C6) Inordation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Stunted or Stressed Plants (D1) Secondary Indicators: (minimum of two required) Stuntace Soil Cracks (B6) Drainage Patterns (B10) Geomorphic Position (D2) Mos Tim Lines (B16) Shallow Aquitard (D3) Dry-Season Water Table (C2) Microtopographic Relief (D4) Frayfish Burrows (C8) FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) Field Observations: Surface Water Present? Yes No Depth: Water Table Present? Yes No Depth: Yes No Depth: Yes No Depth: Saturation Present? Yes No Depth: Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Color (moist) % Color (moist) 0-12 organic 12:222 TOYR 6/6 22:27 TOYR 6/6 Statifice Alayers (A5) Stripped Matrix (S6) Black Histic (A3) Dark Surface (S7) Histosoi (A1) Dapleted Matrix				
Iron Deposits (B5) □ Thin Muck Surface (C7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (minimum of two required) □ Other (Explain in Remarks) Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) □ Dariage Patterns (B10) □ Geomorphic Position (D2) □ Moss Tim Lines (B16) □ Shallow Aquitard (D3) □ Dry-Season Water Table (C2) Microtoporgraphic Relief (D4) □ Craylish Burrows (C8) □ FAC-Neutral Test (D5) Eled Observations: Water Table Present? Vest No Depth: Watar able Present? Vest No Depth:			_	
Image: Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (minimum of two required) Sturiace Soil Cracks (B6) Stunted or Stressed Plants (D1) Destination (D2) Drainage Patterns (B10) Geomorphic Position (D2) Diversity of the start of the sta			_	
Sparsely Vegetated Concave Surface (B8) Secondary Indicators: (minimum of two required) Surface Soil Cracks (B6) Water Table (C2) Microtopographic Relief (D4) FAC-Neutral Test (D5) Field Observations: Surface Water Present? Ves No Depth:			_	
Secondary Indicators: (minimum of two required) Surface Soil Cracks (B6) Geomorphic Position (D2) Drainage Patterns (B10) Geomorphic Position (D2) Moss Trim Lines (B16) Shallow Aquitard (D3) Dry-Season Water Table (C2) Microtopographic Relief (D4) Fac-Neutral Test (D5) FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) FAC-Neutral Test (D5) Field Observations: Wetand Hydrolody Present? [2] Yes [] No Surface Water Present? Yes [] No Water Table Present? Yes [] No Water Table Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features				Other (Explain in Remarks)
Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) □ Drainage Patterns (B10) □ Geomorphic Position (D2) □ Moss Trim Lines (B16) □ Shallow Aquitard (D3) □ Dry-Season Water Table (C2) □ Microtopographic Relief (D4) □ Crafish Burrows (C3) □ FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) Field Observations: Wetland Hydrolody Present? Ives □ No Saturation Present? □ Yes □ No Depth:		Sparsely Vegetated Concave Surface (B8)		
Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) □ Drainage Patterns (B10) □ Geomorphic Position (D2) □ Moss Trim Lines (B16) □ Shallow Aquitard (D3) □ Dry-Season Water Table (C2) □ Microtopographic Relief (D4) □ Crafish Burrows (C3) □ FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) Field Observations: Wetland Hydrolody Present? Ives □ No Saturation Present? □ Yes □ No Depth:	0			
□ Drainage Patterns (B10) □ Geomorphic Position (D2) □ Moss Trim Lines (B16) □ Shallow Aquitard (D3) □ Dry-Season Water Table (C2) □ Microtopographic Relief (D4) □ Crayfish Burrows (C8) □ FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) ■ Field Observations: Burrows (C9) Surface Water Present? □ Ves □ No □ Yes □ No Depth: □ Water Table Present? □ Ves □ No □ Yes □ No Depth: □ Comments: ■ Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features 0-12 organic □ 12:222 10'YR 6/2 □ 22:27 10'YR 6/6 □ □ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains ² ²Location: PL=Pore Lining, M=Matrix □ Sandy Redox (S5) □ Histosol (A1) □ Sandy Redox (S5) □ □ Histosol (A2) □ Sandy Redox (S5) □ □ Histosol (A2) □ Dark Surface (S1)	Secondar		_	
Moss Tim Lines (B16) Shallow Aquitard (D3) Dry-Season Water Table (C2) Microtopographic Relief (D4) Crayfish Burrows (C8) FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) FAC-Neutral Test (D5) Field Observations: Surface Water Trable Present? Ves _ No Depth: Water Table Present? Ves _ No Depth: Wetland Hydrolody Present? No Saturation Present? Ves _ No Depth: 1 Comments: Color (moist) % Color (moist) % Type Color (moist) % Color (moist) % Type Loc* Texture Remarks 12:22:10YR 6/6				
Image: Dry-Season Water Table (C2) Image: Microtopographic Relief (D4) Crayfish Burrows (C8) FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) FAC-Neutral Test (D5) Field Observations: Surface Water Present? Image: Ves image: No Depth: image: Depth: image: Depth (C7) Water Table Present? Image: Ves image: No Depth: image: Depth (C7) Wetland Hydrolody Present? Image: Ves image: No Depth (C7) Comments: Forfile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Color (moist) % Type' 12:22 10YR 6/2 Image: Depth (C8) 22:27 10YR 6/2 Image: Depth (C8) 'Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains 2 2Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Image: Histosci (A1) Image: Dark Surface (S8) Hydric Soil Indicators: Sandy Redox Surface (S8) Hydriger Sulfide (A4) Polyvalue Below Surface (S8) Black Histic (A3) Image: Dark Surface (S8) Depleted Below Dark Surface (A11) Loarny Gleyed Matrix (F2) Depleted Below Dark Surface		Drainage Patterns (B10)		Geomorphic Position (D2)
Craytish Burrows (C8) □ FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) Field Observations: Wetland Hydrolody Present? □ Yes □ No Surface Water Present? □ Yes □ No Depth:		Moss Trim Lines (B16)		
Craytish Burrows (C8) □ FAC-Neutral Test (D5) Saturation Visible on Aerial Imagery (C9) Field Observations: Wetland Hydrolody Present? □ Yes □ No Surface Water Present? □ Yes □ No Depth:		Dry-Season Water Table (C2)		Microtopographic Relief (D4)
Saturation Visible on Aerial Imagery (C9) Field Observations: Surface Water Present? Water Table Present? Saturation Present? Saturation Present? Saturation Present? Soil Profile Frofile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Color (moist) % Ol2 organic Organic Color (moist) 22:27 10YR 6/2 22:27 10YR 6/2 Striped Matrix CSGI Indicators: * Stripped Matrix (S6) Black Histic (A3) Stripped Matrix (S6) Black Histic (A3) Dark Surface (S7) Hydrogen Suffice (A4) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Loarm (Seed Matrix (F3)) Black Histic (A3) Depleted Matrix (F3) Depleted Below Dark Surface (A2) Depleted Matrix (F3) Depleted Below Dark Surface (A11) Loarm (Seed Matrix (F3)) Black Histic (A3) Depleted Matrix (F3) Depleted Below Dark Surface (F7) Redox Dark Surface (F7)				
Field Observations: Surface Water Present? Yes ⊇ No Depth:				
Surface Water Present? Yes No Depth: Yes Openh: Yes No Depth: Yes No Depth: Yes No Depth: Yes No Depth: Yes No Depth: Comments: Yes No Depth: Yes No Depth: Yes No Depth: Soil Profile				
Water Table Present? □ Yes No Depth:	Field Obse	ervations:		
Water Table Present? □ to So Dopth: □ to So Dopt: □ to So Dopt: □ to So Dopt: □ to So Dopt: □		ator Drog ant?		
Saturation Present? Ites in No Depth: 1 Comments: Ites in No Depth: 1 Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Color (moist) % Type' Loc* Texture Remarks 0-12 organic Ites in No No Type' Loc* Texture Remarks 22-22 10YR 6/2 Ites in No Ites in No Type' Loc* Texture Remarks 22-22 10YR 6/6 Ites in No Ites in No<	Water Tab	Le Dres e nto		Wetland Hydrolody Present? Ves D No
Comments: Soil Profile Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Color (moist) % Type' Loc* 0-12 organic			1	
Soil Profile Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Type' Loc* Texture Remarks 0-12 organic	Catalation	Yes ∐ No Deptili	<u> </u>	
Soil Profile Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Type' Loc* Texture Remarks 0-12 organic	Comments	S'		
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Type' Loc* 0-12 organic		-		
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Type' Loc* 0-12 organic				
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth (cm) Matrix Redox Features Color (moist) % Type' Loc* 0-12 organic	I			
Depth (cm) Matrix Redox Features Color (moist) % Type' Loc' organic				
Color (moist) % Type' Loc* Texture Remarks 12-22 10YR 6/2	Profile Des	scription: (Describe to the depth needed to document the	e indica	ator or confirm the absence of indicators)
Color (moist) % Type' Loc* Texture Remarks 12-22 10YR 6/2				
0-12 organic			Loc	Texture Remarks
12-22 10YR 6/2	0-12			
22-27 10YR 6/6				
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains ² Location: PL=Pore Lining, M=Matrix Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if observed): Type: Depth:			_	
² Location: PL=Pore Lining, M=Matrix Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8)	22-21			
² Location: PL=Pore Lining, M=Matrix Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8)				
² Location: PL=Pore Lining, M=Matrix Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8)				
² Location: PL=Pore Lining, M=Matrix Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8)	¹ Type: C=0	Concentration, D=Depletion, RM=Reduced Matrix, CS=	Covere	ed or Coated Sand Grains
Hydric Soil Indicators:		•		
Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth:				
Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Sulfide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Thin Dark Surface (S9) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth:	Hydric So	il Indicators:		
☐ Histic Epipedon (A2) ☐ Stripped Matrix (S6) ☐ Black Histic (A3) ☐ Dark Surfaces (S7) ☐ Hydrogen Sulfide (A4) ☐ Polyvalue Below Surface (S8) ☐ Stratified Layers (A5) ☐ Thin Dark Surface (S9) ☐ Depleted Below Dark Surface (A11) ☐ Loamy Gleyed Matrix (F2) ☐ Thick Dark Surface (A12) ☑ Depleted Matrix (F3) ☐ Sandy Mucky Mineral (S1) ☐ Redox Dark Surface (F6) ☐ 5cm Mucky Peat or Peat (S3) ☐ Depleted Dark Surface (F7) ☐ Sandy Gleyed Matrix (S4) ☐ Redox Depressions (F8) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? ✓ Yes □ No				Sandy Redox (S5)
□ Black Histic (A3) □ Dark Surfaces (\$7) □ Hydrogen Sulfide (A4) □ Polyvalue Below Surface (\$8) □ Stratified Layers (A5) □ Thin Dark Surface (\$9) □ Depleted Below Dark Surface (A11) □ Loamy Gleyed Matrix (F2) □ Thick Dark Surface (A12) □ Depleted Matrix (F3) □ Sandy Mucky Mineral (\$1) □ Redox Dark Surface (F6) □ Scm Mucky Peat or Peat (\$3) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (\$4) □ Redox Depressions (F8) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? ✓ Yes □ No				
□ Hydrogen Sulfide (A4) □ Polyvalue Below Surface (S8) □ Stratified Layers (A5) □ Thin Dark Surface (S9) □ Depleted Below Dark Surface (A11) □ Loamy Gleyed Matrix (F2) □ Thick Dark Surface (A12) □ Depleted Matrix (F3) □ Sandy Mucky Mineral (S1) □ Redox Dark Surface (F6) □ 5cm Mucky Peat or Peat (S3) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8)			=	
Standy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes Door				
Standy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes Door				
Standy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes Door				
Standy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes Door				
Standy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes Door			\checkmark	
Standy Gleyed Matrix (S4) Depleted Dark Surface (F7) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes Door		Sandy Mucky Mineral (S1)		Redox Dark Surface (F6)
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? I Yes I No			_	
Restrictive Layer (if observed): Type: Depth: Hydric Soil Present? Yes No				
				······································
Comments:	Destrictive			
	Resilicitve	Layer (if observed): <u>Type:</u> Depth:	_	Hydric Soil Present? 🗹 Yes 🗌 No
			_	Hydric Soil Present?

Project Site: Hylyne Date: August 12 2022 Sample Point: Upland 1 Applicant/Owner: Tony Raymond Field Investigator(s): Jennifer Hachey, Laura Moore Coordinates: County: 45°30'29.82"N, 65°48'38.93"W Kings Do normal environmental conditions exist on-site 🗹 Yes 🗌 No PID: 30344352 if no explain: Atypical Situation?
Yes Vo Explain: Is this a potential Problem Area? \square Yes \blacksquare No Explain: — Wetland Determination-(Check One Only For Each Criteria) Dominant Hydrophytic Vegetation Wetland Wetland Hydrology Yes 🗸 No Determination Hydric Soils ✓ Yes □ No 🗌 Yes 🗹 No Wetland Type: N/A Rational for Determination: Upland characteristics = Vegetation = Tree Stratum: (Plot size: 10m) % Cover Dominant **Dominance Test Worksheet** Indicator 1. Thuja occidentalis 20 х FACW # of Dominant Species that 2. Populus balsamifera 20 Х FACW are OBL, FACW, FAC: 6 3. Acer rubrum 10 Х FAC 8 4. Betula populifolia 5 FAC Total # of Dominant Species 5. across all strata: 55 = Total Cover % of Dominant Species that Shrub Stratum: (Plot size: 5m) % Cover Dominant Indicator are OBL, FACW, FAC: 75.00 1. Prunus virginiana 5 FACU х **Prevalence Index Worksheet:** 2. Picea mariana 5 FACW-Х 3. Total % Cover of: Multiply by: 4. **OBL** Species: x 1 = FACW Species: x 1 = 5. FAC Species: 10 = Total Cover x 1 = FACU Species: x 1 = Herb Stratum: (Plot size: 1.5m) Column Totals: x 1 = % Cover Dominant Indicator 1. Trientalis borealis FAC Prevalence Index = B/A =5 х 2. Aralia nudicaulis 5 FACU х 3. Cornus canadensis 5 FAC-Hydrophytic Vegetation Indicators: х Rapid Test for Hydrophytic Vegetation 4. \checkmark Dominance Test is > 50% 5. \checkmark Prevalence Index is $\leq 3.0^{\circ}$ 6. Morphological Adaptations¹ (explain) 7. Problematic Hydrophytic Vegetation' (explain) 8. Indicators of hydric soil and wetland hydrology 9. must be present, unless disturbed or problematic 10. 15 = Total Cover Hydrophytic Vegetation Present? Yes No Comments:

Primary Hy	Hydrology		
	vdrological Indicators: (minimum of one is required; of the second se	check a	
	Surface Water (A1)		Water Stained Leaves (B9)
	High Water Table (A2)		Aquatic Fauna (B13)
	Saturation (A3)		Marl Deposits (B15)
	Water Marks (B1)		Hydrogen Sulfide Odor (C1)
	Sediment Deposits (B2)		Oxidized Rhizospheres on Living Roots (C3)
	Drift Deposits (B3)	Π	Presence of Reduced Iron (C4)
	Algal Mat or Crust (B4)		Recent Iron reduction in tilled Soils (C6)
	Iron Deposits (B5)		Thin Muck Surface (C7)
		_	
	Inundation Visible on Aerial Imagery (B7)		Other (Explain in Remarks)
	Sparsely Vegetated Concave Surface (B8)		
Secondary	Indicators: (minimum of two required)		
	Surface Soil Cracks (B6)		Stunted or Stressed Diante (D1)
			Stunted or Stressed Plants (D1)
	Drainage Patterns (B10)		Geomorphic Position (D2)
	Moss Trim Lines (B16)	Ц	Shallow Aquitard (D3)
	Dry-Season Water Table (C2)		Microtopographic Relief (D4)
	Crayfish Burrows (C8)		FAC-Neutral Test (D5)
	Saturation Visible on Aerial Imagery (C9)		
Field Obser			
	ater Present?	_	
Water Table			Wetland Hydrolody Present? Ves No
Saturation I	Present? $\Box_{\text{Yes}} \boxtimes_{\text{No}}$ Depth:	_	
Comments:			
	Soil Profile		
	cription: (Describe to the depth needed to document th	o indic	ator or confirm the absence of indicators)
Depth (cm)	Matrix Redox Features		Tautura Damarka
	Color (moist) % Color (moist) % Type	Loc	Texture Remarks
	organic		
7-23	10YR 6/2		
23-30	7.5YR 4/6		
		~	
	concentration, D=Depletion, RM=Reduced Matrix, CS=	Covere	ed or Coated Sand Grains
	N_Boro Lipipg M_Motrix		
⁻ Location: F	PL=Pore Lining, M=Matrix		
	Indicators:		
	I Indicators: Histosol (A1)		Sandy Redox (S5)
Hydric Soi	I Indicators: Histosol (A1) Histic Epipedon (A2)		Sandy Redox (S5) Stripped Matrix (S6)
Hydric Soil	I Indicators: Histosol (A1)		Sandy Redox (S5)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2)		Sandy Redox (S5) Stripped Matrix (S6)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5cm Mucky Peat or Peat (S3)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5cm Mucky Peat or Peat (S3)		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7)
Hydric Soil	I Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5cm Mucky Peat or Peat (S3) Sandy Gleyed Matrix (S4) Layer (if observed): <u>Type:</u> Depth:		Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)

Project Site: Hylyne Date: August 12 2022 Sample Point: Wetland 2 Applicant/Owner: Tony Raymond Field Investigator(s): Jennifer Hachey, Laura Moore Coordinates: County: 45°30'29.27"N, 65°48'20.87"W Kings PID: 30344352 Do normal environmental conditions exist on-site Ves Do if no explain: Atypical Situation?
Yes Vo Explain: Is this a potential Problem Area? \Box Yes \bigtriangledown No Explain: — Wetland Determination— (Check One Only For Each Criteria) Dominant Hydrophytic Vegetation Wetland Wetland Hydrology ✓ Yes □ No Determination Hydric Soils ✓ Yes □ No 🗸 Yes 🗌 No Wetland Type: Forested swamp Rational for Determination: Vegetation community = Vegetation = Tree Stratum: (Plot size: 10m) Indicator **Dominance Test Worksheet** % Cover Dominant 1. Abies balsamea 50 х FAC # of Dominant Species that 2. Thuja occidentalis 25 Х FACW are OBL, FACW, FAC: 5 5 3. Betula populifolia FAC 4. Acer rubrum 5 FAC Total # of Dominant Species 5. across all strata: 5 85 = Total Cover % of Dominant Species that Shrub Stratum: (Plot size: 5m) % Cover Dominant Indicator are OBL, FACW, FAC: 100.00 1 **Prevalence Index Worksheet:** 2 3. Total % Cover of: Multiply by: 4. OBL Species: x 1 = FACW Species: x 1 = 5. 0 FAC Species: = Total Cover x 1 = FACU Species: x 1 = Herb Stratum: (Plot size: 1.5m) Column Totals: x 1 = % Cover Dominant Indicator 1. Cornus canadensis FAC-Prevalence Index = B/A =10 Х FAC 2. Trientalis borealis 5 х 3. Osmunda cinnamomea 5 FACW Hydrophytic Vegetation Indicators: х Rapid Test for Hydrophytic Vegetation 4. ☑ Dominance Test is > 50% 5. Prevalence Index is $\leq 3.0^{\circ}$ 6. Morphological Adaptations¹ (explain) 7. Problematic Hydrophytic Vegetation' (explain) 8. Indicators of hydric soil and wetland hydrology 9. must be present, unless disturbed or problematic 10. 20 = Total Cover Hydrophytic Vegetation Present? Yes No Comments:

	Hydrology		
Primary H	ydrological Indicators: (minimum of one is requir	<u>ed; check a</u>	all that apply)
	Surface Water (A1)		Water Stained Leaves (B9)
	High Water Table (A2)		Aquatic Fauna (B13)
	Saturation (A3)	Ē	Marl Deposits (B15)
	Water Marks (B1)	Ē	Hydrogen Sulfide Odor (C1)
	Sediment Deposits (B2)		Oxidized Rhizospheres on Living Roots (C3)
	Drift Deposits (B3)		Presence of Reduced Iron (C4)
	Algal Mat or Crust (B4)		Recent Iron reduction in tilled Soils (C6)
	Iron Deposits (B5)		Thin Muck Surface (C7)
	Inundation Visible on Aerial Imagery (B7)		Other (Explain in Remarks)
	Sparsely Vegetated Concave Surface (B8)		
	• • • • • • • • • • •		
Secondar	y Indicators: (minimum of two required)		
	Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1)
	Drainage Patterns (B10)		Geomorphic Position (D2)
	Moss Trim Lines (B16)		Shallow Aquitard (D3)
	Dry-Season Water Table (C2)		Microtopographic Relief (D4)
	Crayfish Burrows (C8)	П	FAC-Neutral Test (D5)
	Saturation Visible on Aerial Imagery (C9)		
	Saturation visible on Aerial Imagery (C3)		
Field Obse	arvations:		
	aton Dreadent?		
	le Present?Yes ☑ No Depth:		Wetland Hydrolody Present? Ves No
Saturation	Present?	1	
Comments	8:		
8			
L	Soil Profile		
Profile Des	Soil Profile	nt the indic	ator or confirm the absence of indicators)
	scription: (Describe to the depth needed to docume	nt the indic	ator or confirm the absence of indicators)
Profile Des Depth (cm	scription: (Describe to the depth needed to docume) Matrix Redox Features		
Depth (cm	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Ty		
Depth (cm 0-23	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Type organic		
Depth (cm	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Ty		
Depth (cm 0-23	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Type organic		
Depth (cm 0-23	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Type organic		
Depth (cm 0-23	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Type organic		
Depth (cm 0-23 23-30	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Typ organic 7.5YR 5/3	be' Loc'	Texture Remarks
Depth (cm 0-23 23-30	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Type organic	be' Loc'	Texture Remarks
Depth (cm 0-23 23-30 ¹ Type: C=0	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic	be' Loc'	Texture Remarks
Depth (cm 0-23 23-30 ¹ Type: C=0	scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Color (moist) % Typ organic 7.5YR 5/3	be' Loc'	Texture Remarks
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location:	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	be' Loc'	Texture Remarks
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	CS=Covere	Texture Remarks
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	CS=Covere	ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	CS=Covere	ed or Coated Sand Grains Sandy Redox (S5) Stripped Matrix (S6)
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	CS=Covere	ed or Coated Sand Grains Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7)
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	CS=Covere	A constant of the second secon
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic	CS=Covere	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic 7.5YR 5/3	CS=Covere	A Contract Sand Grains Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8)
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic	CS=Covere	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Type organic	De' Loc'	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So	Scription: (Describe to the depth needed to docume Matrix Redox Features Color (moist) % Type organic Color (moist) % Type 7.5YR 5/3	De' Loc'	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So □ □ □ □ □ □ □	Scription: (Describe to the depth needed to docume Matrix Redox Features Color (moist) % Typ organic	CS=Covere	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So	Scription: (Describe to the depth needed to docume Matrix Redox Features Color (moist) % Type organic Color (moist) % Type 7.5YR 5/3	De' Loc'	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So □ □ □ □ □ □ □ □	Scription: (Describe to the depth needed to docume) Matrix Redox Features Color (moist) % Typ organic	CS=Covere	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location:	Scription: (Describe to the depth needed to docume Matrix Redox Features Color (moist) % Typ organic	CS=Covere	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=0 ² Location: Hydric So U U C C C C C C C C C C C C C	scription: (Describe to the depth needed to docume Matrix Redox Features Color (moist) % Typ organic 7.5YR 5/3	CS=Covere	Texture Remarks ed or Coated Sand Grains
Depth (cm 0-23 23-30 ¹ Type: C=(² Location: Hydric So □ □ □ □ □ □ □ □ □ □ □ □ □	scription: (Describe to the depth needed to docume Matrix Redox Features Color (moist) % Typ organic 7.5YR 5/3	CS=Covere	Texture Remarks ed or Coated Sand Grains

Project Site: Hylyne Date: August 12 2022 Sample Point: Upland 2 Applicant/Owner: Tony Raymond Field Investigator(s): Jennifer Hachey, Laura Moore Coordinates: County: 45°30'29.25"N, 65°48'20.64"W Kings Do normal environmental conditions exist on-site 🗹 Yes 🗌 No PID: 30344352 if no explain: Atypical Situation?
Yes Vo Explain: Is this a potential Problem Area? \Box Yes \bigtriangledown No Explain: — Wetland Determination— (Check One Only For Each Criteria) Dominant Hydrophytic Vegetation Wetland Wetland Hydrology Yes 🗸 No Determination Hydric Soils Yes 🗸 No 🗌 Yes 🗹 No Wetland Type: N/A Rational for Determination: Upland characteristics = Vegetation = Tree Stratum: (Plot size: 10m) Indicator **Dominance Test Worksheet** % Cover Dominant 1. Abies balsamea 50 х FAC # of Dominant Species that 2. Thuja occidentalis 25 Х FACW are OBL, FACW, FAC: 6 5 3. Betula populifolia FAC 4. Acer rubrum 5 FAC Total # of Dominant Species 5. across all strata: 8 85 = Total Cover % of Dominant Species that Shrub Stratum: (Plot size: 5m) % Cover Dominant Indicator are OBL, FACW, FAC: 75.00 1. Abies balsamea 5 FAC х **Prevalence Index Worksheet:** 3. Total % Cover of: Multiply by: 4. OBL Species: x 1 = FACW Species: x 1 = 5. FAC Species: 5 = Total Cover x 1 = FACU Species: x 1 = Herb Stratum: (Plot size: 1.5m) Column Totals: x 1 = % Cover Dominant Indicator 1. Vaccinium angustifolium FACU-Prevalence Index = B/A =5 Х 2. Cornus canadensis 5 FAC х 3. Pteridium aquilinum 5 FACU Hydrophytic Vegetation Indicators: х 4. Aralia nudicaulis FACU Rapid Test for Hydrophytic Vegetation 5 Х 5. Trientalis borealis FAC ☑ Dominance Test is > 50% 5 Х Prevalence Index is $\leq 3.0^{\circ}$ 6. Morphological Adaptations¹ (explain) 7. Problematic Hydrophytic Vegetation' (explain) 8. Indicators of hydric soil and wetland hydrology 9. must be present, unless disturbed or problematic 10. 25 = Total Cover Hydrophytic Vegetation Present? Yes No Comments:

Primary H	vdrological Indicatore: (minimum of one is re		
	ydrological Indicators: (minimum of one is re	equired; check a	all that apply)
	Surface Water (A1)		Water Stained Leaves (B9)
	High Water Table (A2)		Aquatic Fauna (B13)
	Saturation (A3)	Π	Marl Deposits (B15)
	Water Marks (B1)		Hydrogen Sulfide Odor (C1)
	Sediment Deposits (B2)		Oxidized Rhizospheres on Living Roots (C3)
	Drift Deposits (B3)		Presence of Reduced Iron (C4)
	Algal Mat or Crust (B4)		Recent Iron reduction in tilled Soils (C6)
	Iron Deposits (B5)		Thin Muck Surface (C7)
	Inundation Visible on Aerial Imagery (B7)		Other (Explain in Remarks)
	Sparsely Vegetated Concave Surface (B8)		
0			
Secondar	y Indicators: (minimum of two required)	_	
	Surface Soil Cracks (B6)		Stunted or Stressed Plants (D1)
	Drainage Patterns (B10)		Geomorphic Position (D2)
	Moss Trim Lines (B16)		Shallow Aquitard (D3)
	Dry-Season Water Table (C2)		Microtopographic Relief (D4)
	Crayfish Burrows (C8)		FAC-Neutral Test (D5)
	Saturation Visible on Aerial Imagery (C9)		
	Catalation visible on Achai Imagery (Co)		
Field Obse	ervations:		
	latar Drosant?		
			Wetland Hydrolody Present? Ves No
Saturation			
Saturation	Present?		
Comments	<u>.</u>		
L			
	Soil Profile		
Profile Des	scription: (Describe to the depth needed to doc	ument the indic	ator or confirm the channel of indicators)
			ator or commune absence or indicators)
Depth (cm			ator of committine absence of indicators)
Depth (cm) Matrix Redox Feat	ures	
) Matrix Redox Feat Color (moist) % Color (moist) %		
0-7) Matrix Redox Feat Color (moist) % Color (moist) % organic	ures	
0-7 7-12) Matrix Redox Feat Color (moist) % Color (moist) % organic 5YR 5/3	ures	
0-7) Matrix Redox Feat Color (moist) % Color (moist) % organic	ures	
0-7 7-12) Matrix Redox Feat Color (moist) % Color (moist) % organic 5YR 5/3	ures	
0-7 7-12) Matrix Redox Feat Color (moist) % Color (moist) % organic 5YR 5/3	ures	
0-7 7-12 12-30	Matrix Redox Feature Color (moist) % organic 5YR 5/3 5YR 4/6	ures Type' Loc'	Texture Remarks
0-7 7-12 12-30	Matrix Redox Feature Color (moist) % organic 5YR 5/3 5YR 4/6	ures Type' Loc'	Texture Remarks
0-7 7-12 12-30	Matrix Redox Feature Color (moist) % organic 5YR 5/3 5YR 4/6	ures Type' Loc'	Texture Remarks
0-7 7-12 12-30 ¹ Type: C= ² Location:	Matrix Redox Feature Color (moist) % Organic 6 5YR 5/3 7 5YR 4/6 7 Concentration, D=Depletion, RM=Reduced Matrix	ures Type' Loc'	Texture Remarks
0-7 7-12 12-30 ¹ Type: C= ² Location: Hydric So	Matrix Redox Feature Color (moist) % Organic % 5YR 5/3 5 5YR 4/6	rix, CS=Covere	Texture Remarks
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic 5 5YR 5/3 5 5YR 4/6	ures Type' Loc' Loc' mix, CS=Covere	ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic 5 5YR 5/3	ures Type' Loc' 	ed or Coated Sand Grains Sandy Redox (S5) Stripped Matrix (S6)
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic 5 5YR 5/3	ures Type' Loc' 	ed or Coated Sand Grains Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7)
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic % 5YR 5/3 % 5YR 4/6 % Concentration, D=Depletion, RM=Reduced Matrix PL=Pore Lining, M=Matrix il Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4)	ures Type' Loc' 	A contract of the second stand
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic % 5YR 5/3 % 5YR 4/6 % Concentration, D=Depletion, RM=Reduced Matrix PL=Pore Lining, M=Matrix il Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5)	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C=4 ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C=+ ² Location: Hydric So 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C= ² Location: Hydric So 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C=+ ² Location: Hydric So 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C= ² Location: Hydric So 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matrix Redox Feature Color (moist) % organic % 5YR 5/3	ures Type' Loc' 	Texture Remarks ed or Coated Sand Grains
0-7 7-12 12-30 ¹ Type: C= ² Location: Hydric So	Matrix Redox Feature Color (moist) % organic % 5YR 5/3 % 5YR 4/6 % Concentration, D=Depletion, RM=Reduced Matrix Concentration, D=Depletion, RM=Reduced Matrix II Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5cm Mucky Peat or Peat (S3) Sandy Gleyed Matrix (S4) Layer (if observed): Type:	ures Type' Loc' 	Texture Remarks Image: Sector Coated Sand Grains Image: Sector Coated Sand Grains Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)

APPENDIX G

Photo Log

Photo 1: Mixed Forest Vegetation Community (August 12, 2022)

Photo 2: Coniferous Forest (August 12, 2022)

Photo 3: Hydro Corridor (August 12, 2022)

Photo 4: Wetland 1 Conditions (August 12, 2022)

Photo 5: Wetland 1 Hydric Soil Conditions (August 12, 2022)

Photo 6: Wetland 2 Conditions (August 12, 2022)

Photo 7: Wetland 2 Hydric Soil Conditions (August 12, 2022)

APPENDIX H

Breeding Bird Survey Data

Report to: Environment and Local Government GEMTEC Project: 101588.001 (October 12, 2022)

e H1: Bird	Point Co	unt Data										
Date	Point	Habitat Unit	Species Code	Start (am)	End (am)	Common Name	Scientific Name	S rank	Bearing	Breeding Code	Number	Notes
19-May-22	1	Mixed Forest	BCCH	6:24	6:34	Black-capped Chickadee	Poecile atricapilla	S5	40°	S	1	Singing
19-May-22	1	Mixed Forest	BTNW	6:24	6:34	Black-throated Green Warbler	Dendroica virens	S5B	110°	S	1	Singing
19-May-22	1	Mixed Forest	COYE	6:24	6:34	Common Yellow Throat	Geothlypis trichas	S5B	240°	S	1	Singing
19-May-22	1	Mixed Forest	NOPA	6:24	6:34	Northern Parula	Parula americana	S5B	115°	S	1	Singing
19-May-22	1	Mixed Forest	AMRO	6:24	6:34	American Robin	Turdus migratorius	S5B	135°	S	1	Singing
19-May-22	1	Mixed Forest	BAWW	6:24	6:34	Black and White Warbler	Mniotilta varia	S5B	10°	S	1	Singing
19-May-22	1	Mixed Forest	NOFL	6:24	6:34	Northern Flicker	Colaptes auratus	S5B	180°	S	1	Singing
19-May-22	1	Mixed Forest	BHVI	6:24	6:34	Blue-headed Vireo	Vireo solitarius	S5B	45°	S	1	Singing
19-May-22	1	Mixed Forest	SOSP	6:24	6:34	Song Sparrow	Melospiza melodia	S5B	25°	S	1	Singing
19-May-22	1	Mixed Forest	AMCR	6:24	6:34	American Crow	Corvus brachyrhynchos	S5	90°	S	1	Singing
19-May-22	1	Mixed Forest	WTSP	6:24		White-throated Sparrow	Zonotrichia albicollis	S5B	210°	S	1	Singing
19-May-22	1	Mixed Forest	OVEN	6:24		Ovenbird	Seiurus aurocapillus	S5B	90°	S	1	Singing
19-May-22	1	Mixed Forest	NAWA	6:24	6:34	Nashville Warbler	Leiothlypis ruficapilla	S4S5B,S5M	295°	S	1	Singing
19-May-22	2	Mixed Forest	BTNW	6:43		Black-throated Green Warbler	Dendroica virens	S5B	315°	S	1	Singing
19-May-22	2	Mixed Forest	COYE	6:43		Common Yellow Throat	Geothlypis trichas	S5B	140°	S	1	Singing
19-May-22	2	Mixed Forest	WTSP	6:43		White-throated Sparrow	Zonotrichia albicollis	S5B	160°	S	4	Singing
19-May-22	2	Mixed Forest	AMCR	6:43		American Crow	Corvus brachyrhynchos	S5	220°	S	5	Singing
19-May-22	2	Mixed Forest	NAWA	6:43		Nashville Warbler	Leiothlypis ruficapilla	S4S5B,S5M	30°	S	1	Singing
19-May-22	2	Mixed Forest	BLJA	6:43		Blue Jay	Cyanocitta cristata	S5	320°	S	2	Singing
19-May-22	2	Mixed Forest	AMGO	6:43		American Goldfinch	Carduelis tristis	S5	225°	S	1	Singing
19-May-22	2	Mixed Forest	REVI	6:43		Red-eyed Vireo	Vireo olivaceus	S5B	160°	S	1	Singing
19-May-22	2	Mixed Forest	ВССН	6:43		Black-capped Chickadee	Poecile atricapilla	S5	130°	S	1	Singing
19-May-22	2	Mixed Forest	AMRO	6:43		American Robin	Turdus migratorius	S5B	210°	S	1	Singing
19-May-22	2	Mixed Forest	OVEN	6:43		Ovenbird	Seiurus aurocapillus	S5B	300°	S	1	Singing
19-May-22	2	Mixed Forest	YRWA	6:43		Yellow-rumped Warbler	Dendroica coronata	S5B	180°	S	1	Singing
19-May-22	2	Mixed Forest	WBNU	6:43		White-breasted Nuthatch	Sitta carolinensis	S4	290°	S	1	Singing
19-May-22		Mixed Forest	PISI	6:43		Pine Sisken	Spinus pinus	S3	295°	S	1	Singing
19-May-22	3	Coniferous Forest	BAWW	7:15		Black and White Warbler	Mniotilta varia	S5B	90°	S	1	Singing
19-May-22	3	Coniferous Forest	-	7:15		Woodpecker species	-	-	255°	S	1	Drumming
19-May-22	3	Coniferous Forest	OVEN	7:15		Ovenbird	Seiurus aurocapillus	S5B	140°	S	1	Singing
19-May-22	3	Coniferous Forest	BCCH	7:15		Black-capped Chickadee	Poecile atricapilla	S5	25°	S	2	Singing
19-May-22	3	Coniferous Forest	SOSP	7:15		Song Sparrow	Melospiza melodia	S5B	25°	S	1	Singing
19-May-22	3	Coniferous Forest	BLJA	7:15		Blue Jay	Cyanocitta cristata	S5	205°	S	2	Singing
19-May-22	3	Coniferous Forest	BTNW	7:15		Black-throated Green Warbler	Dendroica virens	S5B	170°	S	1	Singing
19-May-22	3	Coniferous Forest	AMRE	7:15	7:25	American Redstart	Setophaga ruticilla	S5B	255°	S	1	Singing
19-May-22	3	Coniferous Forest	NOPA	7:15		Northern Parula	Parula americana	S5B	280°	S	2	Singing
19-May-22	3	Coniferous Forest	CSWA	7:15		Chestnut-sided Warbler	Dendroica pensylvanica	S5B	220°	S	1	Singing
19-May-22	3	Coniferous Forest	YRWA	7:15		Yellow-rumped Warbler	Dendroica coronata	S5B	130°	S	2	Singing
19-May-22	3	Coniferous Forest	WTSP	7:15		White-throated Sparrow	Zonotrichia albicollis	S5B	235°	S	1	Singing
19-May-22 19-May-22	3	Coniferous Forest Coniferous Forest	RCKI MALL	7:15 7:15		Ruby-crowned Kinglet Mallard	Regulus calendula	S4S5B	330°	S X	1	Singing Flyover
19-May-22	3 4	Coniferous Forest	BTNW	7:15		Black-throated Green Warbler	Anas platyrhynchos Dendroica virens	S5B,S4N	 300°	S S	2	
19-May-22	4	Coniferous Forest	BLUM	7:37		Black-capped Chickadee	Poecile atricapilla	S5B S5	300°	S S	2	Singing Singing
19-May-22	4 1	Coniferous Forest	OVEN	7:37		Ovenbird	Seiurus aurocapillus	S5B	205°	5 C	3	Singing
19-May-22	4 1	Coniferous Forest	HETH	7:37		Hermit Thrush	Catharus guttatus	S5B S5B	320°	S S	<u>۲</u> 1	Singing
19-May-22	4	Coniferous Forest	COYE	7:37		Common Yellow Throat	Geothlypis trichas	SSB SSB		S S	1	Singing
19-May-22	4	Coniferous Forest	BAWW	7:37			Mniotilta varia	S5B S5B	180 105°	S S	1	Singing
19-May-22	4	Coniferous Forest	BLJA	7:37		Blue Jay	Cyanocitta cristata	S2B	105 180°	S S	1	Singing
19-May-22		Coniferous Forest	YRWA	7:37		Yellow-rumped Warbler	Dendroica coronata	S5B	- 100	S S	1	Singing
19-May-22	- - А	Coniferous Forest	WBNU	7:37		White-breasted Nuthatch	Sitta carolinensis	S4	 0°	S S	1	Singing
19-May-22	- - А	Coniferous Forest	MAWA	7:37		Magnolia Warbler	Dendroica magnolia	54 S5B	310°	S S	 1	Singing
19-May-22	-+ /	Coniferous Forest	AMGO	7:37		American Goldfinch	Carduelis tristis	S2B	260°	S S	1	Singing
19-May-22	4	Coniferous Forest	SOSP	7:37		Song Sparrow	Melospiza melodia	S5B	155°	S S	1	Singing
19-May-22	-+ _/	Coniferous Forest	NOPA	7:37		Northern Parula	Parula americana	S5B	290°	S S	2	Singing
19-May-22	4	Coniferous Forest	MALL	7:37		Mallard		SSB SSB,S4N	 40°	X	<u> ۲</u> 1	Visual observation
19-May-22	4 1	Coniferous Forest	DOWO	7:37		Downy Woodpecker	Anas platyrhynchos Dryobates pubescens	S5B,S4N S5	+0	S N	1	Drumming
19-May-22	4 5	Coniferous Forest	OVEN	8:10		Ovenbird	Dryobates pubescens Seiurus aurocapillus	S5B	- 195°	s s	2	Singing
	ر _ا					Black and White Warbler	Mniotilta varia	S5B S5B	350°	S S	۲ ۱	Singing
19-May-22	5	Coniferous Forest	BAWW	8:10	Q • 70							Ninoino

Ecological Baseline Report Hylyne EIA Registration Project

							May/July 2022					-
Date	Point	Habitat Unit	Species Code	Start (am)	End (am)	Common Name	Scientific Name	S rank	Bearing	Breeding Code	Number	Notes
L9-May-22		Coniferous Forest	BTNW	8:10		Black-throated Green Warbler	Dendroica virens	S5B	295°	S	1	Singing
L9-May-22		Coniferous Forest	NOPA	8:10		Northern Parula	Parula americana	S5B	355°	S	1	Singing
L9-May-22		Coniferous Forest	RUGR	8:10		Ruffed Grouse	Bonasa umbellus	S5	150°	S	1	Drumming
L9-May-22	5	Coniferous Forest	WTSP	8:10	8:20	White-throated Sparrow	Zonotrichia albicollis	S5B	280°	S	1	Singing
L9-May-22	5	Coniferous Forest	MAWA	8:10	8:20	Magnolia Warbler	Dendroica magnolia	S5B	320°	S	1	Singing
L9-May-22	5	Coniferous Forest	YRWA	8:10	8:20	Yellow-rumped Warbler	Dendroica coronata	S5B	210°	S	1	Singing
L9-May-22	5	Coniferous Forest	COYE	8:10	8:20	Common Yellow Throat	Geothlypis trichas	S5B	285°	S	1	Singing
L9-May-22	6	Deciduous Regeneration	BTNW	8:42	8:52	Black-throated Green Warbler	Dendroica virens	S5B	-	S	2	Singing
19-May-22		Deciduous Regeneration	OVEN	8:42	8:52	Ovenbird	Seiurus aurocapillus	S5B	240°	S	3	Singing
L9-May-22		Deciduous Regeneration	ВССН	8:42	8:52	Black-capped Chickadee	Poecile atricapilla	S5	350°	S	1	Singing
L9-May-22		Deciduous Regeneration	NOPA	8:42		Northern Parula	Parula americana	S5B	255°	S	1	Singing
L9-May-22		Deciduous Regeneration	BLJA	8:42		Blue Jay	Cyanocitta cristata	S5	310°	S	1	Singing
19-May-22		Deciduous Regeneration	BAWW	8:42		Black and White Warbler	Mniotilta varia	S5B	130°	S	1	Singing
L9-May-22			NOFL	8:42		Northern Flicker		S5B	270°	S S	1	
-		Deciduous Regeneration					Colaptes auratus				1	Singing
L9-May-22		Deciduous Regeneration	RUGR	8:42		Ruffed Grouse	Bonasa umbellus	S5	340°	S	1	Singing
L9-May-22		Deciduous Regeneration	AMRO	8:42		American Robin	Turdus migratorius	S5B	245°	S	1	Singing
L9-May-22		Treed Swamp	PUFI	9:02	9:11	Purple Finch	Haemorhous purpureus	S4S5B,SUN,S5N	250°	S	1	Singing
L9-May-22		Treed Swamp	HETH	9:02	9:11	Hermit Thrush	Catharus guttatus	S5B	170°	S	1	Singing
L9-May-22	7	Treed Swamp	BLJA	9:02	9:11	Blue Jay	Cyanocitta cristata	S5	20°	S	2	Singing
L9-May-22	7	Treed Swamp	BTNW	9:02	9:11	Black-throated Green Warbler	Dendroica virens	S5B	215°	S	2	Singing
L9-May-22	7	Treed Swamp	OVEN	9:02	9:11	Ovenbird	Seiurus aurocapillus	S5B	205°	S	1	Singing
L9-May-22	7	Treed Swamp	ВССН	9:02	9:11	Black-capped Chickadee	Poecile atricapilla	S5	130°	S	3	Singing
, L9-May-22		Treed Swamp	NOFL	9:02	9:11	Northern Flicker	Colaptes auratus	S5B	310°	S	1	Singing
L9-May-22		Treed Swamp	RUGR	9:02	9:11	Ruffed Grouse	Bonasa umbellus	S5	270°	S	1	Singing
.9-May-22		Mixed Forest	BTNW	9:25		Black-throated Green Warbler	Dendroica virens	S5B	310°	S	1	Singing
9-May-22		Mixed Forest	YRWA	9:25	9:35	Yellow-rumped Warbler	Dendroica coronata	S5B		S	1	Singing
											1	
9-May-22		Mixed Forest	MODO	9:25		Mourning Dove	Zenaida macroura	S5B,S4N	340°	S	1	Singing
.9-May-22		Mixed Forest	BLJA	9:25		Blue Jay	Cyanocitta cristata	S5	50°	S	1	Singing
.9-May-22		Mixed Forest	WBNU	9:25		White-breasted Nuthatch	Sitta carolinensis	S4	285°	S	1	Singing
.9-May-22	8	Mixed Forest	ВССН	9:25		Black-capped Chickadee	Poecile atricapilla	S5	270°	S	1	Singing
15-Jul-22	1	Mixed Forest	BLJA	5:45	5:55	Blue Jay	Cyanocitta cristata	S5	190	S	1	Singing
15-Jul-22	1	Mixed Forest	COYE	5:45	5:55	Common Yellow Throat	Geothlypis trichas	S5B	200	S	1	Singing
15-Jul-22	1	Mixed Forest	AMRO	5:45	5:55	American Robin	Turdus migratorius	S5B	90	S	1	Singing
15-Jul-22	1	Mixed Forest	BTNW	5:45	5:55	Black-throated Green Warbler	Dendroica virens	S5B	320	S	1	Singing
15-Jul-22	1	Mixed Forest	WTSP	5:45		White-throated Sparrow	Zonotrichia albicollis	S5B	40	S	1	Singing
15-Jul-22		Mixed Forest	ALFL	5:45		Alder Flycatcher	Empidonax alnorum	S4B,SUM	160	S	2	Singing
15-Jul-22		Mixed Forest	HETH	5:45	5:55	Hermit Thrush	Catharus guttatus	S5B	200		1	Singing
15-Jul-22		Mixed Forest	AMCR	5:45	5:55	American Crow	Corvus brachyrhynchos	S5	180	S	1	Singing
15-Jul-22		Mixed Forest	BAWW	5:45		Black and White Warbler	Mniotilta varia	S5B	0	S	1	
									8		1	Singing
15-Jul-22		Mixed Forest	MAWA	5:45		Magnolia Warbler	Dendroica magnolia	S5B	250	S	1	Singing
15-Jul-22		Mixed Forest	CSWA	5:45		Chestnut-sided Warbler	Dendroica pensylvanica	S5B	210	S	1	Singing
15-Jul-22		Mixed Forest	MODO	5:59		Mourning Dove	Zenaida macroura	S5B,S4N	160	S	2	Singing
15-Jul-22		Mixed Forest	HETH	5:59	6:09	Hermit Thrush	Catharus guttatus	S5B	250	S	1	Singing
15-Jul-22		Mixed Forest	COYE	5:59	6:09	Common Yellow Throat	Geothlypis trichas	S5B	90	S	2	Singing
15-Jul-22	2	Mixed Forest	DEJU	5:59	6:09	Dark Eyed Junco	Junco hyemalis	S5B,S5M	230	S	1	Singing
15-Jul-22	2	Mixed Forest	COGR	5:59	6:09	Common Grackle	Quiscalus quiscula	S5B	210	S	1	Singing
15-Jul-22	2	Mixed Forest	ALFL	5:59	6:09	Alder Flycatcher	Empidonax alnorum	S4B,SUM	140	S	1	Singing
15-Jul-22		Mixed Forest	HAWO	5:59		Hairy Woodpecker	Dryobates villosus	S5	300	S	1	Singing
15-Jul-22		Mixed Forest	WTSP	5:59		White-throated Sparrow	Zonotrichia albicollis	S5B	100	S	1	Singing
15-Jul-22		Mixed Forest	NOFL	5:59	6:09	Northern Flicker	Colaptes auratus	S5B	290	S	1	Singing
15-Jul-22		Mixed Forest	BLJA	5:59		Blue Jay	Cyanocitta cristata	S5	350	S S	1	
							· ·				1	Singing
15-Jul-22		Coniferous Forest	HETH	6:20		Hermit Thrush	Catharus guttatus	S5B	150	S	1	Singing
15-Jul-22		Coniferous Forest	COYE	6:20		Common Yellowthroat	Geothlypis trichas	S5B	250	S	1	Singing
15-Jul-22		Coniferous Forest	AMRO	6:20		American Robin	Turdus migratorius	S5B	240	S	3	Singing
15-Jul-22		Coniferous Forest	NOFL	6:20	6:30	Northern Flicker	Colaptes auratus	S5B	250	S	1	Singing
15-Jul-22	3	Coniferous Forest	OSPR	6:20	6:30	Osprey	Pandion haliaetus	S4S5B,S5M	50	S	1	Singing
15-Jul-22	3	Coniferous Forest	ALFL	6:20	6:30	Alder Flycatcher	Empidonax alnorum	S4B,SUM	60	S	1	Singing
	3	Coniferous Forest	PIWO	6:20		Pileated Woodpecker	Dryocopus pileatus	S5	340	S	1	Singing
15-Jul-22					-	1	· · · · · · ·			1		+ ~ ~
15-Jul-22 15-Jul-22		Coniferous Forest	DEJU	6:20	6:30	Dark-eyed Junco	Junco hyemalis	S5B,S5M	350	S	1	Singing

Ecological Baseline Report Hylyne EIA Registration Project

AND SC	IENTISTS						May/July 2022					
Date	Point	Habitat Unit	Species Code	Start (am)	End (am)	Common Name	Scientific Name	S rank	Bearing	Breeding Code	Number	Notes
15-Jul-22	3	Coniferous Forest	ВССН	6:20		Black-capped Chickadee	Poecile atricapilla	S5	90	S	1	Singing
15-Jul-22	3	Coniferous Forest	MODO	6:20	6:30	Mourning Dove	Zenaida macroura	S5B,S4N	180	S	1	Singing
15-Jul-22	3	Coniferous Forest	MAWA	6:20	6:30	Magnolia Warbler	Dendroica magnolia	S5B	110	S	1	Singing
15-Jul-22	4	Coniferous Forest	AMRO	6:37	6:47	American Robin	Turdus migratorius	S5B	240	S	1	Singing
15-Jul-22	4	Coniferous Forest	OVEN	6:37	6:47	Ovenbird	Seiurus aurocapillus	S5B	300	S	1	Singing
15-Jul-22	4	Coniferous Forest	REVI	6:37	6:47	Red-eyed Vireo	Vireo olivaceus	S5B	45	S	1	Singing
15-Jul-22	4	Coniferous Forest	WTSP	6:37	6:47	White-throated Sparrow	Zonotrichia albicollis	S5B	50	S	1	Singing
15-Jul-22	4	Coniferous Forest	NOPA	6:37	6:47	Northern Parula	Parula americana	S5B	160	S	1	Singing
15-Jul-22	4	Coniferous Forest	GCKI	6:37	6:47	Golden-crowned Kinglet	Regulus satrapa	S5	45	S	1	Singing
15-Jul-22	4	Coniferous Forest	CEDW	6:37	6:47	Cedar Waxwing	Bombycilla cedrorum	S5B	50	S	1	Singing
15-Jul-22	4	Coniferous Forest	NOFL	6:37	6:47	Northern Flicker	Colaptes auratus	S5B	240	S	1	Singing
15-Jul-22	4	Coniferous Forest	COYE	6:37	6:47	Common Yellowthroat	Geothlypis trichas	S5B	150	S	1	Singing
15-Jul-22	4	Coniferous Forest	BAWW	6:37	6:47	Black and White Warbler	Mniotilta varia	S5B		S	1	Singing
15-Jul-22	4	Coniferous Forest	HETH	6:37	6:47	Hermit Thrush	Catharus guttatus	S5B	180	S	1	Singing
15-Jul-22	4	Coniferous Forest	YRWA	6:37	6:47	Yellow-rumped Warbler	Dendroica coronata	S5B	320	S	1	Singing
15-Jul-22	4	Coniferous Forest	DEJU	6:37	6:47	Dark-eyed Junco	Junco hyemalis	S5B,S5M	210	S	1	Singing
15-Jul-22	4	Coniferous Forest	BTNW	6:37	6:47	Black-throated Green Warbler	Dendroica virens	S5B	210	S	1	Singing
15-Jul-22	5	Coniferous Forest	OVEN	6:59	7:09	Ovenbird	Seiurus aurocapillus	S5B	300	S	1	Singing
15-Jul-22	5	Coniferous Forest	WTSP	6:59	7:09	White-throated Sparrow	Zonotrichia albicollis	S5B	240	S	1	Singing
15-Jul-22	5	Coniferous Forest	HETH	6:59	7:09	Hermit Thrush	Catharus guttatus	S5B	230	S	1	Singing
15-Jul-22		Coniferous Forest	REVI	6:59	7:09	Red-eyed Vireo	Vireo olivaceus	S5B	90	S	1	Singing
15-Jul-22	5	Coniferous Forest	HOFI	6:59		House Finch	Haemorhous mexicanus	SNA	160	S	1	Singing
15-Jul-22		Coniferous Forest	NOFL	6:59	7:09	Northern Flicker	Colaptes auratus	S5B	150	S	1	Singing
15-Jul-22		Coniferous Forest	BTNW	6:59	7:09	Black-throated Green Warbler	Dendroica virens	S5B	150	S	1	Singing
15-Jul-22		Coniferous Forest	BAWW	6:59	7:09	Black and White Warbler	Mniotilta varia	S5B	50	S	1	Singing
15-Jul-22		Coniferous Forest	BHVI	6:59	7:09	Blue-headed Vireo	Vireo solitarius	S5B	350	S	1	Singing
15-Jul-22		Coniferous Forest	AMGO	6:59	7:09	American Goldfinch	Carduelis tristis	S5	45	S	1	Singing
15-Jul-22		Coniferous Forest	COYE	6:59		Common Yellowthroat	Geothlypis trichas	S5B	45	S	1	Singing
15-Jul-22		Deciduous Regeneration	BLJA	7:39	7:49	Blue Jay	Cyanocitta cristata	S5	320	S	1	Singing
15-Jul-22		Deciduous Regeneration	REVI	7:39	7:49	Red-eyed Vireo	Vireo olivaceus	S5B	340	S	1	Singing
15-Jul-22		Deciduous Regeneration	BTNW	7:39	7:49	Black-throated Green Warbler	Dendroica virens	S5B	90	S	1	Singing
15-Jul-22		Deciduous Regeneration	NOFL	7:39	7:49	Northern Flicker	Colaptes auratus	S5B	160	S	1	Singing
15-Jul-22		Deciduous Regeneration	MODO	7:39	7:49	Mourning Dove	Zenaida macroura	S5B,S4N	180	S	1	Singing
15-Jul-22		Deciduous Regeneration	WTSP	7:39		White-throated Sparrow	Zonotrichia albicollis	S5B	160	S	1	Singing
15-Jul-22		Deciduous Regeneration	OVEN	7:39		Ovenbird	Seiurus aurocapillus	S5B	240	S	1	Singing
15-Jul-22		Treed Swamp	HETH	8:09	8:19	Hermit Thrush	Catharus guttatus	S5B S5B	150	S	1	Singing
15 Jul 22 15-Jul-22		Treed Swamp	AMCR	8:09		American Crow	Corvus brachyrhynchos	S5	70	S	1	Singing
15-Jul-22		Treed Swamp	WTSP	8:09		White-throated Sparrow	Zonotrichia albicollis	S5B	210	S	1	Singing
15-Jul-22		Treed Swamp	AMRO	8:09	8:19	American Robin	Turdus migratorius	S5B	240	S	1	Singing
15 Jul 22 15-Jul-22		Treed Swamp	BLJA	8:09		Blue Jay	Cyanocitta cristata	S5	180	S	1	Singing
15 Jul 22		Treed Swamp	DEJU	8:09	8:19	Dark-eyed Junco	Junco hyemalis	S5B,S5M	45	S	1	Singing
15-Jul-22	-	Mixed Forest	BTNW	8:55	9:01	Black-throated Green Warbler	Dendroica virens	S5B	200	S	1	Singing
15-Jul-22		Mixed Forest	MODO	8:51	9:01	Mourning Dove	Zenaida macroura	S5B,S4N	180	S	1	Singing
15-Jul-22		Mixed Forest	AMRO	8:51	9:01	American Robin	Turdus migratorius	S5B	150	S	1	Singing
15-Jul-22		Mixed Forest	PUFI	8:51	9:01	Purple Finch	Haemorhous purpureus	S4S5B,SUN,S5N	45	S	1	Singing
15-Jul-22		Mixed Forest	HETH	8:51	9:01	Hermit Thrush	· · ·		240	S	1	
13-Jui-22	0			0.51	9.01		Catharus guttatus	S5B	240	3	T	Singing

civil geotechnical environmental structural field services materials testing

civil géotechnique environnement structures surveillance de chantier service de laboratoire des matériaux