

NORM and Hazardous Materials

Survey Report

Brunswick Smelter Belledune, New Brunswick

Glencore Canada Corporation

Executive Summary

GHD was retained by Glencore Canada Corporation (Glencore) to conduct a Naturally Occurring Radioactive Materials (NORM) survey for the Fertilizer Plant area of the Brunswick Smelter facility, specifically the Diammonium Phosphate Plant and the Phosphoric Acid Plant buildings (DAP and PAP buildings), located in Belledune, New Brunswick. The Brunswick Smelter includes the Smelter Area, the Material Handling West (MHW) Area and the Fertilizer Plant. For the purpose this report, the term "Site" will refer to the wider Glencore Smelter complex and associated assets but the report focusses on the Fertilizer Plant area, specifically the DAP and PAP buildings.

The initial NORM characterization study completed for this area of the Brunswick Smelter in 2006 identified several building surfaces and adjacent soil areas that contained NORM concentrations above acceptable guidelines that would require specific remediation and/or disposal requirements. However, a supplemental assessment program completed in 2008 identified concentrations of NORM in soil adjacent to the DAP and PAP buildings that were below applicable guidelines indicating additional soil management or remediation may not be required. As such, the purpose of the 2019 characterization survey is to provide Glencore with updated information on current concentrations of NORM inside the DAP and PAP buildings as well as in soil and groundwater adjacent to these buildings. The characterization study is also intended to quantify NORM impacted material that will require specific remedial planning as part of future facility closure activities.

In addition to the NORM survey, GHD was also retained to complete a hazardous materials inventory for the Fertilizer Plant. The DAP and PAP buildings ceased operations in the 1990s and available information on the presence of other hazardous materials (non-NORM) is limited to potential asbestos containing materials (ACM).

GHD completed the NORM and Hazardous Materials Survey work between September 16 and 19, 2019. The work was completed at the Site as part of the "Closure Plan - Prefeasibility Study 2019 Update" and consisted of the following:

- The completion of a non-intrusive NORM screening survey of the DAP and PAP buildings and surrounding soil areas to validate previous findings and identify areas of the buildings (and surrounding soil) that potentially contain NORM levels above applicable guidelines.
- Based on the findings of the non-intrusive survey, the collection of representative building material samples, surface soil samples, feedstock samples (remaining in equipment vessels) and groundwater samples for quantitative laboratory analysis of gamma spectrometry as well as other parameters.
- The completion of a hazardous materials inventory of the DAP and PAP buildings including the collection of bulk samples for laboratory analysis.

The results of the NORM and Hazardous Materials Survey are summarized as follows:

NORM

 The gamma readings recorded in the PAP and DAP buildings and surrounding soil areas were generally consistent with background soil conditions in the area (0.05 µSv/h) or within 2 to 4 times background conditions (0.1 to 0.2 µSv/hr) which is similar to the 2006 findings. These results indicate the remaining structures and equipment within the historical PAP or DAP

operation areas will likely not warrant NORM mitigation during demolition of these former units. Note GHD was unable to perform NORM screening surveys on the filter pans located on the 4th floor of the historical PAP building due to inaccessibility during the 2019 Site visit. As such, current data regarding NORM associated with this specific equipment is not available.

- Although the non-intrusive NORM screening survey did not identify elevated gamma readings in the PAP building, residual bulk product samples collected from the PAP building (19BP-1 (Filtrate Sump) and 19BP-2 (PAP building Conveyor Feeding Mill) had concentrations of diffuse NORM exceeding applicable Canadian NORM guidelines. As such, this residual bulk product remaining in the PAP building would require removal and disposal at an approved facility as part of future building decommissioning activities. Approximately 6 m³ of residual bulk product is estimated that will require removal and disposal as NORM.
- The non-intrusive NORM screening survey conducted on the Gypsum Line piping being stored in the Smelter Area identified NORM measurements consistent with background conditions. However, a bulk sample of residual gypsum accumulated in the annular space between the plastic inner sleeve and the outer wood sheath had NORM concentrations exceeding applicable Canadian NORM guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources. As such, the former gypsum piping being stockpiled in the Smelter Area will likely require cleaning or disposal at an approved facility as part of future Site closure activities. There is approximately 225 metres of 0.6 metre diameter piping currently being stored at the Site that has the potential to be impacted with NORM. The volume of residual gypsum accumulated in the annular space between the inner plastic sleeve and the outer wood sheath is estimated to be <0.1 m³.
- The majority of materials and equipment found within the Scrap Yard were identified to have NORM measurements above the NORM Management (Dose Management) Threshold and will likely require management (cleaning and recycling or off-Site disposal, whichever is most costeffective) as part of future Site closure activities. Approximately 145 m³ of NORM impacted materials and equipment is located in the Scrap Yard.
- Soil samples collected from various areas of the Fertilizer Plant, including the Scrap Yard, had NORM concentrations below applicable Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources. These results confirmed the findings of the 2019 non-intrusive NORM screening survey as well as soil samples collected in 2008 and indicate that remediation of soils specific to NORM are likely not required as part of future Site closure activities. Note soil samples were not collected from areas directly beneath equipment or piping and these areas may require additional assessment at the time of facility closure (following removal of the equipment or piping).
- The non-intrusive NORM survey measurements recorded from the DAP building were generally consistent with the established background conditions for this area (0.05 μSv/h). One measurement was not considered consistent with the absolute value of the background for the area (the measurement recorded from the historical reactor area, 0.11 μSv/hr). However, this measurement is within the applicable NORM Management (Dose Management) Threshold of 0.5 μSv/hr above background and is protective of human health and the environment.
- Results of the leachate testing indicated that residual NORM levels identified in soil and residual bulk product samples at the Site are not leachable.

• Groundwater samples collected from the Fertilizer Plant area did not contain detectable concentrations of NORM indicating groundwater in the area has not been impacted with NORM and does not require additional evaluation or remediation as part of future Site closure activities.

Metals/Petroleum Hydrocarbons

- Concentrations of metals in soil and groundwater in several areas of the Fertilizer Plant area exceeded applicable screening guidelines. This data has been incorporated into the "Hydrogeological Study and Data Gap Assessment" also being completed by GHD in support of the "Closure Plan - Prefeasibility Study 2019 Update".
- The soil samples collected from the Fertilizer Plant had leachate concentrations of several metals exceeding the leachate screening level. This data has been incorporated into the "Hydrogeological Study and Data Gap Assessment" also being completed by GHD in support of the "Closure Plan - Prefeasibility Study 2019 Update".
- The majority of residual bulk product samples collected from the Site had metal concentrations above the Screening guidelines but only three samples (19BP-1, 19BP-4 and 19BP-7) had metal concentrations above risk-based values for protection of human health (industrial or commercial utility worker). In addition, the residual bulk product samples collected from the Site had leachate concentrations below applicable screening levels. It is noted that bulk product sample 19BP-2 (PAP Conveyor Feeding Mill) had a pH value of 1.5 and would be considered highly acidic. As indicated above, this sample also contained elevated concentrations of NORM.
- The three residual bulk product samples collected from the DAP and PAP buildings (19BP-1, 19BP-3 and 19BP-6) had detectable concentrations of petroleum hydrocarbons and, therefore, will require disposal at a facility licensed to accept hydrocarbon impacted materials. For residual bulk product sample 19BP-1 (Filtrate Sump), this sample also contained elevated concentrations of NORM and metals (lead) and would be considered mixed waste.

Other Hazardous Building Materials

- Potentially hazardous materials such as PCB containing equipment and light ballasts, mercury switches or mercury containing devices, and ozone depleting substances were not identified in the Fertilizer Plant area during the 2019 survey excluding potential ACM.
- Four of ten asbestos samples collected from the DAP and PAP buildings were identified to have asbestos content of more than 1% and are considered to be friable. Approximately 15 m³ of friable pipe, tank and cable tray insulation was observed in the DAP and PAP buildings as part of the 2019 survey that would require abatement prior to future building demolition activities.
- The concrete samples collected from the two transformer pads in the Fertilizer Plant area did not contain detectable concentrations of PCBs and do not require specific handling or disposal requirements as part of future Site closure activities.

Table of Contents

1.	Introduction1			. 1		
	1.1	Site Description				
	1.2	Objectives				
	1.3	Scope of	Work	. 3		
2.	Regu	Regulations and Guidance				
	2.1	Naturally Occurring Radioactive Material				
	2.2	Soils				
	2.3	Residual Bulk Products				
	2.4	Groundwater				
	2.5	Concrete				
	2.6	Asbestos		. 7		
3.	Reco	Records Review				
4.	Field	Field Investigation Methodology				
	4.1	NORM Su	ırvey	. 9		
	4.2	Soil Samp	ble Collection	10		
	4.3	Residual Bulk Product Sample Collection11				
	4.4	Groundwater Sample Collection 12				
	4.5	Hazardous Materials Inventory and Sample Collection				
5.	Analy	Analytical Results				
	5.1	Analytical Program				
	5.2	NORM Su	irvey Results	14		
		5.2.1 5.2.2 5.2.3 5.2.4	PAP Building DAP Building Scrap Yard Former Gypsum Line Piping	14 15 15 16		
	5.3	Soils		16		
		5.3.1 5.3.2 5.3.3 5.3.4	NORM NORM Leachate Chemistry and Metals Metal Leachate	16 17 17 18		
	5.4	Residual I	Bulk Product	18		
		5.4.1 5.4.2 5.4.3 5.4.4 5.4.5	NORM NORM Leachate Chemistry and Metals Metal Leachate Petroleum Hydrocarbons	18 19 19 20 21		

Table of Contents

	5.5	Groundwater		21
		5.5.1 5.5.2	NORM Metals	21 21
	5.6	Hazardou	s Building Materials	22
		5.6.1 5.6.2	Asbestos PCBs	22 22
6.	Concl	Conclusions		
7.	Limitations			25
8.	Closure			26
9.	References			27

Figure Index

Figure 1	Site Location
Figure 2	Property Map
Figure 3	Fertilizer Area Map
Figure 4	2008 Soil Sample Locations
Figure 5	2008 Groundwater Sampling Locations
Figure 6	NORM Background Establishment Areas
Figure 7A	2019 Soil Sample and NORM Survey Locations
Figure 7B	NORM Survey Location - Gypsum Line Piping Storage Area
Figure 8A	PAP Building - Main Floor
Figure 8B	PAP Building - 2nd Floor
Figure 8C	PAP Building - 3rd Floor
Figure 8D	PAP Building - 4th Floor
Figure 9	DAP Building - 1st Floor
Figure 10	2019 Groundwater Sampling Locations
Figure 11	Concrete Sample Locations
Figure 12	Scrap Yard NORM Readings

Table Index

- Table 1
 Background Soil Conditions NORM
- Table 2 Soil Survey Results NORM
- Table 3 Residual Bulk Product NORM
- Table 4 Building Survey Results NORM
- Table 5 Soil Analytical Results NORM
- Table 6 Soil Leachate Analytical Results NORM
- Table 7Soil Analytical Results Metals
- Table 8 Soil Leachate Analytical Results Metals
- Table 9 Bulk Product Leachate Analytical Results NORM
- Table 10 Bulk Product Leachate NORM
- Table 11 Bulk Product Analytical Results Metals
- Table 12 Bulk Product Leachate Analytical Results Metals
- Table 13
 Bulk Product Analytical Results Petroleum Hydrocarbons
- Table 14
 Groundwater Analytical Results NORM
- Table 15 Groundwater Analytical Results Metals
- Table 16
 Asbestos Containing Materials Analytical Results
- Table 17 Concrete Analytical Results Polychlorinated Biphenyls (PCBs)

Appendix Index

- Appendix A Photograph Log
- Appendix B Laboratory Certificates

List of Acronyms

ACM	Asbestos Containing Materials
BTEX	Benzene, Toluene, Ethylbenzene, and Xylene
BV	Bureau Veritas
C&D	Construction and Demolition
CCME	Canadian Council of Ministers of the Environment
CEPA	Canadian Environmental Protection Act
CN	Canadian National Railway
CRA	Conestoga-Rovers & Associates
DAP	Di-Ammonium Phosphate Plant
EQS	Environmental Quality Standards
GHD	GHD Limited
Glencore	Glencore Canada Corporation
ICP	Inductively Coupled Plasma
IEM	Integrated Environmental Management
kg	Kilograms
m	Metre
m²	Meter Square
m ³	Meter Cubed
MAP	Monoammonium Phosphate
Maxxam	Maxxam Analytics Inc.
mg	milligram
MHW Area	Material Handling West Area
mSv	milliSieverts
mTPH	Modified Total Petroleum Hydrocarbons
NBDELG	New Brunswick Department of Environment and Local Government
NORM	Naturally Occurring Radioactive Materials
NSE	Nova Scotia Environment
PAP	Phosphoric Acid Plant
PCB	Polychlorinated Biphenyls
PLM	Polarized-Light Microscopy
QA/QC	Quality Assurance / Quality Control
RBCA	Risk Based Corrective Action
RBSLs	Risk Based Screening Levels

List of Acronyms

Smelter	Brunswick Smelter Complex, Belledune, NB
SNC	SNC-Lavalin
SQGs	Soil Quality Guidelines
SSTLs	Site Specific Target levels
TCLP	Toxicity Characteristic Leaching Procedure
UCLM	Upper Confidence Limit of the Mean
USEPA	United States Environmental Protection Agency

1. Introduction

GHD was retained by Glencore Canada Corporation (Glencore) to conduct a Naturally Occurring Radioactive Materials (NORM) survey for the Fertilizer Plant area of the Brunswick Smelter facility, specifically the Diammonium Phosphate Plant and the Phosphoric Acid Plant buildings (DAP and PAP buildings), located in Belledune, New Brunswick (Site). The Brunswick Smelter includes the Smelter Area, the Material Handling West (MHW) Area and the Fertilizer Plant. For the purpose this report, the term "Site" will refer to the wider Glencore Smelter complex and associated assets but the report focusses on the Fertilizer Plant area, specifically the DAP and PAP buildings. A Site location map, a property map and a 2018 aerial image of the Fertilizer Plant area are attached as Figures 1, 2 and 3, respectively.

The initial NORM characterization study completed for this area of the Brunswick Smelter in 2006 by Integrated Environmental Management (IEM).¹ identified several building surfaces and adjacent soil areas that contained NORM concentrations above acceptable guidelines that would require specific remediation and/or disposal requirements. However, a supplemental assessment program completed in 2008 by Conestoga-Rovers & Associates (CRA) on behalf of SNC-Lavalin (SNC) identified concentrations of NORM in soil adjacent to the DAP and PAP buildings that were below applicable guidelines indicating additional soil management or remediation may not be required (SNC, 2008). As such, the purpose of the 2019 characterization survey is to provide Glencore with updated information on current concentrations of NORM inside the DAP and PAP buildings as well as in soil and groundwater adjacent to these buildings. The characterization study is also intended to quantify NORM impacted material that will require specific remedial planning as part of future facility closure activities.

In addition to the NORM survey, GHD was also retained to complete a hazardous materials inventory for the Fertilizer Plant area. The DAP and PAP buildings ceased operations in the 1990s and available information on the presence of other hazardous materials (non-NORM) is limited to potential asbestos containing materials (ACM). During existing conditions surveys completed by GHD in July 2019, the DAP and PAP buildings were identified to contain several tanks, vessels and piping that contain residual product from unknown sources.

The NORM and hazardous materials survey for the DAP and PAP buildings was completed as part of the decommissioning and closure cost forecasting study ("Decommissioning Study") currently being completed by GHD for the Smelter and referred to as the "Closure Plan - Prefeasibility Study 2019 Update". The volumes of hazardous materials potentially requiring abatement is required for development of the DAP and PAP Closure Feasibility study and associated decommissioning technical specifications that are also currently being prepared by GHD. The NORM and Hazardous Materials Survey specific to the Fertilizer Plant area of the Site was completed in conjunction with a "Hydrogeological Study and Data Gap Assessment" also being completed by GHD in support of the Decommissioning Study.

¹ Conestoga-Rovers & Associates, Pre-remediation Survey of the Falconbridge Ltd. DAP Facility, August 24, 2006

1.1 Site Description

Glencore has been operating the Brunswick Smelter complex in Belledune, New Brunswick (Smelter) since 1966. The Fertilizer Plant area was constructed in 1967 and operated until approximately 1995. It originally produced monoammonium phosphate (MAP) fertilizer but later production switched to DAP fertilizer. The phosphate rock used to feed the process was mined in the southeastern and western United States, and in the African countries of Togo and Morocco. It contained oxides of phosphorus and calcium, with trace amounts of NORM impurities such as Uranium-238 (U-238) and Thorium-232 (Th-232), along with their various progeny (i.e., Ra-226).

The two primary buildings associated with the Fertilizer Plant are the DAP and PAP buildings as shown on Figure 3. This buildings are not currently being used as part of Site operations excluding the storage of equipment on the ground level of the DAP building. Several areas of these buildings, specifically the PAP building, are also severely deteriorated and not accessible for safety reasons. In addition, the electrical supply to the PAP building has been disconnected.

Bulk product associated with the Fertilizer Plant operation was reportedly historically stored immediately east of the PAP building and referred to as the Lay Down Area. This area is still reportedly used for the storage of bulk product as part of the MHW operation. In addition, equipment historically used in the Fertilizer Plant operation but removed from the DAP and PAP buildings are currently being stored in a fenced area directly southeast of the PAP building referred to as Scrap Yard. The specific areas of the Fertilizer Plant area associated with this study are shown on Figure 3.

1.2 **Objectives**

The objectives of the work program were:

- Obtain current NORM screening measurements on building surfaces and equipment of the DAP and PAP buildings.
- Obtain current NORM quantitative concentration data from soil samples collected in proximity to the historical DAP and PAP operations.
- Compare the current NORM measurements and analytical data to the historical information obtained in 2006 and 2008 and identify significant changes.
- To quantify the volume of feedstock and by-products remaining in equipment vessels and piping in the DAP and PAP buildings that have concentrations of NORM or other chemicals (e.g., acids) exceeding applicable guidelines and will require specific mitigation/management as part of future building decommissioning activities.
- To quantify the volume of soil, if any, in proximity to the historical DAP and PAP operations with concentrations of NORM requiring specific mitigation or management as part of future building decommissioning activities.
- To quantify the approximate surface area of building materials such as structural steel and concrete as well as equipment remaining in the DAP and PAP buildings that will require specific cleaning due to the presence of NORM, prior to being recycled or will require specific mitigation/management as part of future building decommissioning activities.

• To quantify the volume of hazardous materials such ACM, polychlorinated biphenyls (PCBs), and mercury (among others) in the DAP and PAP buildings that will require specific handling and disposal as part of future building decommissioning activities.

1.3 Scope of Work

The scope of work required to meet the study objectives is summarized as follows:

- Review the previous environmental reports that have been completed specifically for the DAP and PAP buildings.
- Complete a non-intrusive NORM screening survey of the DAP and PAP buildings and surrounding soil areas to validate previous findings and identify areas of the buildings (and surrounding soil) that potentially contain NORM levels above applicable guidelines.
- Based on the findings of the non-intrusive survey, collect representative building material samples, surface soil samples and/or feedstock samples (remaining in equipment vessels) for quantitative laboratory analysis of gamma spectrometry as well as possible leachate testing.
- Collect representative groundwater samples from existing wells located in the Fertilizer Plant area for gamma spectrometry.
- Determine the quantity of soil/residual feedstock as well as building/equipment surfaces remaining in the Fertilizer Plant area that will require specific management pursuant to the applicable NORM management guidelines as part of future decommissioning/demolition activities.
- Determine if groundwater surrounding the Fertilizer Plant area has NORM concentrations above applicable guidelines and establish the groundwater flow pattern affecting the plume, including preferential pathways such as buried utilities as well as potential receptors.
- Complete a hazardous materials inventory of the DAP and PAP buildings including the collection of bulk samples (if accessible) for laboratory analysis.
- Determine the quantity of residual product remaining in tanks/vessels/piping of the DAP and PAP buildings as well as the type of product.
- Prepare draft and final reports on the study findings.

2. Regulations and Guidance

The analytical data collected during the NORM and hazardous materials survey program will be compared to applicable guidelines to define areas of the Fertilizer Plant that will require specific remediation, abatement or cleaning prior to future building decommissioning and demolition activities. The guidelines selected are those used in standard industry practice in Atlantic Canada, which are most appropriate for the current and intended future land use of the Site.

The NORM screening survey (non-intrusive) and quantitative NORM analyses from sampling (intrusive) will be guided by the Canadian Guidelines for the Management of NORM, 2013, ISBN: 978 1 100 23019 1, Cat. No.: H129 34/2013E PDF 130465; (hereafter referred to as the Canadian NORM Guidelines) that provide guidelines for NORM contamination on surfaces as well as diffuse

NORM concentrations in soil, groundwater and air that may be released unconditionally (i.e., without regard for radiological ramifications).

The New Brunswick Guideline for the Management of Contaminated Sites does not provide guidelines for non-petroleum contaminants in soil or groundwater. However, the New Brunswick Department of Environment and Local Government (NBDELG) typically recommend applying the Canadian Council of Ministers of the Environment (CCME) guidelines and/or the Nova Scotia Environment (NSE) Tier I Environmental Quality Standards (EQS) for screening non-petroleum hydrocarbon contaminants in soil and groundwater. The NSE EQS were adopted from CCME, where available, and are based on multiple pathway analysis considering both human and ecological health. The NSE Tier I EQS also include screening values from other jurisdictions for parameters that do not have CCME guidelines.

The various guidelines used in this study are further described below.

2.1 Naturally Occurring Radioactive Material

The Canadian NORM Guidelines provide three NORM Classification Levels for evaluation of potential NORM containing material. These levels are as follows:

- Investigation Threshold The lowest threshold and considered protective of human health is radiation dose basis for control of NORM at 0.3 milliSieverts (mSv) per year. NORM measurements equal or below this threshold allow unrestricted use of the assessed site. The occupational dose-rate that will give an incremental gamma radiation dose of 0.3 mSv/year is 0.15 µSv/hour (h). The gamma Investigation Threshold is an incremental dose-rate above off-site background of 0.15 µSv/h.
- NORM Management (Dose Management) Threshold Radiation dose assessment implemented if the Investigation Threshold is exceeded. The assessed site can be classified for unrestricted use or require NORM management controls depending on findings from the radiation dose assessment. An assessed incremental dose of 1 mSv/year or 0.5 µSv/h to a worker is adopted as the Dose Management Threshold.
- Radiation Management Threshold The radiation management threshold is 5 mSv/year and Exceeding this threshold requires implementation of a radiation protection management program.

Establishment of the Investigation Threshold includes accounting for background (natural surface) NORM for a given site. As such, establishment of the background NORM incremental dose-rate for a given site is the initial step of a NORM assessment per the Canadian NORM Guidelines. This is accomplished through NORM assessments of areas in close proximity to a given site but external to active or legacy production or storage operations.

The Canadian NORM Guidelines provide the following absolute incremental dose-rate as the Dose Management Threshold:

 Derived Working Limit Occupational dose-rate: 0.5 µSv/hr (Section 4.1.2 Dose Management Threshold, the Canadian Guidelines for the Management of NORM, 2013).

Site-specific measurements above $0.5 \,\mu$ Sv/hr triggers the requirement to perform NORM dose management evaluations for protection of human health. This value was used as part of the non-intrusive survey to guide collection of soil, bulk product or building materials sampling through intrusive methods for laboratory analysis.

2.2 Soils

Parameters: NORM

Guideline: Canadian NORM Guidelines

Rationale: The Canadian NORM Guidelines lists the concentration of diffuse NORM in solids (radioactive isotopes of uranium, radium, etc.) that may be released unconditionally (i.e., without regard for radiological ramifications). The Canadian NORM guidelines for diffuse NORM in liquids were also applied to soil samples submitted for NORM leachate analysis to determine potential disposal requirements (if applicable).

Parameters: Metals and PCBs

Guideline: Analytical results for select metals (arsenic, cadmium, copper, lead, silver, thallium and zinc) typically associated with the ore concentrate being processed at the Site, are compared to the risk-based Site Specific Target Levels (SSTLs) that were previously developed in relation to the rail transport of ore concentrate to the Smelter from the Brunswick Mine for the Protection of Human Health for an Industrial Worker (CRA, 2013).

For metals other than those listed above and PCBs, the main criteria referenced are the CCME SQG using the associated CCME Factsheets (accessed online, October 2019) and the NSE EQS. The criteria for Industrial Land Use, based on the most conservative applicable human health pathway were applied.

Rationale: The risk based SSTLs for an industrial worker, previously calculated during assessment, remediation and closure of the CN rail line properties over which ore concentration was transported to the Site from the Brunswick Mine, were used as the primary screening values for typical ore related metals to demonstrate the likely expected areas on-Site that would require remedial action planning work as part of the "Closure Plan - Prefeasibility Study 2019 Update". It is also noted that a review of these SSTLs was completed with Glencore as part of the regulatory site closure work completed by GHD in 2018, on behalf of CN, for the CN rail line bordering the Site properties owned by Glencore.

> As the science for risk assessment is evolving, the SSTLs presented in this report are being used specifically for environmental closure cost estimation items in the Closure Plan - Prefeasibility Study 2019 Update, and that Brunswick Smelter specific SSTLs would be required as part of a remedial action plan.

The CCME SQGs were used as the primary screening values for other metals and PCBs, in the absence of SSTLs, as these standards are based on multiple pathway analysis considering human exposure pathways including soil ingestion/dermal

contact, particulate inhalation and off-site migration. The NSE Tier I EQS standards are also based on multiple pathway analysis considering human health, but do not include the particulate inhalation or off-site migration check.

Parameters: Leachable Metals

- *Guideline:* Leachable metals in soil concentrations were compared to screening levels provided in the Canadian Environmental Protection Act (CEPA), Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations, Current to July 1, 2019.
- Rationale: The CEPA leachate screening levels were used as the primary screening values for metals in leachate, as these standards are used to determine if the soil would be considered a hazardous waste under the Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations, to evaluate disposal options. The leachate screening levels can also give an indication as to how likely the metal in soil is to leach from soil to groundwater.

2.3 Residual Bulk Products

The same screening guidelines for NORM and metals as discussed above for soil are also applied to residual bulk products for screening purposes. However, several bulk product samples were also analyzed for petroleum hydrocarbons. The guidelines used to screen petroleum hydrocarbon concentrations in residual bulk products is summarized below.

Parameters: Petroleum Hydrocarbons (BTEX/mTPH)

- Guideline:RBCA Tier 1, Atlantic RBCA for Petroleum Impacted Sites in Atlantic Canada,
Version 3, User Guidance, Appendix 3 Table 4a: Tier I Risk-Based
Screening Level (RBSL), July 2012, revised January 2015. Industrial Receptor,
non-potable groundwater use, coarse-grained soil type for the protection of human
health.
- *Rationale:* The Tier I RBSL are based on multiple pathway analyses considering human health in an industrial setting. This is the standard guideline for petroleum hydrocarbons used throughout Atlantic Canada.

2.4 Groundwater

Parameters: NORM

- Guideline: Canadian NORM Guidelines
- Rationale: The Canadian NORM Guidelines lists the concentration of diffuse NORM in liquids (radioactive isotopes of uranium, radium, etc.) that may be released unconditionally (i.e., without regard for radiological ramifications).

Parameters: Metals

- Guideline: NSE Pathway Specific Standards (PSS) for Groundwater Groundwater Discharging to Surface Water, >10 metres from surface water body marine discharge to marine water (April 2014).
- Rationale: The NSE PSS for Groundwater Discharge to Surface Water, Discharge to Marine Water are used for screening purposes where groundwater is potentially discharging to a marine aquatic environment, in order to evaluate potential effects to nearby marine aquatic life. The NSE PSS for Groundwater Discharge to Surface Water >10 m from a Marine Surface Water Body are applied to boundary groundwater sampling locations at 10 m or greater from Chaleur Bay.

2.5 Concrete

Parameters: PCBs

- *Guideline:* NSE Tier 1 EQS for soil at a Non-Potable Site coarse grained soil type, for commercial land use (July 6, 2013).
- Rationale: As there are no guidelines specific to allowable limits of PCB in concrete, the soil quality guideline for PCB was used as a screening tool. As noted above the Province of NB does not have environmental guidelines specific to PCBs. The NSE EQS were used for screening purposes as these standards were adopted from CCME.

2.6 Asbestos

Parameters: Percent Asbestos and Friability

- *Guideline:* A Code of Practice for Working with Materials Containing Asbestos in New Brunswick (1992).
- Rationale: Asbestos found within the Glencore Smelter Site were compared to The Code of Practice for Working with Materials Containing Asbestos in New Brunswick. This Code of Practice was developed to provide safe handling procedures to minimize exposure to asbestos-containing materials.

3. Records Review

Previous Studies

As indicated in Section 1, a NORM characterization study (screening and quantitative analysis) was completed for the Fertilizer Plant area of the Site in 2006 by IEM on behalf of CRA. This survey identified several building surfaces and adjacent soil areas that contained NORM concentrations above acceptable guidelines that would require specific remediation and/or disposal requirements as outlined below:

- Approximately 50% of the PAP Building contained process material dust that exhibited residual NORM above surface contamination limits indicating remediation may be required before unrestricted use or demolition.
- The Lay-down Area adjacent to the PAP Building exhibited non-uniform levels of residual NORM in soil.
- The Scrap Yard area contained former process equipment/materials that contained residual levels of NORM.

Although the PAP building and associated exterior areas were identified to contain residual levels of NORM, the DAP building was identified to contain insignificant levels of residual NORM excluding a small surface soil area near the northeast corner of the building.

Following completion of the non-intrusive NORM survey, soil samples were collected from selected areas of the Fertilizer Plant in 2008 for gamma spectroscopy analysis. The analytical results identified concentrations of diffuse NORM in the soil samples that were below the Canadian NORM Guidelines that may be released unconditionally (i.e., without regard for radiological ramifications). Based on the analytical results obtained during the 2008 supplemental sampling program, additional soil management or remediation may not be required (SNC-Lavalin, 2008). The locations of the soil samples collected in 2008 are shown on Figure 4.

Groundwater samples were also collected from seven monitor wells located in Fertilizer Plant area in 2008 for gamma spectroscopy analysis (08GW-79, 08GW-80, 08GW-92 to 08GW-95 and 08GW-98). Results of the laboratory analysis indicated the concentrations of NORM in the groundwater samples were below current Canadian NORM guidelines. However, the laboratory analysis noted the samples did not meet required preservation standards at the time of analysis (pH <2) and the results may not accurately reflect the concentration of NORM at the time of sampling (SNC-Lavalin, 2008). The historical groundwater sample locations are shown on Figure 5.

Operational Review

Prior to the mobilization of field staff to the Site, GHD contacted Glencore representatives to review historic development and operational information specific to the Fertilizer Plant. The purpose of the historic review was to confirm the potential presence of residual NORM-bearing materials in subsurface soils that might escape surface gamma walkover surveys based on the presence of clean cover materials (i.e., buried NORM sources). Limited additional information was available on the historic operation of the Fertilizer Plant but Site staff did note that the Lay-down Area continues to be used for stockpiling various bulk materials. The movement of equipment and stockpiling of materials in the Lay-down Area has likely significantly disturbed surface soil conditions since completion of the 2006 and 2008 sampling programs.

In addition, Glencore representatives indicated that the former aboveground Gypsum Line that extended from the Fertilizer Plant to the Port of Belledune was decommissioned and the abandoned line is now being stored on Belledune Point in the Smelter Area (see Figure 3). As part of the 2019 investigation, GHD staff investigated the current storage location of the former Gypsum Line that was constructed of 0.6 metre diameter plastic piping (sleeve) with an outer wooden sheathing. Approximately 25 pieces of the former Gypsum Line averaging approximately 10 metres in length were observed in the storage area. Residual gypsum product was not observed to be present in the

line but small accumulations of gypsum was observed in the annulus between the inner plastic sleeve and the outer wood sheathing (See photos in Appendix A).

Based on the findings of the records review, the 2019 NORM survey was focused primarily on the PAP building and associated exterior areas but also included the current Gypsum Line storage area and the DAP building to validate the 2006 findings.

4. Field Investigation Methodology

4.1 NORM Survey

Between September 16 and 19, 2019, GHD completed a non-intrusive, NORM screening survey of the DAP and PAP building surfaces, equipment and surrounding land surface using a gamma measurement instrument (Ludlum calibrated to a 44-9 probe). The purpose of this task was to identify any land areas, building surfaces, or equipment/materials that exhibit gamma radiation levels that exceed established regulatory guidance thresholds. As previously indicated, the survey results obtained during the 2006 survey completed by IEM along with findings from the records review formed the basis for selecting the 2019 survey locations. The former Gypsum Line piping currently being stored in the Smelter Area was also included in the non-intrusive NORM survey.

Background

As indicated in Section 2.1, the Investigation Threshold protocol included in the Canadian NORM Guidelines includes accounting for background (natural surface) NORM for a given site. As such, establishment of the background NORM incremental dose-rate for a given site is the initial step of a NORM assessment per the Canadian NORM Guidelines. The Site-specific NORM background for the Site was established through the following non-intrusive (passive) survey:

- 1) Establish background locations as presented on Figure 6 are applicable for the Site (no known source of NORM material from historical facility operations).
- 2) Perform a non-intrusive, serpentine survey in a southwest to northeast orientation, within each background location using the gamma measurement instrument.
- 3) GHD recorded the gamma measurements in µSv/hr from the survey at 12 locations. The background gamma measurements recorded ranged from 0.03 µSv/hr to 0.06 µSv/hr. The survey results are further discussed in Section 5 and the background gamma measurements are presented in Table 1.
- 4) The 95% upper confidence limit of the mean (UCLM) from the data collected from each of the two background locations was calculated using the United States Environmental Protection Agency (USEPA) ProUCL (Version 5.1) statistical software. The UCLM calculated using the background data set was 0.05 µSv/hr and this value was considered to be representative of background radiological conditions in the area (see Section 5).

Site Investigation

Following the establishment of background conditions at the Site, GHD completed a non-intrusive survey of the building surfaces and equipment remaining in the DAP and PAP buildings. As

previously indicated, the 2006 survey indicated that the DAP building generally had NORM levels below applicable guidelines. As such, the 2019 survey was focused on the PAP building in an effort to refine the quantities of materials in the building that will require special handling and remediation/disposal during future demolition activities. The equipment survey also included equipment previously removed from the DAP and PAP buildings and currently being stored in the fenced Scrap Yard area located approximately 150 meters southeast of the PAP building as well as the former Gypsum Line that is now stored in the Smelter Area (see Figure 3). The ground surface in the vicinity of the DAP and PAP buildings as well as the Gypsum Line piping was also included in the non-intrusive NORM survey with a specific focus on the Lay-down and Scrap Yard areas that were previously identified to contain non-uniform concentrations of NORM.

The non-intrusive NORM survey of the equipment, building materials and surrounding land surface was completed using a gamma measurement instrument (Ludlum with 44-9 probe). Accessible internal surfaces within the DAP and PAP buildings were scanned with the gamma detector held in close proximity to the surface (i.e., 10 to 15 centimeters from surface) and moved over the area at a rate of 2.5 to 5.5 centimeters per second. Areas of the floor, walls, ledges and equipment surfaces were also surveyed in this manner. The land areas were surveyed by traversing the surface to be monitored while moving the detector in a serpentine pattern in close proximity to the ground (i.e., approximately 15 centimeters from the soil surface). Specific to the Gypsum Line piping, the wood exterior, plastic interior (sleeve) piping as well as any residual gypsum/residue observed in the piping was surveyed to the extent possible with the Ludlum instrument.

Measurements in μ Sv/hr were recorded during the survey and areas where the device alarm is triggered, if any, were noted. Photographs of the equipment and vessel identification number (if available) were also recorded. Building floor plans were obtained from Glencore and were used to build databases to show areas with NORM levels exceeding the Dose Management Threshold along with a corresponding photograph. For equipment/materials, an estimate of the extent of surface contamination was also recorded as practical, including drawings and/or photographs for necessary details. GPS coordinates for the land surface triggers (soil areas) were recorded and used to develop Site plans showing soil areas that exceed the Dose Management Threshold. The land areas with exceedances were delineated to the extent possible in an effort to estimate surface extents of relatively large areas (>25 m²). Results of the non-intrusive survey are further discussed in Section 5 and photographs of the areas investigated are provided in Appendix A.

4.2 Soil Sample Collection

Results of the non-intrusive NORM soil survey were utilized to identify ground surface areas requiring further evaluation with respect to evaluating concentrations of NORM in soil through laboratory analysis. GHD collected soil samples from areas of the Fertilizer Plant with NORM levels exceeding the Dose Management Threshold (0.5μ Sv/hr plus background) identified during non-intrusive survey completed in 2019 as well as the areas previously identified to contain residual NORM levels exceeding applicable guidelines in 2006. GHD used a stainless steel hand auger, trowel and pickaxe to collect shallow soil samples (0 to 15 centimeters below ground surface) from designated areas for potential laboratory analysis.

Collected samples were placed in a double lined Ziploc bag and jars labeled accordingly. As the non-intrusive NORM survey identified a relatively small area of NORM impacted soil (see Section 5), the surface soil sample collection was limited to single "grab" samples at various locations.

Shallow subsurface soil sampling was also completed to delineate the vertical extent of potential exceedances in soils. Shallow subsurface soil sampling was performed beneath each surface soil sampling location, and at several locations identified during the historical review as having the potential presence of residual NORM bearing materials in subsurface soils (e.g., the Lay-down Area).

The subsurface samples were collected as follows:

- a. If soils were conducive, a hand auger was used to collect subsurface soils in 15 cm intervals to target depth.
- b. Otherwise, a 0.6 m long split spoon soil sampler was advanced to targeted depths using a geotechnical drill rig and the soils extracted from the spilt spoon at approximately 0.3 m intervals.
- Each soil sample collected was screened on-Site using the gamma measurement instrument (Ludlum with 44-9 probe) prior to being placed in sample containers for potential laboratory analysis of gamma spectroscopy.
- d. If on-Site screening indicated that elevated NORM levels were present at the target depth, additional sampling depths was completed to identify clean bottom (to the extent possible).

To avoid the risk of cross-contamination, all equipment was washed and rinsed thoroughly between sampling locations.

Selected soil samples were submitted to Bureau Veritas (BV) laboratories in Bedford, NS (formerly Maxxam) for gamma spectroscopy analysis. Select soil samples were also analyzed for leachable NORM analysis, available metals and leachable metals to determine if the material may also be classified as mixed waste.

Table 2 outlines the soil samples collected for potential laboratory analysis, the sample depth and the associated gamma measurement. The non-intrusive survey locations as well as the soil sample locations collected for potential laboratory analysis are also shown on Figures 7A and 7B.

4.3 Residual Bulk Product Sample Collection

During an existing conditions evaluation completed for the DAP and PAP in July 2019, several vessels located in the DAP and PAP buildings were identified to contain residual feedstock or associated by-product material. Based on the results of the non-intrusive survey, a total of five bulk samples of residual product remaining in accessible vessels were collected from the PAP building for submission to BV for analysis of NORM by gamma spectrometry. Samples of soil-type media including sludge, fine debris, etc. (19BP-1, 19BP-2, 19BP-3, and 19BP-10) were collected to be representative of the media remaining in vessels, screened using the gamma measurement instrument (Ludlum with 44-9 probe) and managed for laboratory analysis consistent with the subsequent steps. Each sample collected was screened to the extent practical using appropriate on-Site preparation methods. One sample of residual product on the north conveyor of the DAP building (19BP-5) was also submitted for NORM analysis to confirm this building does not contain residual levels of NORM. In addition, a sample of the residual gypsum obtained from the former Gypsum Line piping being stored at the Smelter Area was also collected for NORM analysis

(19SP-8). The residual gypsum product remaining in the piping was limited to small amounts accumulated in the annular space between the inner plastic sleeve and the outer wood sheathing.

Specific samples were selected from sample sets collected by hand, or from specific depth profiles at highest gamma measurement depth interval and placed in a sample container for laboratory analysis. The laboratory results will be used to determine if the residual product or building materials requires special handling, cleaning and/or disposal as NORM impacted material related to future building decommissioning activities. Select samples were also submitted for NORM leachate analysis. Determining the leachate potential for the NORM impacted material will form the basis of determining future regulatory disposal requirements for the impacted material.

A total of 10 samples of the residual product remaining in equipment vessels of the DAP and PAP buildings were submitted to BV for analysis of available metals, leachable metals and/or other chemical parameters (pH, phosphate, sulfur, etc.) to determine if the material may also be classified as hazardous waste and/or mixed waste (19BP-1 to 19BP-10). It is noted that one of the ten bulk product samples submitted for metal analysis (19BP-3) was identified by the laboratory to contain elevated concentrations of petroleum hydrocarbons and as such, the metals analysis could not be completed on this specific sample. Based on the laboratory comments, three residual bulk product samples (19BP-1, 19BP-3 and 19BP-6) were also analyzed for petroleum hydrocarbons.

Table 3 outlines the residual bulk samples collected for potential laboratory analysis and the associated gamma measurement. The locations of residual bulk product samples collected from the DAP and PAP buildings for laboratory analysis are also shown on Figures 8A to 8D and Figure 9.

4.4 Groundwater Sample Collection

Based on a review of previous reports provided by Glencore, approximately ten shallow groundwater wells were previously constructed in the Fertilizer Plant area during an assessment program completed in 2008 (SNC-Lavalin, 2008). Several of these wells were sampled for NORM in 2008 but the quality of the analytical results was noted to be questionable based on a change in water chemistry (rise in pH) that occurred during sample shipment to the laboratory. As such, GHD recommended re-sampling groundwater from existing and/or newly installed monitor wells located in the Fertilizer Plant as part of the 2019 survey activities.

A total of 6 groundwater samples were collected from monitor wells (19GW-118, 19GW-120, 19GW-122, 19GW-124, 08GW-95, and 09GW-102) located in the Fertilizer Plant area on September 23, 2019 (Figure 10). The monitor wells were purged prior to sampling to provide samples that are representative of formation waters. Following purging, the water samples were placed into laboratory supplied bottles for analysis of NORM by gamma spectrometry and dissolved metals by BV laboratories. All sample sets were collected in as short a time period as possible, preserved as required and stored on ice during shipment in coolers to the laboratory in accordance with laboratory requirements. This precaution ensured that the samples collected were representative and comparable for data interpretation purposes. To the extent possible, the groundwater sampling program for NORM was completed in coordination with a concurrent Site-wide hydrogeological evaluation also being completed by GHD.

4.5 Hazardous Materials Inventory and Sample Collection

Asbestos

Available inventories of potential hazardous building materials associated with the DAP and PAP building are generally limited to the identification of potential ACM. The purpose of the hazardous materials inventory was to confirm that the available ACM inventory accurately characterizes and quantifies potential ACM remaining in DAP and PAP buildings. Asbestos is a group of fibrous minerals that occur naturally in soil and rock. Asbestos fibres were formerly used (primarily for their insulating and fireproofing properties) in roofing shingles, ceiling tiles, floor tiles, drywall mastic, asbestos cement products, gaskets, insulation, paper products, and other building and insulating products.

Regulatory control of asbestos in the workplace is the responsibility of the Worksafe New Brunswick under the provisions of the Occupational Health and Safety Act. For the purposes of managing worker exposure during building maintenance, renovation and demolition, the Regulation 92 106 ("Code of Practice for Working With Materials Containing Asbestos in New Brunswick") defines an asbestos containing material (ACM) as a material which contains 1% or more by volume of asbestos. The Regulation has established procedures for safe monitoring and abatement as well as the specific responsibilities of owners, employers, and employees.

As part of the 2019 investigation, GHD collected a total of six samples of suspect asbestos-containing building materials, including insulation, pipe fittings, roof parge and tank insulation in the PAP building (19ACM-1 to 19ACM-6). Three additional suspected asbestos-containing building materials were also sampled in the DAP building (19ACM-7 to 19ACM-9) as well as insulation on an inactive storage tank located adjacent to the fenced Scrap Yard area (19ACM-10). The samples were collected using small hand tools such as utilities knives or similar cutting device. The samples were placed in samples bags, sealed and labeled. The samples were submitted under chain-of-custody protocol to BV for analysis by polarized-light microscopy (PLM) using Method SOP AQS 16 (based on National Institute for Occupational Safety & Health Method 9002).

It is also noted that there were areas of the PAP building that could not be surveyed due to building access restrictions. The locations of the ACM samples collected as part of the 2019 survey are shown on Figures 8A to 8D and Figure 9.

Other Hazardous Materials

Other potentially hazardous materials such as PCB containing equipment and light ballasts, mercury switches or mercury containing devices, and ozone depleting substances were not identified in the Fertilizer Plant area during the 2019 survey. However, the existing conditions survey completed at the Site in July 2019 identified two wet transformers located on concrete pads on the exterior to the DAP building (see Figure 11). Given the age of these transformers (likely installed during construction of the DAP building in the 1960s), there is the potential these transformers formerly contained PCB oils (Glencore representatives previously indicated the transformers are currently PCB free). To ensure historical leaks or spills associated with these transformers have not impacted the concrete pads, a total of two concrete core samples (one from each foundation) were collected for PCB analysis. The concrete samples were collected from areas of visible surface staining or as

close as possible to the drain spigots on the transformers (worst-case scenario). The samples of the concrete transformer pads were collected by advancing a 50 mm diameter diamond tip core saw to a depth of approximately 50 mm into the concrete surface. The concrete core samples were then placed in laboratory-supplied jars for delivery to BV for PCB analysis.

5. Analytical Results

5.1 Analytical Program

Selected soil and residual product samples were analyzed for the following:

- 1. NORM radionuclides using gamma spectroscopy
- 2. Metals scan (including mercury) by an Inductively Coupled Plasma (ICP) method
- Metals and NORM leachate by Toxicity Characteristic Leachate Procedure (TCLP) method (or similar)
- 4. Specified chemical parameters (pH, phosphorous, sulfur, etc.)

Selected groundwater samples were analyzed for:

- 1. NORM radionuclides using gamma spectroscopy
- 2. Metals scan (including Hg) by an ICP method

Selected bulk building materials and/or transformer concrete pad samples were analyzed for:

- 1. Asbestos containing material by Polarized Light Microscopy (PLM)
- 2. Polychlorinated Biphenyls (PCB)

A field duplicate and trip blank sample of the soil and groundwater sample sets were analyzed for the appropriate parameters. Laboratory quality assurance / quality control (QA/QC) data is also included in the report.

5.2 NORM Survey Results

5.2.1 PAP Building

Various areas and equipment within PAP building and surrounding soil areas were previously identified to contain NORM levels above applicable guidelines. As such, the PAP building, equipment and surrounding soil areas (Lay-down Area) were re-surveyed in 2019 for gamma radiation using a Ludlum 2241 with 44-9 probe and the results were compared to the Canadian NORM Guidelines. The 2019 survey included scanning surfaces and equipment on all four floors of the PAP building but some areas of the building were inaccessible due to deterioration of the building and unsafe work conditions. Surficial and sub-surface soils surrounding the PAP building were also surveyed at numerous locations as shown on Figure 7A. The purpose of the survey was to determine the current radiation levels in residual bulk products, equipment, structures and soil associated with the PAP building.

Overall, the gamma readings recorded from the PAP building and surrounding soil areas were generally consistent with background soil conditions in area (0.05 μ Sv/h) or within 2 to 4 times background conditions (0.1 to 0.2 μ Sv/hr) which is similar to the 2006 findings (CRA, 2006). In addition, all of the readings collected from the PAP building and surrounding soil areas were found to be well below the NORM Management (Dose Management) Threshold of 0.5 μ Sv/hr.

As previously indicated, several areas of the PAP building were not accessible due to structural integrity issues, specifically the filter pan area on the fourth floor of the PAP building. The filter pan enclosure had a gamma reading of 0.1 μ Sv/hr at 1 metre distance from the equipment. However, the filter pans in the Scrap Yard area had gamma readings well above the NORM Management Threshold (see Section 5.2.3). As such, it is reasonable to assume that the filter pans on the fourth floor of the PAP building may have radiation levels greater than the readings recorded during the 2019 investigation.

The NORM survey results for the PAP building are presented in Tables 2 to 4 and the survey locations are presented on Figures 8A to 8D.

5.2.2 DAP Building

The DAP building surfaces, DAP equipment, residual bulk product and soil areas surrounding the DAP building to the north were surveyed using a Ludlum 2241 with 44-9 probe as described above for the PAP building. The gamma radiation readings collected from the DAP building were generally consistent with background soil conditions identified in the area (0.05 μ Sv/h). The only reading above background levels was identified for a piece of equipment identified as the "reactor" located on the ground floor of the building. The gamma radiation reading for this piece of equipment was measured at 0.11 μ Sv/hr which is well below the NORM Management (Dose Management) Threshold of 0.5 μ Sv/hr. The survey results obtained in 2019 are similar to the findings reported in the 2006 survey.

The NORM survey results for the DAP building are presented in Tables 2 to 4 and the survey locations are presented on Figure 9.

5.2.3 Scrap Yard

Equipment stored in the Scrap Yard and surrounding soils were surveyed using a Ludlum 2241 with 44-9 probe to determine if this area of the Fertilizer Plant contained gamma radiation levels above the Canadian NORM Guidelines.

The majority of the scrap material and equipment surveyed in the Scrap Yard was found to have NORM readings above background levels and numerous pieces of equipment had readings greater than the NORM Management (Dose Management) Threshold of 0.5 μ Sv/hr. The material and equipment with readings exceeding the NORM Management (Dose Management) Threshold included the following:

- Rubber lined pans 2.50 µSv/hr
- 3 steel boxes with filter cloths 3.00 μ Sv/hr
- Filter pans on the east wall 7.00 µSv/hr
- 24 filter pans 7.00 µSv/hr

- Gypsum piping 1.00 µSv/hr
- Filtrate tank 4.00 µSv/hr
- Dump boxes with filter cloths 1.00 µSv/hr

Approximately 145 m³ of NORM impacted materials and equipment is located in the Scrap Yard that exceeds the NORM Management (Dose Management) Threshold and will likely require remediation (cleaning) prior to being recycled or will require disposal at an approved facility as part of future Site closure activities.

Although equipment being stored in the Scrap Yard area was identified to contain elevated gamma measurements, soil in the area generally had gamma radiation readings similar to background soil conditions in area (0.05μ Sv/h) or within 2 to 4 times background conditions ($0.1 \text{ to } 0.2 \mu$ Sv/hr).

The NORM survey results for the Scrap Yard are presented in Tables 2 and 4 and the survey results specific to the Scrap Yard are presented on Figure 12.

5.2.4 Former Gypsum Line Piping

The former Gypsum Line piping currently stored north of the rail line in the Smelter Area (Figure 7B) and surrounding soils were surveyed using a Ludlum 2241 with 44-9 probe to determine if this piping contained gamma radiation levels above the Canadian NORM Guidelines.

The former Gypsum Line piping (interior plastic sleeve and outer wood sheathing) and surrounding soils were identified to contain NORM readings similar to background levels.

The NORM survey results for the former Gypsum Line piping are presented in Table 4.

5.3 Soils

5.3.1 NORM

A total of 19 soil samples (plus duplicates) collected from the Fertilizer Plant area were submitted to BV for NORM analysis to confirm the findings of the non-intrusive survey. Analytical results were compared to the guidelines presented in Section 5 of the Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources.

The soil samples collected from various areas surrounding the DAP and PAP buildings as well as the Scrap Yard area contained concentrations of NORM (various radioactive isotopes of lead, potassium uranium, radium, and thorium) below the Canadian NORM Guidelines.

However, it is noted that soil samples were not collected from areas directly beneath equipment or piping with elevated NORM concentrations and these areas will require additional assessment at the time of facility closure.

The soil NORM analytical results are presented in Table 5 and the laboratory certificates are included in Appendix B.

5.3.2 NORM Leachate

A total of six soil samples collected from the Fertilizer Plant area were also submitted to BV for NORM leachate analysis. Analytical results were compared to the guidelines presented in Section 5 of the Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources (aqueous). The purpose of the analysis was to determine residual concentrations of NORM in soil are leachable which could affect disposal options of the impacted material (if present).

Detectable concentrations of NORM were not identified in the leachate samples extracted from the six soil samples submitted for analysis and the laboratory detection limits were below the Canadian NORM Guidelines for unconditional derived release limits for aqueous diffuse NORM sources.

The NORM leachate analytical results for soil are presented in Table 6 and the laboratory certificates are in Appendix B.

5.3.3 Chemistry and Metals

A total of nine soil samples collected from the Fertilizer Plant area were submitted for metal and select chemistry analysis. Analytical results were compared to the Nova Scotia Tier I EQS (Industrial land use, coarse soil type) as well as the risk-based SSTLs previously developed for protection of Human Health (Industrial Worker & Utility Worker).

The soil samples collected from the Site had concentrations of several metals exceeding the NSE Tier I EQS. In particular, the concentrations of arsenic, iron, lead, and/or thallium in all the samples collected exceeded the NSE Tier I EQS for industrial land use. Other metal parameters exceeding applicable NSE Tier I EQS for industrial land use were limited to the following:

- Antimony at locations 19SP-3 (0.15-0.3m), 19SP-5 (0 0.15m), 19SP-5 (0.15 0.30m), and 19SP-11 (0 – 0.15m)
- Uranium at location 19SP-3 (0.15-0.3m)
- Vanadium at location 19SP-1 (as well as pH)

All soil samples collected and analyzed from the Site contained concentrations of lead exceeding the risk-based SSTL for protection of human health (Industrial and/ or Utility Worker). Other chemistry and metal parameters that exceeded the applicable Risk Based Target Levels for protection of human health were limited to the following:

- Arsenic at locations 19SP-3 (0.15-0.3m), 19SP-5 (0–0.15m), and 19SP-5 (0.15 0.30m)
- Cadmium at location 19SP-5 (0–0.15m) (Utility Worker exposure only)
- Thallium at locations 19SP-3 (0.15-0.3m), 19SP-5 (0-0.15m), and 19SP-5 (0.15 0.30m)

The soil analytical results are also included and further discussed in the "Hydrogeological Study and Data Gap Assessment" report (GHD, 2019).

The soil chemistry and metal analytical results are presented in Table 7 and the laboratory certificates are included in Appendix B.

5.3.4 Metal Leachate

A total of five soil samples from the Fertilizer Plant area were submitted for metal leachate analysis and compared to the CEPA leachate screening levels to determine if the soil would be considered a hazardous waste under the Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations.

The 2019 soil leachate concentrations for selected metals associated with historical Site operations are summarized as follows:

- Arsenic: Concentrations ranged from 26 to 280 μg/L and were below the CEPA leachate screening level (2,500 μg/L)
- Cadmium: Concentrations ranged from 22 to 1500 µg/L with one of the five samples exceeding the CEPA leachate screening level (500 µg/L)
- Lead: Concentrations ranged from 3,900 to 460,000 μg/L with four of the five samples exceeding the CEPA leachate screening level (5,000 μg/L)
- Thallium: Concentrations ranged from <1 to 45 µg/L but a CEPA leachate screening value is not available
- Zinc: Concentrations ranged from 1,000 to 35,000 µg/L but a CEPA leachate screening value is not available

In addition to screening for hazardous waste considerations, the leachate screening levels can also give an indication as to how likely the metal in soil is to leach from soil to groundwater. The soil leachate results are included and further discussed in the "Hydrogeological Study and Data Gap Assessment" report (GHD, 2019).

The soil metal leachate analytical results are presented in Table 8 and the laboratory certificates are included in Appendix B

5.4 Residual Bulk Product

5.4.1 NORM

A total of three residual bulk product samples and one concrete sample collected from the PAP building were submitted to BV for NORM analysis to confirm the findings of the non-intrusive survey. One bulk product sample collected from the DAP building was also submitted for NORM analysis to confirm previous findings that this building does not contain residual products impacted with NORM. As indicated in Section 4.3, a sample of the residual gypsum obtained from the former Gypsum Line piping being stored north of the rail line at the Smelter Area was also collected for NORM analysis (19SP-8). Analytical results were compared to the guidelines presented in Section 5 of the Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources.

Samples collected from the Filtrate Sump (19BP-1) and the Conveyor Feeding Mill (19BP-2) as well as the former Gypsum Line (19BP-8) contain residual concentrations of radionuclides exceeding the Canadian NORM Guidelines for Unconditional Derived Release Limits. As such, these residual bulk product materials and potentially the holding vessel would require disposal at an approved facility prior to the decommissioning and demolition of the PAP building. Approximately 6 m³ of residual

bulk product remaining in the PAP building is estimated that will require removal and disposal as NORM. The volume of residual gypsum associated with the former Gypsum Line piping is limited to material accumulated in the annular space between the inner plastic sleeve and the outer wood sheath of the former gypsum piping (<0.1 m³). However, based on the presence of residual NORM impacted gypsum, it is anticipated that all the Gypsum Line piping being stored in the Smelter Area (approximately 225 metres) would require cleaning prior to disposal at a local landfill or construction and demolition debris (C&D) site.

The radionuclides exceeding the Canadian NORM Guidelines were limited to the following:

- Lead 210 at sample points 19BP-1 (PAP Filtrate Sump), 19BP-2 (PAP Conveyor Feeding Mill) and 19BP-8 (former Gypsum Line)
- Radium 226 at sample points 19BP-1 (PAP Filtrate Sump), 19BP-2 (PAP Conveyor Feeding Mill) and 19BP-8 (former Gypsum Line)

The residual bulk product NORM analytical results are presented in Table 9 and the laboratory certificates are included in Appendix B.

5.4.2 NORM Leachate

A total of four residual bulk product samples collected from the DAP and PAP buildings were submitted to BV for NORM leachate analysis. A residual bulk sample of gypsum collected from the former Gypsum Line piping stored at the Smelter Area was also submitted for NORM leachate analysis. Analytical results were compared to the guidelines presented in Section 5 of the Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources (aqueous). The purpose of the analysis was to determine residual concentrations of NORM in residual bulk product are leachable which could affect disposal options of the impacted material (if present).

Detectable concentrations of NORM were not identified in the leachate samples extracted from the six residual bulk product samples submitted for analysis and the laboratory detection limits were below the Canadian NORM Guidelines for unconditional derived release limits for aqueous diffuse NORM sources.

The NORM leachate analytical results for residual bulk products are presented in Table 10 and the laboratory certificates are in Appendix B.

5.4.3 Chemistry and Metals

A total of nine residual bulk product samples were submitted for metal and selected chemistry analysis. One additional residual bulk product sample (19BP-3) as also submitted for metals analysis but the laboratory could not complete the analysis due to interference from elevated hydrocarbon concentrations in the sample. This sample was subsequently submitted for petroleum hydrocarbon analysis (see Section 5.4.5).

Analytical results obtained from the nine bulk samples were compared to the NSE Tier I EQS (commercial land use, coarse soil type) as well as the risk based SSTLs previously developed for protection of human health (Industrial Worker & Utility Worker). The above noted guidelines were only used for comparison purposes and guidelines for bulk product samples are not available from the NSE or CCME and the bulk product samples were collected characterization purposes only.

The majority of residual bulk product samples collected from the Site had metal concentrations below the NSE Tier I EQS. Metal parameters exceeding applicable NSE Tier I EQS were limited to the following:

- Arsenic and lead at sample points 19BP-1 (PAP Filtrate Sump), 19BP-4 (DAP Overflow Tank), and 19BP-7 DAP (Floor 2 West Conveyor)
- Chromium and iron at sample point 19BP-4 (DAP Overflow Tank)
- Thallium, uranium and/or vanadium at sample points 19BP-1 (PAP Filtrate Sump), 19BP-2 (PAP Conveyor Feeding Mill), 19BP-4 (DAP Overflow Tank), 19BP-5 (DAP North Conveyor), 19BP-6 (DAP Overflow Tank), 19BP-7 (DAP Floor 2 West Conveyor), 19BP-8 (DAP Phosphoric Acid Line) and 19BP-9 (PAP Concrete), respectively

It is also noted that several of the bulk product samples also contained pH values below the NSE Tier I EQS values. In particular, samples 19BP-4 (DAP Overflow Tank), 19BP-6 (DAP – Overflow Tank), 19BP-7 (DAP – Floor 2 West Conveyor), 19BP-8 (DAP – Phosphoric Acid Line) and 19BP-9 (PAP – Concrete) had pH values ranging between 4 and 6. Bulk product sample 19BP-2 (PAP Conveyor Feeding Mill) had a pH value of 1.5 and would be considered highly acidic.

Bulk product samples collected from 19BP-4 (DAP Overflow Tank), 19BP-6 (DAP – Overflow Tank), and 19BP-8 (DAP – Phosphoric Acid Line) also contained elevated concentrations of orthophosphate ranging from 370 to 2,300 mg/kg.

The residual bulk product samples collected and analyzed from the Site were also compared to the risk-based SSTLs for protection of human health (Industrial and/ or Utility Worker) for comparison purposes only. The chemistry and metal parameters that exceeded the applicable risk-based SSTLs for protection of human health were limited to the following:

- Thallium at location 19BP-1(PAP Filtrate Sump) for Industrial/Utility Worker only
- Lead locations 19BP-1 (PAP Filtrate Sump), 19BP-4 (DAP Overflow Tank), and 19BP-7 (DAP Floor 2 West Conveyor) for Industrial and/or Utility Worker

The residual bulk product chemistry and metal analytical results are presented in Table 11 and the laboratory certificates are included in Appendix B.

5.4.4 Metal Leachate

A total of five residual bulk product samples collected from the DAP and PAP buildings were submitted for metal leachate analysis and compared to the CEPA leachate screening levels to determine if the residual bulk product would be considered a hazardous waste under the Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations.

The residual bulk product samples collected from the Site had leachate concentrations below applicable CEPA screening levels.

The residual bulk product metal leachate analytical results are presented in Table 12 and the laboratory certificates are included in Appendix B.

5.4.5 Petroleum Hydrocarbons

A total of three residual bulk product samples were submitted for petroleum hydrocarbon (BTEX, mTPH) analysis. The residual bulk product samples had concentrations of BTEX within the applicable Tier I RBSLs (for an industrial site with non-potable water use and coarse grained soil). However, the three bulk product samples contained detectable concentrations of mTPH with 1,500 mg/kg detected in 19BP-1 (PAP Filtrate Sump), 180,000 mg/kg in 19BP-3 (PAP – Floor 2.5 Mixing Tank) and 9,700 mg/kg in 19BP-6 (DAP – Overflow Tank). The mTPH concentrations in samples 19BP-3 and 19BP-6 exceed the Tier I RBSLs for an industrial site with non-potable water use and coarse grained soil.

The residual bulk product analytical data is present in Table 13 and the laboratory certificates of analyses are included in Appendix B.

5.5 Groundwater

5.5.1 NORM

A total of six groundwater samples were collected from the Fertilizer Plant area and submitted to BV for NORM analysis. Analytical results were compared to the guidelines presented in Section 5 of the Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources (aqueous).

The groundwater samples collected did not contain detectable concentrations of NORM and the laboratory detection limits were below the Canadian NORM Guidelines for unconditional derived release limits for aqueous diffuse NORM sources.

The groundwater NORM analytical results are presented in Table 14 and the laboratory certificates of analysis are included in Appendix B.

5.5.2 Metals

A total of six groundwater samples were collected from the Fertilizer Plant area and submitted to BV for metals analysis. It is noted that there are no NSE Tier I EQS for the protection of human health for metals at non-potable sites as the human exposure pathway is considered incomplete. For comparison purposes, the groundwater samples collected from the Fertilizer Plant area were screened against NSE PSS for groundwater discharge to marine water at a distance >10 m.

The majority of groundwater samples collected had metal concentrations below NSE PSS for groundwater discharge to marine waters excluding the following:

- Cadmium at sample locations 08GW-95, 19GW-118, and 19GW-120
- Copper, mercury and nickel at sample location 19GW-120
- Lead at sample location 08GW-95
- Zinc at sample locations 08GW-95, 19GW-118, 19GW-120, and 19GW-122

The groundwater metal results are also included and further discussed in the "Hydrogeological and Data Gap Assessment" report (GHD, 2019).

The groundwater metal analytical results are presented in Table 15 and the laboratory certificates of analysis are included in Appendix B.

5.6 Hazardous Building Materials

5.6.1 Asbestos

Between September 16 and 19, 2019 a total of ten samples of suspect asbestos containing building materials were collected throughout the DAP and PAP Buildings. The samples included various pipe wraps and insulations, fittings, tank insulation and concrete parge.

Four of the ten samples were found to contain asbestos content over 1% by volume. Three of the samples identified to contain asbestos (19ACM-1, 19ACM-2 and 19ACM-5) were collected from pipe insulation or tank insulation from the PAP building and considered to be friable. The fourth sample identified to contain asbestos (19ACM-8) was collected from cable tray insulation in the DAP building and was also identified to be friable. Approximately 15 m³ of friable pipe, tank and cable tray insulation was observed in the DAP and PAP buildings as part of the 2019 survey that would require abatement prior to future building demolition activities. Friable ACM such as insulation and mechanical pipe wrap must be disposed of at a licensed municipal landfill.

The asbestos analytical results along with the approximate quantity of ACM is presented in Table 16 and the laboratory certificates of asbestos analysis are included in Appendix B.

5.6.2 PCBs

A total of two concrete samples were collected from the transformer pads south of the DAP Building as illustrated in Figure 11 and submitted for PCB analysis. The concrete samples did not contain detectable concentrations of PCBs and the laboratory detection limits (0.5 mg/kg) were well below the NSE Tier I EQS for an industrial site with non-potable water use and coarse grained soil.

The PCB analytical results are presented in Table 17 and the laboratory certificates of analysis are included in Appendix B.

6. Conclusions

The NORM and Hazardous Materials Survey was completed at the Brunswick Smelter to investigate potential sources of radioactivity and other sources of environmental impairment to supplement the GHD Closure Plan – Prefeasibility Study 2019 Update. The information presented in this report facilitates identifying technically sound, implementable, regulatory compliant management approaches for demolition of the historical DAP and PAP operations addressed in the Closure Plan – Prefeasibility Study 2019 Update.

The NORM and Hazardous Materials Survey consisted of the following:

• Current NORM levels on building surfaces and equipment of the DAP and PAP buildings and scrap yard were determined as well as the surrounding soil compared to the 2006 and 2008 study findings.

- Determining the volume of feedstock and by-products remaining in equipment vessels and piping in the DAP and PAP buildings that have concentrations of NORM or other chemicals (e.g., acids) exceeding applicable guidelines that would require specific mitigation/management as part of future building decommissioning activities.
- Determining the volume of soil surrounding the buildings and scrap yard that have concentrations of NORM exceeding applicable guidelines (if any) that would require specific mitigation/management as part of future building decommissioning activities.
- Determining the approximate surface area of NORM impacted building materials such as structural steel and concrete as well as equipment remaining in the DAP and PAP buildings that would require specific cleaning prior to being recycled or would require specific mitigation/management as part of future building decommissioning activities.
- Quantification of the volume of hazardous materials such ACM, PCBs, and mercury (among others) in the DAP and PAP buildings that will require specific handling and disposal as part of future building decommissioning activities.

The results of the NORM and Hazardous Materials Survey are summarized as follows:

NORM

- The gamma readings recorded in the PAP and DAP buildings and surrounding soil areas were generally consistent with background soil conditions in the area (0.05 µSv/h) or within 2 to 4 times background conditions (0.1 to 0.2 µSv/hr) which is similar to the 2006 findings. These results indicate the remaining structures and equipment within the historical PAP or DAP operation areas will likely not warrant NORM mitigation during demolition of these former units. Note GHD was unable to perform NORM screening surveys on the filter pans located on the 4th floor of the historical PAP building due to inaccessibility during the 2019 Site visit. As such, current data regarding NORM associated with this specific equipment is not available.
- Although the non-intrusive NORM screening survey did not identify elevated gamma readings in the PAP building, residual bulk product samples collected from the PAP building (19BP-1 (Filtrate Sump) and 19BP-2 (PAP building Conveyor Feeding Mill) had concentrations of diffuse NORM exceeding applicable Canadian NORM guidelines. As such, this residual bulk product remaining in the PAP building would require removal and disposal at an approved facility as part of future building decommissioning activities. Approximately 6 m³ of residual bulk product is estimated that will require removal and disposal as NORM.
- The non-intrusive NORM screening survey conducted on the Gypsum Line piping being stored in the Smelter Area identified NORM measurements consistent with background conditions. However, a bulk sample of residual gypsum accumulated in the annular space between the plastic inner sleeve and the outer wood sheath had NORM concentrations exceeding applicable Canadian NORM guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources. As such, the former gypsum piping being stockpiled in the Smelter Area will likely require cleaning or disposal at an approved facility as part of future Site closure activities. There is approximately 225 metres of 0.6 metre diameter piping currently being stored at the Site that has the potential to be impacted with NORM. The volume of residual gypsum accumulated in the annular space between the inner plastic sleeve and the outer wood sheath is estimated to be <0.1 m³.

- The majority of materials and equipment found within the Scrap Yard were identified to have NORM measurements above the NORM Management (Dose Management) Threshold and will likely require management (cleaning and recycling or off-Site disposal, whichever is most costeffective) as part of future Site closure activities. Approximately 145 m³ of NORM impacted materials and equipment is located in the Scrap Yard.
- Soil samples collected from various areas of the Fertilizer Plant, including the Scrap Yard, had NORM concentrations below applicable Canadian NORM Guidelines for Unconditional Derived Release Limits of Diffuse NORM Sources. These results confirmed the findings of the 2019 non-intrusive NORM screening survey as well as soil samples collected in 2008 and indicate that remediation of soils specific to NORM are likely not required as part of future Site closure activities. Note soil samples were not collected from areas directly beneath equipment or piping and these areas may require additional assessment at the time of facility closure (following removal of the equipment or piping).
- The non-intrusive NORM survey measurements recorded from the DAP building were generally consistent with the established background conditions for this area (0.05 μSv/h). One measurement was not considered consistent with the absolute value of the background for the area (the measurement recorded from the historical reactor area, 0.11 μSv/hr). However, this measurement is within the applicable NORM Management (Dose Management) Threshold of 0.5 μSv/hr above background and is protective of human health and the environment.
- Results of the leachate testing indicated that residual NORM levels identified in soil and residual bulk product samples at the Site are not leachable.
- Groundwater samples collected from the Fertilizer Plant area did not contain detectable concentrations of NORM indicating groundwater in the area has not been impacted with NORM and does not require additional evaluation or remediation as part of future Site closure activities.

Metals/Petroleum Hydrocarbons

- Concentrations of metals in soil and groundwater in several areas of the Fertilizer Plant area exceeded NSE Tier I EQS, risk-based SSTLs and/or NSE PSS. This data has been incorporated into the "Hydrogeological Study and Data Gap Assessment" also being completed by GHD in support of the "Closure Plan - Prefeasibility Study 2019 Update".
- The soil samples collected from the Fertilizer Plant had leachate concentrations of several metals exceeding the CEPA leachate screening level. This data has been incorporated into the "Hydrogeological Study and Data Gap Assessment" also being completed by GHD in support of the "Closure Plan - Prefeasibility Study 2019 Update".
- The majority of residual bulk product samples collected from the Site had metal concentrations above the NSE Tier I EQS but only three samples (19BP-1, 19BP-4 and 19BP-7) had metal concentrations above risk-based SSTLs for protection of human health (industrial or commercial utility worker). In addition, the residual bulk product samples collected from the Site had leachate concentrations below applicable CEPA screening levels. It is noted that bulk product sample 19BP-2 (PAP Conveyor Feeding Mill) had a pH value of 1.5 and would be considered highly acidic. As indicated above, this sample also contained elevated concentrations of NORM.
- The three residual bulk product samples collected from the DAP and PAP buildings (19BP-1, 19BP-3 and 19BP-6) had detectable concentrations of petroleum hydrocarbons and, therefore,

will require disposal at a facility licensed to accept hydrocarbon impacted materials. For residual bulk product sample 19BP-1 (Filtrate Sump), this sample also contained elevated concentrations of NORM and metals (lead) and would be considered mixed waste.

Other Hazardous Building Materials

- Potentially hazardous materials such as PCB containing equipment and light ballasts, mercury switches or mercury containing devices, and ozone depleting substances were not identified in the Fertilizer Plant area during the 2019 survey excluding potential ACM.
- Four of ten asbestos samples collected from the DAP and PAP buildings were identified to have asbestos content of more than 1% and are considered to be friable. Approximately 15 m³ of friable pipe, tank and cable tray insulation was observed in the DAP and PAP buildings as part of the 2019 survey that would require abatement prior to future building demolition activities.
- The concrete samples collected from the two transformer pads in the Fertilizer Plant area did not contain detectable concentrations of PCBs and do not require specific handling or disposal requirements as part of future Site closure activities.

7. Limitations

This report has been prepared, and the work referred to in this report has been undertaken, by GHD for Glencore Canada Corporation (Glencore). It is intended for the sole and exclusive use of Glencore, its affiliated companies and partners and their respective insurers, agents, employees and advisors (collectively, "Glencore"). Any use, reliance on, or decision made by any person other than Glencore based on this report is the sole responsibility of such other person. Glencore and GHD make no representation or warranty to any other person with regard to this report and the work referred to in this report and they accept no duty of care to any other person or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties or other harm that may be suffered or incurred by any other person as a result of the use of, reliance on, any decision made or any action taken based on this report or the work referred to in this report.

The investigation undertaken by GHD with respect to this report and any conclusions or recommendations made in this report reflect GHD's judgement based on the Site conditions observed at the time of the Site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. This report has been prepared for specific application to this Site and it is based, in part, upon visual observation of the Site, surface and subsurface investigation at discrete locations and depths, and specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Site which were unavailable for direct investigation, sub-surface locations which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Substances other than those addressed by the investigation may exist in areas of the Site not investigated and concentrations of substances addressed which are different than those reported may exist in areas other than the locations from which samples were taken. If Site conditions or applicable

standards change or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

Other than by Glencore, copying or distribution of this report or use of or reliance on the information contained herein in whole or in part, is not permitted without the express written permission of Glencore. Nothing in this report is intended to constitute or provide a legal opinion.

8. Closure

All of which is respectfully submitted,

GHD

Troy Smal

Troy Small, M.Sc., CE

1 K

Cody Ross, B.Sc.

This report was reviewed by Frank Edwards, P. Eng. of GHD.

9. References

- Atlantic RBCA (Risk Based Corrective Action) For Petroleum Impacted Sites in Atlantic Canada, Version 3, User Guidance (July 2012, revised January 2015).
- Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials, 2013, ISBN: 978 1 100 23019 1, Cat. No.: H129 34/2013E PDF 130465.
- Canadian Environmental Protection Act, Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations, Current to July 1, 2019.
- Conestoga-Rovers & Associates, Pre-remediation Survey of the Falconbridge Ltd. DAP Facility, August 24, 2006.
- Conestoga-Rovers & Associates, Conceptual Demolition Estimate, Xstrata Zinc DAP Fertilizer Plant Facility, May 2007.
- Environment Canada, PCB Regulations, SOR/2008-273, Canadian Environmental Protection Act, 2008 (amended in 2015).
- GHD Limited, Hydrogeological Study and Data Gap Assessment, Brunswick Smelter, Belledune, New Brunswick, November 2019.
- Nova Scotia Environment, Environmental Quality Standards for Contaminated Sites, Rationale and Guidance Document, April 2014.
- SNC-Lavalin, Brunswick Smelter Closure Plan Prefeasibility and Cost Estimating Report, Volume 1 of 2, Section 10 Site Characterization, January 2009.
- SNC-Lavalin, 2008 Groundwater and Soil Characterization Report, Pre-Feasibility Engineering and Cost Estimating For the Closure Plan of the Brunswick Smelter Complex, November 2008.

GLENCORE CANADA CORPORATION BRUNSWICK SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY 11198639-01(003) Jan 6, 2020

FIGURE 1

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\11198639-01(003)\11198639-01(003)GN-FR001.dwg

SITE LOCATION

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

GLENCORE CANADA CORPORATION BRUNSWICK SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

PROPERTY PLAN

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

GLENCORE CANADA CORPORATION BRUNSWICK SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

FERTILIZER PLANT AREA

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018. & Summary of NORM Characterization Work, SNC LAVALIN 2008, 020120-0000-4EDD-004-00

SOIL AREAS PREVIOUSLY SAMPLED FOR NORM (SNC LAVALIN 2008)

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

2008 SOIL SAMPLE LOCATIONS

LEGEND:

11198639-01 Jan 6, 2020

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

2008 GROUNDWATER SAMPLING LOCATIONS

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

PROPOSED NORM BACKGROUND ESTABLISHMENT AREA

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

NORM BACKGROUND ESTABLISHMENT AREAS

LEGEND:

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

2019 SOIL SAMPLE AND NORM SURVEY LOCATIONS

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\11198639-01(003)\11198639-01(003)GN-FR007.dwg

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

AREA SCANNED FOR NORM

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

LEGEND:

11198639-01(003) Jan 6, 2020

NORM SURVEY LOCATION - GYPSUM LINE PIPING STORAGE AREA FIGURE 7B

PAP BUILDING - MAIN FLOOR

FIGURE 8A

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\11198639-01(003)\11198639-01(003)GN-FR006.dwg

FROM MIXING TANK ON FLOOR 2.5 AND NOT SHOWN ON FIGURE

PAP BUILDING - 2ND FLOOR

FIGURE 8B

FIGURE 8C

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\11198639-01(003)\11198639-01(003)GN-FR006.dwg

FIGURE 8D

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\11198639-01(003)\11198639-01(003)GN-FR006.dwg

purce: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

CURRENT GROUND WATER SAMPLING LOCATIONS IN FERTILIZER PLANT AREA WELLS SAMPLED IN 2019 AS PART OF THE NORM SURVEY

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

2019 GROUNDWATER SAMPLING LOCATIONS

LEGEND:

11198639-01(003) Jan 6, 2020

FIGURE 10

Source: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018.

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

CONCRETE SAMPLE LOCATIONS

GYPSUM PIPING --1.0 uSv/hr

CONCRETE DEBRIS-0.4 uSv/hr

DUMP BOXES WITH FILTER CLOTHS -1.0 uSv/hr

-24 FILTER PANS -7.0 uSv/hr

FILTRATE TANK -4.0 uSv/hr

ce: High Resolution Aerial Imagery from New Brunswick Dept of Natural Resources, Acquisition Date: 2018

GLENCORE CANADA CORPORATION BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY

SCRAP YARD NORM READINGS

LEGEND:

FILTER PANS ON EAST WALL - 7.0 uSv/hr

3 STEEL BOXES WITH FILTER CLOTHS - 3.0 uSv/hr

Table 1 Background Soil Conditions - NORM Brunswick Smelter Belledune, NB

Survey Area	Background Reading (µSv/hr)
East Location	
1	0.05
2	0.05
3	0.05
4	0.03
5	0.03
6	0.05
South Location	
1	0.05
2	0.05
3	0.05
4	0.04
5	0.06
6	0.05
95% Upper Confidence Limit	of the Mean – 0.05 μSv/hr

Table 2 Soil Survey Results - NORM Brunswick Smelter Belledune, NB

Sample ID	Sample Depth (m)	Gamma Reading (μSv/hr)	Method of Collection/Comments (hand auger unless otherwise noted)
	Surface	0.04	
19SP-1	0.15	0.05	
	Bedrock	0.05	
195P-7	Surface	0.05	
1551-2	0.15	0.05	
	Surface	0.04	
19SP-3	0.15	0.04	
	Bedrock	0.04	
195P-4	Surface	0.04	
1551-4	0.15	0.04	
	Surface	0.05	
19SP-5	0.15	0.05	
	0.3	0.05	
195P-6	Surface	0.05	
1551-0	0.15	0.05	
	Surface	0.05	Completed by drill team with geotech drill and split spoon
1050.0	0.3	0.05	
1958-9	0.6	0.05	
	0.9	0.05	
	1.2	0.05	Bedrock at 1.2m
10SP-10	Surface	0.04	
1936-10	0.15	0.04	
	Surface	0.04	Completed by drill team with geotech drill and split spoon
	0.3	0.04	
19SP-11	0.6	0.04	
	0.9	0.04	
	1.2	0.04	
	1.5	0.04	Bedrock at 1.5m
	Surface	0.2	
19SP-12	0.15	0.1	
	0.3	0.05	
1050 20	Surface	0.05	
1996-90	0.15	0.05	
19SP-31	Surface	0.18	Readings could be influenced by filter bins 1m to the west
	0.15	0.04	
19SP-32	Surface	0.2	Readings could be influenced by filter pans 1m to the west
	0.15	0.05	

Table 3 Residual Bulk Product - NORM Brunswick Smelter Belledune, NB

		Volume Remaining	Gamma Reading	
Sample ID	Location	(m ³)	(µSv/hr)	Comments
19BP-1	PAP – Filtrate Sump	0.94	0.07	
19BP-2	PAP – Conveyor Feeding Mill	5	0.05	
19BP-3	PAP – Floor 2.5 Mixing Tank	0.01	0.06	
19BP-4	DAP – Overflow Tank, Dryer Cooler Knockout Pot	0.14	0.09	
19BP-5	DAP – North Conveyor	0.42	0.05	
19BP-6	DAP – Overflow Tank in Water	0.02	0.04	2 tanks, volume is combined
19BP-7	DAP – Floor 2 West Conveyor	2.63	0.05	
19BP-8	Former Gypsum Line piping stockpiled in Smelter Area	<0.1	0.06	Approximately 25 pipes in 10 metre lengths. Product limited to minor amount of residual gypsum trapped in annular space between plastic sleeve and outer wood sheathing.
19BP-9	DAP – Phosphoric Acid Line	0.3	0.05	
19BP-10	PAP - Concrete	2.5	0.05	

Table 4 Building Survey Results - NORM Brunswick Smelter Belledune, NB

		Maximum Measured Exposure Rate				
Survey Area	Equipment/Tank/Vessel	(15 cm distance unless otherwise noted)	Quantity	Dimensions	Volume	Comments
		μSv/hr	#	m	m ³	
Scrap Yard						
	40' Rubberlined Pans	2.50	4	3 x 1.2x 0.3	4.32	
	3 Steel Boxes w/ filter cloths	3.00	3	0.9 x 0.9 x 1.0	2.43	Radiation from these boxes may have affected the soil readings outside of the fence.
	Filter Pans on East Wall	7.00	4	3 x 1.2 x 0.3	4.32	
	24 Filter Pans	7.00	24	3 x 1.2 x 0.3	25.92	Radiation from these filter pans may have affected the soil readings outside of the fence.
	Gypsum Piping	1.00	3	0.5 x 3.0	2.36	
Fenced in Area	Filtrate Tank	4.00	1	5 x 2.5 x 1.2	15	In a dump box with miscellaneous material.
	Flash Cooler Ducts	0.50	1	5 x 5 x 1.2	30	
	Concrete Debris	0.40	3	0.5 x 1.0	0.8	
	Dump Boxes with Filter Cloths	1.00		10 x 5 x 1.2	60	Unable to determine # of boxes however they ran from approximately 2m off the west wall until the 24 filter pans on the east side of the waste yard.
	Soil	0.2 (Avg)			est. 89.5	
	Tank outside of Scrap Yard	0.05				
PAP Building						
	Attack Tank	0.15				
	Gypsum Sump	0.06				
	Evap #1	0.20				
Ground Floor	Evap #2	0.30				
Ground Floor	Feed Conveyor	0.10				
	Bag House Fan	0.20				
	Filtrate Sump	0.07				
	Filtrate Tank Sump	0.10				
	Top of Attack Tank	0.06				
2nd Floor	Evap #1	0.10				
2110 1 1001	Evap #2	0.13				
	Barometric Condenser Seal Tank	0.10				
	Evap #1	0.10				
3rd Floor	Evap #2	0.13				
	Elevated Platform	0.1		-		
4th Floor	Filter Pan Enclosure	0.10 @ 1m				May read higher, was unable to get closer than 1m due to unsafe structural conditions.
DAP Building						
Main Floor	Reactor	0.11				Reactor readings were background on outside, elevated readings came from inside reactor.
Smelter Area						
Gypsum Line Storage Area	Gypsum Line piping (interior plastic sleeve, exterior wood sheathing and gypsum residue)	0.05 to 0.06				Multiple readings collected from interior and exterior of former Gypsum Line piping material stockpiled in Smelter Area. All readings recorded were approximately equal to background.

Table 5 Soil Analytical Results - NORM **Brunswick Smelter** Belledune, NB

		2013 Canadian Guidelines for the Management of NORM, Unconditional Derived Release Limits - Diffuse NORM Sources (Solids)	19SP-1	19SP-1	19SP-1	19SP-3	19SP-3	19SP-5	19SP-5	19SP-2	19SP-4	19SP-6	19SP-10	19SP-9
RADIONUCLIDE	UNITS		0-0.15M	0-0.15M Lab-Dup	0-0.15-0.30M	0-0.15M	0.15-0.3M	0-0.15M	0.15-0.3M	0-0.15M	0-0.15M	0-0.15M	0-0.15M	0-0.15M
			9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Lead-210	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	130	<100	<100
Potassium-40	Bq/kg	17000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Radium-226	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	200	<100	<100
Radium-228	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Thorium-228	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Thorium-230	Bq/kg	10000	<800	<800	<800	<800	<800	<800	<800	<800	<800	<800	70	<800
Thorium-234	Bq/kg	N/A	<50	<50	<50	<50	150	<50	<50	<50	50	120	<50	<50
Uranium-235	Bq/kg	N/A	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

Notes:

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable BOLD/UNDERLINE - Exceeds Canadian NORM Guidelines

Table 5 Soil Analytical Results - NORM Brunswick Smelter Belledune, NB

		2013 Canadian Guidelines for the	19SP-11	19SP-11	19SP-12	19SP-12	19SP-31	19SP-31	19SP-32	19SP-32	SOIL QA/QC-4	SOIL QA/QC-5	19SP-10
RADIONUCLIDE	UNITS	Unconditional Derived Release Limits - Diffuse NORM Sources (Solids)	0-0.15M	1.2-1.8M	0-0.15M	0.15-0.3M	0-0.15M	0.15-0.3M	0-0.15M	0.15-0.3M			0.15-0.3M
			9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Lead-210	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Potassium-40	Bq/kg	17000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Radium-226	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	110	<100	140
Radium-228	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Thorium-228	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Thorium-230	Bq/kg	10000	<800	<800	<800	<800	<800	<800	<800	<800	<800	<800	<800
Thorium-234	Bq/kg	N/A	<50	<50	<50	<50	<50	<50	<50	<50	280	<50	400
Uranium-235	Bq/kg	N/A	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

Notes:

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

BOLD/UNDERLINE - Exceeds Canadian NORM Guidelines

Table 6 Soil Leachate Analytical Results - NORM Brunswick Smelter Belledune, NB

RADIONUCLIDE	UNITS	2013 Canadian Guidelines for the Management of NORM, Unconditional Derived Release	19SP-5 0-0.15M	19SP-2 0-0.15M	19SP-4 0-0.15M	19SP-12 0-0.15M	19SP-31 0-0.15M	19SP-32 0-0.15M
		(Aqueous)	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Lead-210	Bq/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Lead-212	Bq/L	N/A	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Radium-226	Bq/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Radium-228	Bq/L	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Thorium-230	Bq/L	N/A	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Thorium-234	Bq/L	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium-235	Bq/L	N/A	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

BOLD/UNDERLINE - Exceeds Canadian NORM Guidelines

Table 7 Soil Analytical Results - Metals Brunswick Smelter Belledune, NB

		NSE Tier 1 EQS - Non-	Risk Based Target Levels	Risk Based Target Levels	Sample ID	19SP-1	19SP-1	19SP-3	19SP-3	19SP-3 Lab-Dup	19SP-5	19SP-5	19SP-9	19SP-11	19SP-11
Metals	Units	Potable, Coarse,	for Protection of Human	Health - Commercial/Utility	Sample Depth (m)	0-0.15M	0.15-0.30M	0-0.15M	0.15-0.3M	0.15-0.3M	0-0.15M	0.15-0.3M	0-0.15M	0-0.15M	1.2-1.8M
		Industrial ¹	Health - Industrial Woker ²	Woker ²	Sample Date	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Aluminum	mg/kg	198,000				50000	25000	25000	24000	23000	24000	30000	18000	29000	20000
Antimony	mg/kg	63				28	53	42	<u>320</u>	<u>310</u>	<u>1100</u>	<u>430</u>	24	<u>100</u>	17
Arsenic	mg/kg	31	295	130		<u>67</u>	<u>130</u>	<u>90</u>	<u>640</u>	<u>590</u>	<u>1400</u>	<u>620</u>	<u>53</u>	<u>170</u>	<u>50</u>
Barium	mg/kg	140,000				120	91	94	190	200	220	290	90	100	69
Beryllium	mg/kg	320				<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	mg/kg	NG				9.1	21	18	100	120	200	120	6.7	21	4.1
Boron	mg/kg	24,000				<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	mg/kg	192 (3)	1,505	95		18	35	23	54	58	180	74	24	19	3.4
Chromium	mg/kg	6,700				300	92	57	88	92	100	79	42	59	40
Cobalt	mg/kg	250				41	20	18	15	15	32	32	15	18	13
Copper	mg/kg	16000 (3)	104,983	67,096		210	250	220	900	880	9300	2500	86	310	120
Iron	mg/kg	144,000				<u>69000</u>	<u>42000</u>	42000	<u>53000</u>	<u>51000</u>	<u>63000</u>	<u>71000</u>	35000	<u>44000</u>	33000
Lead	mg/kg	740 (3)	3,567	656		<u>3000</u>	<u>5000</u>	<u>4100</u>	<u>27000</u>	<u>27000</u>	<u>48000</u>	<u>28000</u>	<u>1600</u>	<u>6600</u>	<u>1300</u>
Lithium	mg/kg	NG				42	25	26	21	21	24	31	22	26	21
Manganese	mg/kg	NG				1500	1100	970	870	830	2000	2000	990	920	650
Mercury	mg/kg	24				1.3	1.2	0.33	1.9	2.1	5.2	2.7	0.14	0.51	0.13
Molybdenum	mg/kg	1,200				<2.0	<2.0	<2.0	8.3	8.8	16	8.0	<2.0	2.2	<2.0
Nickel	mg/kg	2,200				120	54	47	41	42	85	56	43	52	40
Rubidium	mg/kg	NG				<2.0	8.2	12	13	13	9.5	4.9	7.6	11	9.6
Selenium	mg/kg	125				5.4	3.8	1.9	17	18	100	34	1.5	4.4	<1.0
Silver	mg/kg	490	7,526	3,920		13	23	17	91	89	82	85	9.9	39	6.8
Strontium	mg/kg	9,400				76	63	43	100	100	160	98	17	32	14
Thallium	mg/kg	1	22	12		<u>1.8</u>	<u>7.5</u>	<u>5.0</u>	<u>26</u>	<u>26</u>	<u>36</u>	<u>22</u>	<u>1.2</u>	<u>4.2</u>	0.80
Tin	mg/kg	9,400				4.3	12	10	170	170	310	140	4.2	26	5.8
Uranium	mg/kg	33				0.20	2.8	4.5	<u>38</u>	<u>38</u>	5.0	2.5	0.74	4.9	1.3
Vanadium	mg/kg	160				220	98	89	98	100	99	160	63	80	56
Zinc	mg/kg	47,000	466,418	337,534		870	1400	1500	4900	5100	9600	4500	350	1600	310
рН		6-8 (3)				<u>8.25</u>	7.43	6.68	<u>5.96</u>		6.86	7.01	7.55	6.56	6.48
Orthophosphate	mg/kg														

Notes:

¹ Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for Soil at a Non-Potable Site - Coarse Soil Type, Industrial Land Use (July 6, 2013)

² Risk Based Target Level for Protection of Human Health assuming Industrial Worker and/or Construction/Utility Worker

³ Canadian Council of Ministers of the Environment Soil Quality Guideline for Industrial Land Use based on most conservative pathway (Direct Ingestion or Off-Site Migration) (CCME Factsheets accessed October 2019)

"-" - Not Applicable/Not Analyzed

Lab Dup - Laboratory Duplicate

NG - No Guideline

BOLD/UNDERLINE - Exceeds Industrial criteria SHADING - Exceeds Risk Based Target levels where applicable (Industrial Worker and/or Construction/Utility Worker)

Table 8 Soil Leachate Analytical Results - Metals Brunswick Smelter Belledune, NB

			Sample ID	19SP-1	19SP-3	19SP-5	19SP-9	19SP-11
Metals	Units	(1)	Sample Depth (m)	0.15-0.30M	0.15-0.3M	0-0.15M	0-0.15M	1.2-1.8M
		(1)	Sample Date	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Aluminum	µg/L	NG		110	1700	1400	750	1300
Antimony	µg/L	NG		90	330	500	98	49
Arsenic	µg/L	2500		42	180	280	48	26
Barium	µg/L	NG		180	74	310	550	470
Beryllium	µg/L	NG		<20	<20	<20	<20	<20
Boron	µg/L	500,000		<500	<500	<500	<500	<500
Cadmium	µg/L	500		200	280	1500	270	22.0
Chromium	µg/L	NG		<20	<20	<20	<20	<20
Cobalt	µg/L	NG		<10	<10	28	<10	<10
Copper	μg/L	NG		130	1300	19000	570	130
Iron	µg/L	NG		<500	<500	<500	<500	<500
Lead	µg/L	5,000		3900	7000	460000	20000	4100
Lithium	µg/L	NG		<20	<20	<20	<20	<20
Manganese	μg/L	NG		2900	2800	6100	1400	560
Molybdenum	μg/L	NG		<20	<20	<20	<20	<20
Nickel	µg/L	NG		<20	27	67	<20	<20
Selenium	μg/L	1000		<10	<10	<10	<10	<10
Silver	µg/L	NG		<5.0	<5.0	<5.0	<5.0	<5.0
Strontium	µg/L	NG		490	440	440	99	95
Thallium	µg/L	NG		4.7	4.9	45	1.2	<1.0
Tin	µg/L	NG		<20	<20	<20	<20	<20
Uranium	µg/L	10,000		<1.0	3.9	4.3	1.1	1.8
Vanadium	µg/L	NG		<20	<20	<20	<20	<20
Zinc	µg/L	NG		4200	12000	35000	2100	1000

Notes:

¹ Canadian Environmental Protection Act (CEPA), Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations

"-" - Not Applicable/Not Analyzed

Lab Dup - Laboratory Duplicate

NG - No Guideline

Shading CEPA Leachate Screening Levels

Table 9 Bulk Product Analytical Results - NORM Brunswick Smelter Belledune, NB

		2013 Canadian Guidelines for the Management of NORM, Unconditional	19BP-1	19BP-2	19BP-3	19BP-5	19BP-5 Lab-Dup	19BP-8	19BP-10
RADIONOGLIDE	UNITS	Derived Release Limits - Diffuse NORM Sources (Solids)	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/19/2019	9/19/2019
Lead-210	Bq/kg	300	<u>900</u>	<u>1150</u>	<100	170	220	<u>570</u>	<100
Potassium-40	Bq/kg	17000	<1000	<1000	3900	<1000	<1000	<1000	<1000
Radium-226	Bq/kg	300	1650	<u>1740</u>	110	280	200	640	<100
Radium-228	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100
Thorium-228	Bq/kg	300	<100	<100	<100	<100	<100	<100	<100
Thorium-230	Bq/kg	10000	<800	1300	<800	2300	2400	<800	<800
Thorium-234	Bq/kg	N/A	70	1420	90	2070	1980	<50	<50
Uranium-235	Bq/kg	N/A	<100	<100	<100	100	<100	<100	<100

Notes:

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

BOLD/UNDERLINE - Exceeds Canadian NORM Guidelines

Table 10 Bulk Product Leachate Analytical Results - NORM Brunswick Smelter Belledune, NB

RADIONUCLIDE	UNITS	2013 Canadian Guidelines for the Management of NORM, Unconditional Derived Release Limits - Diffuse	19BP-1	19BP-2	19BP-3	19BP-5	19BP-8	19BP-10
		NORM Sources (Aqueous)	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Lead-210	Bq/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Lead-212	Bq/L	N/A	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Radium-226	Bq/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Radium-228	Bq/L	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Thorium-230	Bq/L	N/A	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Thorium-234	Bq/L	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium-235	Bq/L	N/A	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

BOLD/UNDERLINE - Exceeds Canadian NORM Guidelines

Table 11 Bulk Product Analytical Results - Metals Brunswick Smelter Belledune, NB

		NSE Tier 1 EQS - Non-	Risk Based Target Levels	Risk Based Target Levels for	Sample ID	19BP-1	19BP-2	19BP-2 Lab-Dup	19BP-4	19BP-5	19BP-6	19BP-7	19BP-8	19BP-9	19BP-10
Metals	Units	Potable, Coarse,	for Protection of Human	Protection of Human Health -	Sample Depth (m)										
		Industrial ¹	Health - Industrial Woker ²	Commercial/Utility Woker ²	Sample Date	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/19/2019	9/18/2019	9/19/2019
Aluminum	mg/kg	198,000				19000	17000		15000	7000	43000	7300	1200	5900	16000
Antimony	mg/kg	63				28	13		48	6.8	13	26	8.0	5.3	3.1
Arsenic	mg/kg	31	295	130		<u>74</u>	4.8		<u>45</u>	23	19	<u>45</u>	28	10	16
Barium	mg/kg	140,000				380	110		300	11	150	18	29	<5.0	130
Beryllium	mg/kg	320				<2.0	2.8		2.9	2.1	3.9	3.9	<2.0	2.0	<2.0
Bismuth	mg/kg	NG				12	<2.0		5.5	<2.0	<2.0	4.3	<2.0	<2.0	<2.0
Boron	mg/kg	24,000				<50	<50		<50	<50	<50	<50	<50	<50	<50
Cadmium	mg/kg	192 (3)	1,505	95		46	7.9		18	9.4	37	26	4.9	3.4	2.1
Chromium	mg/kg	6,700				150	72		<u>8500</u>	100	2800	170	2.7	85	51
Cobalt	mg/kg	250				7.6	3.6		5.2	5.7	11	11	3.7	3.2	12
Copper	mg/kg	16000 (3)	104,983	67,096		230	12		170	26	170	79	41	13	46
Iron	mg/kg	144,000				31000	7700		<u>210000</u>	22000	99000	39000	1300	19000	54000
Lead	mg/kg	740 (3)	3,567	656		<u>4200</u>	84		<u>1700</u>	180	410	<u>1400</u>	250	150	73
Lithium	mg/kg	NG				6.7	2.9		<2.0	2.3	13	3.4	<2.0	<2.0	19
Manganese	mg/kg	NG				890	180		420	350	650	640	30	180	810
Mercury	mg/kg	24				1.8	0.16		4.5	0.24	9.6	0.34	0.40	<0.10	<0.10
Molybdenum	mg/kg	1,200				7.6	5.2		26	16	14	16	<2.0	7.5	2.3
Nickel	mg/kg	2,200				35	14		50	33	110	46	14	17	43
Rubidium	mg/kg	NG				19	5.6		7.7	8.7	11	8.8	<2.0	9.8	8.1
Selenium	mg/kg	125				4.1	<1.0		5.4	<1.0	2.9	1.5	2.1	<1.0	<1.0
Silver	mg/kg	490	7,526	3,920		21	0.71		12	1.7	3.8	7.4	2.9	1.0	<0.50
Strontium	mg/kg	9,400				460	1200		120	68	350	71	380	33	190
Thallium	mg/kg	1	22	12		<u>15</u>	0.58		<u>3.7</u>	<u>1.2</u>	<u>1.3</u>	2.8	<u>1.3</u>	0.92	0.27
Tin	mg/kg	9,400				19	<1.0		15	1.3	4.1	6.0	5.6	1.6	3.4
Uranium	mg/kg	33				21	<u>140</u>		<u>170</u>	<u>170</u>	<u>300</u>	<u>160</u>	6.8	<u>37</u>	2.9
Vanadium	mg/kg	160				50	120		1200	<u>190</u>	1400	210	2.4	180	44
Zinc	mg/kg	47,000	466,418	337,534		4200	100		1500	160	1800	950	200	150	130
рН		6-8 (3)				6.3	1.5	7.62	5.77	6.19	5.07	4.52	5.47	4.03	
Orthophosphate	mg/kg					6.98	7.53	1.9	370	0.066	1300	<0.050	2300	<0.050	

Notes:

¹ Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for Soil at a Non-Potable Site - Coarse Soil Type, Industrial Land Use (July 6, 2013)

² Risk Based Target Level for Protection of Human Health assuming Industrial Worker and/or Construction/Utility Worker

³ Canadian Council of Ministers of the Environment Soil Quality Guideline for Industrial Land Use based on most conservative pathway (Direct Ingestion or Off-Site Migration) (CCME Factsheets accessed October 2019)

"-" - Not Applicable/Not Analyzed

Lab Dup - Laboratory Duplicate

NG - No Guideline

BOLD/UNDERLINE - Exceeds Industrial criteria

SHADING - Exceeds Risk Based Target Levels where applicable (Industrial Worker and/or Construction/Utility Worker)

Table 12 Bulk Product Leachate Analytical Results - Metals Brunswick Smelter Belledune, NB

			Sample ID	19BP-1	19BP-4	19BP-5	19BP-7	19BP-9 9 9/18/2019 300 24 240 <50 71 1200 160 310 160 160
Metals	Units	Guideline (1)	Sample Depth (m)					
		Guideline (1)	Sample Date	9/18/2019	9/18/2019	9/18/2019	9/18/2019	9/18/2019
Aluminum	µg/L	NG		760	19000	39000	14000	300
Antimony	µg/L	NG		29	51	21	53	24
Arsenic	µg/L	2500		37	85	880	1300	240
Barium	µg/L	NG		180	<50	<50	<50	<50
Beryllium	µg/L	NG		<20	<20	<20	23	71
Boron	µg/L	500,000		<500	<500	530	1000	1200
Cadmium	µg/L	NG		140	7.4	31	64	160
Chromium	µg/L	NG		<20	27	64	83	310
Cobalt	µg/L	NG		<10	<10	29	32	160
Copper	µg/L	NG		100	73	290	520	160
Iron	µg/L	NG		<500	<500	<500	<500	610
Lead	µg/L	5,000		210	8.7	12	29	19
Lithium	µg/L	NG		<20	<20	<20	38	44
Manganese	µg/L	NG		380	340	140	2000	8700
Molybdenum	µg/L	NG		<20	<20	41	<20	150
Nickel	µg/L	NG		48	230	420	480	780
Selenium	µg/L	1000		<10	12	15	24	17
Silver	µg/L	NG		<5.0	<5.0	<5.0	<5.0	<5.0
Strontium	µg/L	NG		2600	63	<50	<50	1100
Thallium	µg/L	NG		9.8	<1.0	16	21	16
Tin	µg/L	NG		<20	<20	<20	<20	<20
Uranium	µg/L	10,000		2.3	5.1	280	96	970
Vanadium	µg/L	NG		<20	230	180	85	710
Zinc	µg/L	NG		15000	230	140	450	1900

Notes:

¹ Canadian Environmental Protection Act (CEPA), Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations

"-" - Not Applicable/Not Analyzed

Lab Dup - Laboratory Duplicate

NG - No Guideline

Shading CEPA Leachate Screening Levels

Table 13 Bulk Product Analytical Results - Petroleum Hydrocarbons Brunswick Smelter Belledune, NB

Petroleum Hydrocarbons						F1	F2		F3		
		Benzene	Toluene	Ethylbenzene	Total Xylenes	C ₆ - C ₁₀ (less BTEX)	$\begin{array}{c c c c c c c c } & & & & \\ \hline \\ \hline$		mTPH	Hydrocarbon Resemblance	
Atlantic RBCA T	ier I RBSLs -									870	Gasoline
Industrial, Non-Po	otable, Coarse	2.5	10,000	10,000	110	NG	NG	NG	NG	4,000	Diesel/No. 2 Fuel Oil
Graine	d ¹									10,000	No. 6 Oil/Lube Oil
Sample ID	Sample Date										
19BP-1	9/18/2019	<0.025	<0.050	<0.025	<0.050	<2.5	<100	<100	1,500	1,500	Lube oil fraction.
19BP-1 Lab-Dup	9/18/2019	<0.025	<0.050	<0.025	<0.050	<2.5					
19BP-3	9/18/2019	<0.025	<0.050	<0.025	<0.050	<2.5	3800	10,000	77,000	180,000	One product in fuel / lube range. Unidentified compound(s) in fuel / lube range.
19BP-6	9/18/2019	<0.025	<0.050	<0.025	<0.050	<2.5	<100	3,500	6,200	9,700	One product in fuel / lube range.

Notes:

¹ Atlantic Risk-Based Corrective Action (RBCA) Tier I Risk-Based Screening Levels (RBSLs) for Soil - Industrial Land Use, Non-Potable Groundwater Use, Coarse-Grained Soil Type (July 2012, revised January 2015)

Results for all parameters are reports in milligrams per kilogram (mg/kg)

"-" - Not Applicable/Not Analyzed

Lab Dup - Laboratory Duplicate

NG - No Guideline

m - Metres

mTPH - Modified Total Petroleum Hydrocarbons

SHADING - Exceeds industrial criteria

Table 14 Groundwater Analytical Results - NORM Brunswick Smelter Belledune, NB

RADIONUCLIDE		Canadian NORM	08GW-95	09GW-102	19GW-118	19GW-120	19GW-122	19GW-124	QA/QC-1
		Section 5	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019
Lead-210	Bq/L	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Lead-212	Bq/L	N/A	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Radium-226	Bq/L	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Radium-228	Bq/L	5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Thorium-230	Bq/L	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Thorium-234	Bq/L	N/A	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium-235	Bq/L	N/A	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

BOLD/UNDERLINE - Exceeds Canadian NORM Guidelines

Table 15 Groundwater Analytical Results - Metals Brunswick Smelter Belledune, NB

Metals	Units	NSE Tier 1 EQS - Non- Potable, Coarse,	NSE PSS - Discharge to Surface Water - >10 m	Sample ID	08GW-95	08GW-95 Lab-Dup	09GW-102	19GW-118	19GW-120	19GW-122	19GW-124	QA/QC-1
	onno	Commercial ¹	from Marine Surface Water Body ²	Sample Date	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019	9/23/2019
Aluminum	µg/L	NG	NG		16	15	13	<10	89	<10	<10	<10
Antimony	µg/L	NG	5,000		14.0	13.8	<0.50	40.1	2.29	17.6	11.2	34.9
Arsenic	µg/L	NG	125		5.76	5.38	1.34	28.5	66.0	3.30	8.77	28.1
Barium	µg/L	NG	5,000		30.2	30.1	77.7	2.2	3.8	5.8	45.2	2.7
Beryllium	µg/L	NG	1,000		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	µg/L	NG	NG		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Boron	µg/L	NG	12,000		<50	50	<50	129	225	<50	185	133
Cadmium	µg/L	NG	1.2		26.7	26.1	0.284	156	108	0.850	0.984	121
Calcium	mg/L	NG	NG		135		71.1	160	447	248	87.1	161
Chromium	µg/L	NG	NG		<0.50	<0.50	<0.50	0.73	<0.50	<0.50	<0.50	0.73
Cobalt	µg/L	NG	NG		0.33	0.30	<0.10	2.63	368	3.49	<0.10	2.81
Copper	µg/L	NG	20		11.7	11.9	0.97	3.57	30.2	<0.50	2.48	4.25
Iron	µg/L	NG	NG		8.9	8.6	<2.0	<2.0	5.2	89.2	<2.0	<2.0
Lead	µg/L	NG	20		115	114	13.9	8.35	4.35	0.41	7.33	7.20
Lithium	µg/L	NG	NG		<20	<20	<20	<20	382	<20	<20	<20
Magnesium	mg/L	NG	NG		15.7		4.6	13.3	193	22.3	6.5	13.1
Manganese	µg/L	NG	NG		418	413	0.66	2940	47600	2610	165	2980
Mercury	µg/L	NG	0.16		< 0.013	<0.013	<0.013	<0.013	0.19	<0.013	<0.013	<0.013
Molybdenum	µg/L	NG	NG		<1.0	<1.0	<1.0	<1.0	4.3	2.2	3.1	<1.0
Nickel	µg/L	NG	83		4.69	5.30	<0.20	34.8	1210	9.21	1.35	33.7
Phosphorus	µg/L	NG	NG		268	290	<50	18500	184000	<50	1550	19800
Potassium	mg/L	NG	NG		5.4		<1.0	3.4	3.2	2.8	3.6	3.5
Selenium	µg/L	NG	20		15.0	14.4	1.71	16.3	12.5	<0.50	6.52	16.3
Silicon	µg/L	NG	NG		6680	6690	3630	8250	57400	8410	4580	8160
Silver	µg/L	NG	15		<0.050	<0.050	< 0.050	< 0.050	0.209	<0.050	<0.050	<0.050
Sodium	mg/L	NG	NG		145	139	11.8	102	231	79.9	246	101
Strontium	µg/L	NG	NG		190	187	121	185	69	277	134	181
Sulphur	mg/L	NG	NG		93		46	134	344	188	80	132
Thallium	µg/L	NG	213		20.8	20.9	<0.10	1.61	0.37	0.11	0.38	1.29
Tin	µg/L	NG	NG		<1.0	<1.0	1.6	2.4	<1.0	1.3	<1.0	<1.0
Titanium	µg/L	NG	NG		<10	<10	<10	<10	14	<10	<10	<10
Uranium	µg/L	NG	1,000][0.091	0.080	0.120	< 0.050	<0.050	0.089	0.764	<0.050
Vanadium	µg/L	NG	500]	<10	<10	<10	15	21	<10	<10	16
Zinc	µg/L	NG	100		814	828	6.7	4120	14100	539	21.0	3730
pH ³	µg/L	NG	7-8.7		6.94		7.39	6.91	5.75	7.00	7.52	6.95

Notes:

¹ Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for Groundwater - Non-Potable Groundwater, Coarse-Grained Soil, Commercial Land Use (July 6, 2013)

² Nova Scotia Environment (NSE) Pathway Specific Standards (PSS) for Groundwater - Groundwater Discharging to Surface Water, >10 metres from Surface Water Body, Discharge to Marine Water (April 2014)

³ Canadian Council of Ministers of the Environment Guideline for the Protection of Marine Aquatic Life

Lab Dup - Laboratory Duplicate NG - No Guideline BOLD/UNDERLINE - Exceeds Industrial criteria SHADING - Exceeds NSE PSS

Table 16Asbestos Containing Materials Analytical ResultsBrunswick SmelterBelledune, NB

Sample ID	Location	Description	Asbestos Content %	Approximate Volume (m ³)	Friability
PAP Building					
19ACM-1	Main to 3rd Floor	Pipe Wrap Insulation	12	>1.0	High
19ACM-2	Main to 3rd Floor	Evaporator Tank Insulation	55	11.55	High
19ACM-3	Platform between 2nd and 3rd Floor	Pipe Fitting	ND	NA	Low
19ACM-4	Debris from Roof	Roof Parge	ND	NA	Low
19ACM-5	4th Floor Isolated Line	Pipe Insulation	85	>1.0	High
19ACM-6	4th Floor Isolated Line	Pipe Insulation Mag Block	ND	NA	High
DAP Building					
19ACM-7	Main to 2nd Floor	Pipe Fitting	ND	NA	High
19ACM-8	2nd Floor Burner Room	Cable Tray insulation	12	>1.0	High
19ACM-9	2nd Floor	Pipe Fitting	ND	NA	High
Outside of Wast	e Yard				
19ACM-10	Tank Outside Scrap Yard	Tank Insulation	ND	NA	High

Table 17 Concrete Analytical Results - Polychlorinated Biphenyls (PCBs) Brunswick Smelter Belledune, NB

DC Be	Unite	NSE Tier 1 EQS - Non-	Sample ID	19-CONCRETE-1	19-CONCRETE-2	19-CONCRETE-2 Lab-Dup
FCDS	Units	Potable, Coarse, Industrial ¹	Sample Date	9/18/2019	9/18/2019	9/18/2019
Aroclor 1016	µg/g	NG		<0.50	<0.50	<0.50
Aroclor 1221	µg/g	NG		<0.50	<0.50	<0.50
Aroclor 1232	µg/g	NG		<0.50	<0.50	<0.50
Aroclor 1248	µg/g	NG		<0.50	<0.50	<0.50
Aroclor 1242	µg/g	NG		<0.50	<0.50	<0.50
Aroclor 1254	µg/g	NG		<0.50	<0.50	<0.50
Aroclor 1260	µg/g	NG		<0.50	<0.50	<0.50
Calculated Total PCB	µg/g	33		<0.50	<0.50	

Notes:

¹ Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for Soil at a Non-Potable Site - Coarse Soil Type, Industrial Land Use (July 6, 2013)

"-" - Not Applicable/Not Analyzed

Lab Dup - Laboratory Duplicate

PCB - Polychlorinated Biphenyls

NG - No Guideline

BOLD/UNDERLINE - Exceeds Industrial criteria

Appendix A Photograph Log

PHOTO 1 - FILTER PANS ALONG THE EAST WALL IN SCRAP YARD

PHOTO 2 - BINS WITH FILTER CLOTHS ALONG THE EAST WALL OF SCRAP YARD

GLENCORE CANADA CORPORATION BELLEDUNE SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY 11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P1

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX001.dwg

PHOTO 3 - GYPSUM PIPING IN SCRAP YARD

PHOTO 4 - 24 FILTER PANS IN THE SOUTHEAST CORNER OF SCRAP YARD

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P2

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX002.dwg

PHOTO 5 - BINS ALONG THE SOUTH EDGE OF THE SCRAP YARD

PHOTO 6 - FILTRATE TANK IN DUMP BOX

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P3

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX003.dwg

PHOTO 7 - FILTRATE TANK IN PAP BUILDING

PHOTO 8 - EVAPORATOR PIPING ON MAIN FLOOR IN PAP BUILDING

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P4

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX004.dwg

PHOTO 9 - BALL MILL IN PAP BUILDING

PHOTO 10 - 3RD FLOOR OF THE PAP BUILDING DIRECTLY UNDER FILTER PANS WITH SUSPECTED ELEVATED NORM READINGS

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P5

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX005.dwg

PHOTO 11 - EVAPORATOR TANKS ON THE 3RD FLOOR OF PAP BUILDING

PHOTO 12 - TOP FLOOR OF PAP BUILDING WITH EVAPORATOR TANKS RIGHT AND FILTER PANS LEFT

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P6

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX006.dwg

PHOTO 13 - HOUSING FOR PAN FILTERS ON TOP FLOOR OF PAP BUILDING, LOCATION OF 19ACM-4

PHOTO 14 - BAROMETRIC CONDENSOR AND EJECTOR SET ON THE 4TH FLOOR OF PAP BUILDING

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P7

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX007.dwg

PHOTO 15 - FUME SCRUBBER ON THE 4TH FLOOR OF THE PAP BUILDING

PHOTO 16 - MAIN FLOOR OF THE DAP BUILDING

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P8

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX008.dwg

PHOTO 17 - TANK IN NORTHEAST CORNER OF DAP BUILDING ON MAIN FLOOR

PHOTO 18 - 2ND FLOOR OF THE DAP BUILDING, CONVEYOR ON LEFT AND DRYER ON RIGHT

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P9

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX009.dwg

PHOTO 19 - 3RD FLOOR OF THE DAP BUILDING

PHOTO 20 - CONVEYORS ON THE 4TH FLOOR OF THE DAP BUILDING

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P10

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX010.dwg

PHOTO 21 - GYPSUM LINE STOCKPILED ON THE NORTH SIDE OF THE SMELTER AREA. APPROXIMATELY 25 SECTIONS OF PIPING THAT ARE 30 FEET IN LENGTH

 $\ensuremath{\mathsf{PHOTO}}\xspace 22$ - CONCRETE PAD AND TRANSFORMERS OUTSIDE OF THE DAP BUILDING

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P11

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX011.dwg

PHOTO 23 - LOCATION OF ACM SAMPLE 19ACM-1

PHOTO 24 - LOCATION OF ACM SAMPLE 19ACM-2

GLENCORE CANADA CORPORATION BELLEDUNE SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY 11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P12

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX012.dwg

PHOTO 25 - LOCATION OF ACM SAMPLE 19ACM-3

PHOTO 26 - LOCATION OF ACM SAMPLES 19ACM-5 AND 19ACM-6

11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P13

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX013.dwg

PHOTO 27 - LOCATION OF ACM SAMPLE 19ACM-7

PHOTO 28 - LOCATION OF ACM SAMPLE 19ACM-8

GLENCORE CANADA CORPORATION BELLEDUNE SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY 11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P14

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX014.dwg

PHOTO 29 - LOCATION OF ACM SAMPLE 19ACM-9

PHOTO 30 - LOCATION OF ACM SAMPLE 19ACM-10

GLENCORE CANADA CORPORATION BELLEDUNE SMELTER, BELLEDUNE, NEW BRUNSWICK NORM AND HAZARDOUS MATERIALS SURVEY 11198639-06 Oct 31, 2019

PHOTOGRAPHIC LOG

FIGURE P15

CAD File: N:\CA\Fredericton\Projects\661\11198639\Digital_Design\Figures\Oct 31 Norm Photolog\11198639-06 GN-HX015.dwg

Appendix B Laboratory Certificates

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE Your C.O.C. #: D 34709, D 34684, D34691

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/24 Report #: R5934513 Version: 5 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q8613

Received: 2019/09/25, 09:58

Sample Matrix: Soil # Samples Received: 22

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Metals Leach TCLP/CGSB extraction	3	2019/10/16	2019/10/17	ATL SOP 00058	EPA 6020B R2 m
Metals Leach TCLP/CGSB extraction	1	2019/10/17	2019/10/18	ATL SOP 00058	EPA 6020B R2 m
Metals Leach TCLP/CGSB extraction	1	2019/10/18	2019/10/21	ATL SOP 00058	EPA 6020B R2 m
Metals Solids Acid Extr. ICPMS	9	2019/09/27	2019/10/01	ATL SOP 00058	EPA 6020B R2 m
pH (5:1 DI Water Extract)	9	2019/09/30	2019/10/01	ATL SOP 00003	SM 23 4500-H+ B m
NORM Group Analysis (1)	2	N/A	2019/10/04	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	15	N/A	2019/10/05	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	5	N/A	2019/10/06	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/09	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/10	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	2	N/A	2019/10/11	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/17	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/22	BQL SOP-00007	Gamma Spectrometry
TCLP Inorganic extraction - pH	5	N/A	2019/09/27	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - pH	1	N/A	2019/10/01	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - pH	3	N/A	2019/10/16	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - pH	1	N/A	2019/10/17	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	5	N/A	2019/09/27	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	1	N/A	2019/10/01	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	3	N/A	2019/10/16	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	1	N/A	2019/10/17	ATL SOP 00035	EPA 1311 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied.

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE Your C.O.C. #: D 34709, D 34684, D34691

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/24 Report #: R5934513 Version: 5 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q8613 Received: 2019/09/25. 09:58

BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Kitimat

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KWI778			KWI778			KWI779		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34709			D 34709			D 34709		
	UNITS	19SP-1 0-0.15M	RDL	QC Batch	19SP-1 0-0.15M Lab-Dup	RDL	QC Batch	19SP-1 0-0.15-0.30M	RDL	QC Batch
Inorganics										
Soluble (5:1) pH	рН	8.25	N/A	6362631				7.43	N/A	6362631
Sample Weight (as received)	g							100	N/A	6388164
Initial pH	N/A							4.8		6388165
Final pH	N/A							5.9		6388165
RADIONUCLIDE										
Lead-210	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	1.0	6368434	<1.0	1.0	6368434
Radium-226	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	0.80	6368434	<0.80	0.80	6368434
Thorium-234	Bq/g	<0.050	0.050	6368434	<0.050	0.050	6368434	<0.050	0.050	6368434
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
RDL = Reportable Detection Li	imit	-								
QC Batch = Quality Control Ba	atch									
Lab-Dup = Laboratory Initiate	d Duplic	ate								
N/A = Not Applicable										

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KWI780			KWI781			KWI782		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34709			D 34709			D 34709		
	UNITS	19SP-3 0-0.15M	RDL	QC Batch	19SP-3 0.15-0.3M	RDL	QC Batch	19SP-5 0-0.15M	RDL	QC Batch
Inorganics										
Soluble (5:1) pH	рН	6.68	N/A	6362631	5.96	N/A	6362631	6.86	N/A	6362631
Sample Weight (as received)	g				100	N/A	6388164	100	N/A	6356111
Initial pH	N/A				4.8		6388165	4.9		6356112
Final pH	N/A				5.4		6388165	5.3		6356112
RADIONUCLIDE										
Lead-210	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Lead-210	Bq/L							<1.0	1.0	6370557
Lead-212	Bq/L							<0.10	0.10	6370557
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	1.0	6368434	<1.0	1.0	6368434
Radium-226	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-226	Bq/L							<1.0	1.0	6370557
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-228	Bq/L							<0.50	0.50	6370557
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	0.80	6368434	<0.80	0.80	6368434
Thorium-230	Bq/L							<5.0	5.0	6370557
Thorium-234	Bq/g	<0.050	0.050	6368434	0.150	0.050	6368434	<0.050	0.050	6368434
Thorium-234	Bq/L							<1.0	1.0	6370557
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Uranium-235	Bq/L							<0.50	0.50	6370557
RDL = Reportable Detection Li QC Batch = Quality Control Ba	mit tch		_						_	

RESULTS OF ANALYSES OF SOIL

BV Labs ID		K\N/1783			K\\//78/			K\N/178/I	
Sampling Date		2019/09/18			2019/09/18			2019/09/18	
COC Number		D 34709			D 34709			D 34709	
	UNITS	19SP-5 0.15-0.3M	RDL	QC Batch	19SP-2 0-0.15M	RDL	QC Batch	19SP-2 0-0.15M Lab-Dup	QC Batch
Inorganics									
Soluble (5:1) pH	рН	7.01	N/A	6362631					
Sample Weight (as received)	g				100	N/A	6356111	100	6356111
Initial pH	N/A				4.8		6356112	4.9	6356112
Final pH	N/A				5.9		6356112	6.0	6356112
RADIONUCLIDE									
Lead-210	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434		
Lead-210	Bq/L				<1.0	1.0	6370557		
Lead-212	Bq/L				<0.10	0.10	6370557		
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	1.0	6368434		
Radium-226	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434		
Radium-226	Bq/L				<1.0	1.0	6370557		
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434		
Radium-228	Bq/L				<0.50	0.50	6370557		
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434		
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	0.80	6368434		
Thorium-230	Bq/L				<5.0	5.0	6370557		
Thorium-234	Bq/g	<0.050	0.050	6368434	<0.050	0.050	6368434		
Thorium-234	Bq/L				<1.0	1.0	6370557		
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434		
Uranium-235	Bq/L				<0.50	0.50	6370557		
RDL = Reportable Detection Li QC Batch = Quality Control Ba Lab-Dup = Laboratory Initiated	mit tch d Duplic	ate							

RESULTS OF ANALYSES OF SOIL

	-		1	1			1	
BV Labs ID		KWI785			KWI786	KWI787		
Sampling Date		2019/09/18			2019/09/18	2019/09/18		
COC Number		D 34709			D 34709	D 34709		
	UNITS	19SP-4 0-0.15M	RDL	QC Batch	19SP-6 0-0.15M	19SP-10 0-0.15M	RDL	QC Batch
Inorganics								
Sample Weight (as received)	g	100	N/A	6362110				
Initial pH	N/A	4.9		6362115				
Final pH	N/A	5.5		6362115				
RADIONUCLIDE		·						
Lead-210	Bq/g	<0.10	0.10	6368434	0.13	<0.10	0.10	6368434
Lead-210	Bq/L	<1.0	1.0	6370557				
Lead-212	Bq/L	<0.10	0.10	6370557				
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	<1.0	1.0	6368434
Radium-226	Bq/g	<0.10	0.10	6368434	0.20	<0.10	0.10	6368434
Radium-226	Bq/L	<1.0	1.0	6370557				
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	<0.10	0.10	6368434
Radium-228	Bq/L	<0.50	0.50	6370557				
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	<0.10	0.10	6368434
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	<0.80	0.80	6368434
Thorium-230	Bq/L	<5.0	5.0	6370557				
Thorium-234	Bq/g	0.050	0.050	6368434	0.120	0.070	0.050	6368434
Thorium-234	Bq/L	<1.0	1.0	6370557				
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	<0.10	0.10	6368434
Uranium-235	Bq/L	<0.50	0.50	6370557				
RDL = Reportable Detection Li OC Batch = Ouality Control Ba	mit tch			·				

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KWI974			KWI975			KWI976		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34684			D 34684			D 34684		
	UNITS	19SP-9 0-0.15M	RDL	QC Batch	19SP-11 0-0.15M	RDL	QC Batch	19SP-11 1.2-1.8M	RDL	QC Batch
Inorganics										
Soluble (5:1) pH	рН	7.55	N/A	6362631	6.56	N/A	6362631	6.48	N/A	6362631
Sample Weight (as received)	g	100	N/A	6388164				91	N/A	6391323
Initial pH	N/A	4.9		6388165				4.9		6391325
Final pH	N/A	4.8		6388165				4.9		6391325
RADIONUCLIDE										
Lead-210	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	1.0	6368434	<1.0	1.0	6368434
Radium-226	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	0.80	6368434	<0.80	0.80	6368434
Thorium-234	Bq/g	<0.050	0.050	6368434	<0.050	0.050	6368434	<0.050	0.050	6368434
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
RDL = Reportable Detection Li QC Batch = Quality Control Ba N/A = Not Applicable	mit tch									

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KWI977			KWI978			KWI979		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34684			D 34684			D 34684		
	UNITS	19SP-12 0-0.15M	RDL	QC Batch	19SP-12 0.15-0.3M	RDL	QC Batch	19SP-31 0-0.15M	RDL	QC Batch
Inorganics										
Sample Weight (as received)	g	100	N/A	6356111				100	N/A	6356111
Initial pH	N/A	4.8		6356112				4.8		6356112
Final pH	N/A	5.0		6356112				5.0		6356112
RADIONUCLIDE										
Lead-210	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Lead-210	Bq/L	<1.0	1.0	6370557				<1.0	1.0	6370557
Lead-212	Bq/L	<0.10	0.10	6370557				<0.10	0.10	6370557
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	1.0	6368434	<1.0	1.0	6368434
Radium-226	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-226	Bq/L	<1.0	1.0	6370557				<1.0	1.0	6370557
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-228	Bq/L	<0.50	0.50	6370557				<0.50	0.50	6370557
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	0.80	6368434	<0.80	0.80	6368434
Thorium-230	Bq/L	<5.0	5.0	6370557				<5.0	5.0	6370557
Thorium-234	Bq/g	<0.050	0.050	6368434	<0.050	0.050	6368434	<0.050	0.050	6368434
Thorium-234	Bq/L	<1.0	1.0	6370557				<1.0	1.0	6370557
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Uranium-235	Bq/L	<0.50	0.50	6370557				<0.50	0.50	6370557
RDL - Reportable Detection Li	imit									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KWI980			KWI981			KWI982		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34684			D 34684			D 34684		
	UNITS	19SP-31 0.15-0.3M	RDL	QC Batch	19SP-32 0-0.15M	RDL	QC Batch	19SP-32 0.15-0.3M	RDL	QC Batch
Inorganics										
Sample Weight (as received)	g				100	N/A	6356111			
Initial pH	N/A				4.8		6356112			
Final pH	N/A				4.9		6356112			
RADIONUCLIDE		-			-					
Lead-210	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Lead-210	Bq/L				<1.0	1.0	6370557			
Lead-212	Bq/L				<0.10	0.10	6370557			
Potassium-40	Bq/g	<1.0	1.0	6368434	<1.0	1.0	6368434	<1.0	1.0	6368434
Radium-226	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-226	Bq/L				<1.0	1.0	6370557			
Radium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Radium-228	Bq/L				<0.50	0.50	6370557			
Thorium-228	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Thorium-230	Bq/g	<0.80	0.80	6368434	<0.80	0.80	6368434	<0.80	0.80	6368434
Thorium-230	Bq/L				<5.0	5.0	6370557			
Thorium-234	Bq/g	<0.050	0.050	6368434	<0.050	0.050	6368434	<0.050	0.050	6368434
Thorium-234	Bq/L				<1.0	1.0	6370557			
Uranium-235	Bq/g	<0.10	0.10	6368434	<0.10	0.10	6368434	<0.10	0.10	6368434
Uranium-235	Bq/L				<0.50	0.50	6370557			
RDL = Reportable Detection L	imit	•								

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

BV Labs ID		KWI983	KWJ003	KWJ004					
Sampling Date		2019/09/18	2019/09/18	2019/09/18					
COC Number		D 34684	D34691	D34691					
	UNITS	SOIL QA/QC-4	SOIL QA/QC-5	19SP-10 0.15-0.3M	RDL	QC Batch			
RADIONUCLIDE									
Lead-210	Bq/g	<0.10	<0.10	<0.10	0.10	6368435			
Potassium-40	Bq/g	<1.0	<1.0	<1.0	1.0	6368435			
Radium-226	Bq/g	0.11	<0.10	0.14	0.10	6368435			
Radium-228	Bq/g	<0.10	<0.10	<0.10	0.10	6368435			
Thorium-228	Bq/g	<0.10	<0.10	<0.10	0.10	6368435			
Thorium-230	Bq/g	<0.80	<0.80	<0.80	0.80	6368435			
Thorium-234	Bq/g	0.280	<0.050	0.400	0.050	6368435			
Uranium-235	Bq/g	<0.10	<0.10	<0.10	0.10	6368435			
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

ELEMENTS BY ICP/MS (SOIL)

BV Labs ID		KWI779	KWI781			KWI782		
Sampling Date		2019/09/18	2019/09/18			2019/09/18		
COC Number		D 34709	D 34709			D 34709		
	UNITS	19SP-1 0-0.15-0.30M	19SP-3 0.15-0.3M	RDL	QC Batch	19SP-5 0-0.15M	RDL	QC Batch
Metals				<u> </u>	-		<u> </u>	
Leachable Aluminum (Al)	ug/L	110	1700	100	6388780	1400	100	6393264
Leachable Antimony (Sb)	ug/L	90	330	20	6388780	500	20	6393264
Leachable Arsenic (As)	ug/L	42	180	20	6388780	280	20	6393264
Leachable Barium (Ba)	ug/L	180	74	50	6388780	310	50	6393264
Leachable Beryllium (Be)	ug/L	<20	<20	20	6388780	<20	20	6393264
Leachable Boron (B)	ug/L	<500	<500	500	6388780	<500	500	6393264
Leachable Cadmium (Cd)	ug/L	200	280	3.0	6388780	1500	3.0	6393264
Leachable Calcium (Ca)	ug/L	650000	380000	1000	6388780	310000	1000	6393264
Leachable Chromium (Cr)	ug/L	<20	<20	20	6388780	<20	20	6393264
Leachable Cobalt (Co)	ug/L	<10	<10	10	6388780	28	10	6393264
Leachable Copper (Cu)	ug/L	130	1300	20	6388780	19000	20	6393264
Leachable Iron (Fe)	ug/L	<500	<500	500	6388780	<500	500	6393264
Leachable Lead (Pb)	ug/L	3900	7000	5.0	6388780	460000	50	6393264
Leachable Lithium (Li)	ug/L	<20	<20	20	6388780	<20	20	6393264
Leachable Magnesium (Mg)	ug/L	6500	5500	1000	6388780	4500	1000	6393264
Leachable Manganese (Mn)	ug/L	2900	2800	20	6388780	6100	20	6393264
Leachable Molybdenum (Mo)	ug/L	<20	<20	20	6388780	<20	20	6393264
Leachable Nickel (Ni)	ug/L	<20	27	20	6388780	67	20	6393264
Leachable Potassium (K)	ug/L	2400	2300	1000	6388780	2700	1000	6393264
Leachable Selenium (Se)	ug/L	<10	<10	10	6388780	<10	10	6393264
Leachable Silver (Ag)	ug/L	<5.0	<5.0	5.0	6388780	<5.0	5.0	6393264
Leachable Strontium (Sr)	ug/L	490	440	50	6388780	440	50	6393264
Leachable Thallium (Tl)	ug/L	4.7	4.9	1.0	6388780	45	1.0	6393264
Leachable Tin (Sn)	ug/L	<20	<20	20	6388780	<20	20	6393264
Leachable Uranium (U)	ug/L	<1.0	3.9	1.0	6388780	4.3	1.0	6393264
Leachable Vanadium (V)	ug/L	<20	<20	20	6388780	<20	20	6393264
Leachable Zinc (Zn)	ug/L	4200	12000	50	6388780	35000	50	6393264
RDL = Reportable Detection Lir	nit							
QC Batch = Quality Control Bat	ch							

ELEMENTS BY ICP/MS (SOIL)

BV Labs ID		KWI974		KWI976		
Sampling Date		2019/09/18		2019/09/18		
COC Number		D 34684		D 34684		
	UNITS	19SP-9 0-0.15M	QC Batch	19SP-11 1.2-1.8M	RDL	QC Batch
Metals						
Leachable Aluminum (Al)	ug/L	750	6388780	1300	100	6391070
Leachable Antimony (Sb)	ug/L	98	6388780	49	20	6391070
Leachable Arsenic (As)	ug/L	48	6388780	26	20	6391070
Leachable Barium (Ba)	ug/L	550	6388780	470	50	6391070
Leachable Beryllium (Be)	ug/L	<20	6388780	<20	20	6391070
Leachable Boron (B)	ug/L	<500	6388780	<500	500	6391070
Leachable Cadmium (Cd)	ug/L	270	6388780	22	3.0	6391070
Leachable Calcium (Ca)	ug/L	51000	6388780	34000	1000	6391070
Leachable Chromium (Cr)	ug/L	<20	6388780	<20	20	6391070
Leachable Cobalt (Co)	ug/L	<10	6388780	<10	10	6391070
Leachable Copper (Cu)	ug/L	570	6388780	130	20	6391070
Leachable Iron (Fe)	ug/L	<500	6388780	<500	500	6391070
Leachable Lead (Pb)	ug/L	20000	6388780	4100	5.0	6391070
Leachable Lithium (Li)	ug/L	<20	6388780	<20	20	6391070
Leachable Magnesium (Mg)	ug/L	3100	6388780	5800	1000	6391070
Leachable Manganese (Mn)	ug/L	1400	6388780	560	20	6391070
Leachable Molybdenum (Mo)	ug/L	<20	6388780	<20	20	6391070
Leachable Nickel (Ni)	ug/L	<20	6388780	<20	20	6391070
Leachable Potassium (K)	ug/L	3200	6388780	3200	1000	6391070
Leachable Selenium (Se)	ug/L	<10	6388780	<10	10	6391070
Leachable Silver (Ag)	ug/L	<5.0	6388780	<5.0	5.0	6391070
Leachable Strontium (Sr)	ug/L	99	6388780	95	50	6391070
Leachable Thallium (Tl)	ug/L	1.2	6388780	<1.0	1.0	6391070
Leachable Tin (Sn)	ug/L	<20	6388780	<20	20	6391070
Leachable Uranium (U)	ug/L	1.1	6388780	1.8	1.0	6391070
Leachable Vanadium (V)	ug/L	<20	6388780	<20	20	6391070
Leachable Zinc (Zn)	ug/L	2100	6388780	1000	50	6391070
RDL = Reportable Detection Lin	nit					
QC Batch = Quality Control Bat	ch					

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		KWI778	KWI779	KWI780		KWI781		
Sampling Date		2019/09/18	2019/09/18	2019/09/18		2019/09/18		
COC Number		D 34709	D 34709	D 34709		D 34709		
	UNITS	19SP-1 0-0.15M	19SP-1 0-0.15-0.30M	19SP-3 0-0.15M	RDL	19SP-3 0.15-0.3M	RDL	QC Batch
Metals								
Acid Extractable Aluminum (Al)	mg/kg	50000	25000	25000	10	24000	10	6356323
Acid Extractable Antimony (Sb)	mg/kg	28	53	42	2.0	320	20	6356323
Acid Extractable Arsenic (As)	mg/kg	67	130	90	2.0	640	20	6356323
Acid Extractable Barium (Ba)	mg/kg	120	91	94	5.0	190	5.0	6356323
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	2.0	<2.0	2.0	6356323
Acid Extractable Bismuth (Bi)	mg/kg	9.1	21	18	2.0	100	2.0	6356323
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	50	<50	50	6356323
Acid Extractable Cadmium (Cd)	mg/kg	18	35	23	0.30	54	0.30	6356323
Acid Extractable Chromium (Cr)	mg/kg	300	92	57	2.0	88	2.0	6356323
Acid Extractable Cobalt (Co)	mg/kg	41	20	18	1.0	15	1.0	6356323
Acid Extractable Copper (Cu)	mg/kg	210	250	220	2.0	900	2.0	6356323
Acid Extractable Iron (Fe)	mg/kg	69000	42000	42000	50	53000	50	6356323
Acid Extractable Lead (Pb)	mg/kg	3000	5000	4100	0.50	27000	5.0	6356323
Acid Extractable Lithium (Li)	mg/kg	42	25	26	2.0	21	2.0	6356323
Acid Extractable Manganese (Mn)	mg/kg	1500	1100	970	2.0	870	2.0	6356323
Acid Extractable Mercury (Hg)	mg/kg	1.3	1.2	0.33	0.10	1.9	0.10	6356323
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	2.0	8.3	2.0	6356323
Acid Extractable Nickel (Ni)	mg/kg	120	54	47	2.0	41	2.0	6356323
Acid Extractable Rubidium (Rb)	mg/kg	<2.0	8.2	12	2.0	13	2.0	6356323
Acid Extractable Selenium (Se)	mg/kg	5.4	3.8	1.9	1.0	17	1.0	6356323
Acid Extractable Silver (Ag)	mg/kg	13	23	17	0.50	91	5.0	6356323
Acid Extractable Strontium (Sr)	mg/kg	76	63	43	5.0	100	5.0	6356323
Acid Extractable Thallium (Tl)	mg/kg	1.8	7.5	5.0	0.10	26	0.10	6356323
Acid Extractable Tin (Sn)	mg/kg	4.3	12	10	1.0	170	1.0	6356323
Acid Extractable Uranium (U)	mg/kg	0.20	2.8	4.5	0.10	38	0.10	6356323
Acid Extractable Vanadium (V)	mg/kg	220	98	89	2.0	98	2.0	6356323
Acid Extractable Zinc (Zn)	mg/kg	870	1400	1500	5.0	4900	5.0	6356323
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		KWI781		KWI782		KWI783		KWI974		
Sampling Date		2019/09/18		2019/09/18		2019/09/18		2019/09/18		
COC Number		D 34709		D 34709		D 34709		D 34684		
	UNITS	19SP-3 0.15-0.3M Lab-Dup	RDL	19SP-5 0-0.15M	RDL	19SP-5 0.15-0.3M	RDL	19SP-9 0-0.15M	RDL	QC Batch
Metals										
Acid Extractable Aluminum (Al)	mg/kg	23000	10	24000	10	30000	10	18000	10	6356323
Acid Extractable Antimony (Sb)	mg/kg	310	20	1100	20	430	20	24	2.0	6356323
Acid Extractable Arsenic (As)	mg/kg	590	20	1400	20	620	20	53	2.0	6356323
Acid Extractable Barium (Ba)	mg/kg	200	5.0	220	5.0	290	5.0	90	5.0	6356323
Acid Extractable Beryllium (Be)	mg/kg	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	6356323
Acid Extractable Bismuth (Bi)	mg/kg	120	2.0	200	20	120	2.0	6.7	2.0	6356323
Acid Extractable Boron (B)	mg/kg	<50	50	<50	50	<50	50	<50	50	6356323
Acid Extractable Cadmium (Cd)	mg/kg	58	0.30	180	0.30	74	0.30	24	0.30	6356323
Acid Extractable Chromium (Cr)	mg/kg	92	2.0	100	2.0	79	2.0	42	2.0	6356323
Acid Extractable Cobalt (Co)	mg/kg	15	1.0	32	1.0	32	1.0	15	1.0	6356323
Acid Extractable Copper (Cu)	mg/kg	880	2.0	9300	20	2500	2.0	86	2.0	6356323
Acid Extractable Iron (Fe)	mg/kg	51000	50	63000	50	71000	50	35000	50	6356323
Acid Extractable Lead (Pb)	mg/kg	27000	5.0	48000	5.0	28000	5.0	1600	0.50	6356323
Acid Extractable Lithium (Li)	mg/kg	21	2.0	24	2.0	31	2.0	22	2.0	6356323
Acid Extractable Manganese (Mn)	mg/kg	830	2.0	2000	2.0	2000	2.0	990	2.0	6356323
Acid Extractable Mercury (Hg)	mg/kg	2.1	0.10	5.2	0.10	2.7	0.10	0.14	0.10	6356323
Acid Extractable Molybdenum (Mo)	mg/kg	8.8	2.0	16	2.0	8.0	2.0	<2.0	2.0	6356323
Acid Extractable Nickel (Ni)	mg/kg	42	2.0	85	2.0	56	2.0	43	2.0	6356323
Acid Extractable Rubidium (Rb)	mg/kg	13	2.0	9.5	2.0	4.9	2.0	7.6	2.0	6356323
Acid Extractable Selenium (Se)	mg/kg	18	1.0	100	1.0	34	1.0	1.5	1.0	6356323
Acid Extractable Silver (Ag)	mg/kg	89	5.0	82	5.0	85	5.0	9.9	0.50	6356323
Acid Extractable Strontium (Sr)	mg/kg	100	5.0	160	5.0	98	5.0	17	5.0	6356323
Acid Extractable Thallium (Tl)	mg/kg	26	0.10	36	0.10	22	0.10	1.2	0.10	6356323
Acid Extractable Tin (Sn)	mg/kg	170	1.0	310	1.0	140	1.0	4.2	1.0	6356323
Acid Extractable Uranium (U)	mg/kg	38	0.10	5.0	0.10	2.5	0.10	0.74	0.10	6356323
Acid Extractable Vanadium (V)	mg/kg	100	2.0	99	2.0	160	2.0	63	2.0	6356323
Acid Extractable Zinc (Zn)	mg/kg	5100	5.0	9600	5.0	4500	5.0	350	5.0	6356323
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

Lab-Dup = Laboratory Initiated Duplicate

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		KWI975	KWI976		
Sampling Date		2019/09/18	2019/09/18		
COC Number		D 34684	D 34684		
	UNITS	19SP-11 0-0.15M	19SP-11 1.2-1.8M	RDL	QC Batch
Metals				-	
Acid Extractable Aluminum (Al)	mg/kg	29000	20000	10	6356323
Acid Extractable Antimony (Sb)	mg/kg	100	17	2.0	6356323
Acid Extractable Arsenic (As)	mg/kg	170	50	2.0	6356323
Acid Extractable Barium (Ba)	mg/kg	100	69	5.0	6356323
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	2.0	6356323
Acid Extractable Bismuth (Bi)	mg/kg	21	4.1	2.0	6356323
Acid Extractable Boron (B)	mg/kg	<50	<50	50	6356323
Acid Extractable Cadmium (Cd)	mg/kg	19	3.4	0.30	6356323
Acid Extractable Chromium (Cr)	mg/kg	59	40	2.0	6356323
Acid Extractable Cobalt (Co)	mg/kg	18	13	1.0	6356323
Acid Extractable Copper (Cu)	mg/kg	310	120	2.0	6356323
Acid Extractable Iron (Fe)	mg/kg	44000	33000	50	6356323
Acid Extractable Lead (Pb)	mg/kg	6600	1300	0.50	6356323
Acid Extractable Lithium (Li)	mg/kg	26	21	2.0	6356323
Acid Extractable Manganese (Mn)	mg/kg	920	650	2.0	6356323
Acid Extractable Mercury (Hg)	mg/kg	0.51	0.13	0.10	6356323
Acid Extractable Molybdenum (Mo)	mg/kg	2.2	<2.0	2.0	6356323
Acid Extractable Nickel (Ni)	mg/kg	52	40	2.0	6356323
Acid Extractable Rubidium (Rb)	mg/kg	11	9.6	2.0	6356323
Acid Extractable Selenium (Se)	mg/kg	4.4	<1.0	1.0	6356323
Acid Extractable Silver (Ag)	mg/kg	39	6.8	0.50	6356323
Acid Extractable Strontium (Sr)	mg/kg	32	14	5.0	6356323
Acid Extractable Thallium (Tl)	mg/kg	4.2	0.80	0.10	6356323
Acid Extractable Tin (Sn)	mg/kg	26	5.8	1.0	6356323
Acid Extractable Uranium (U)	mg/kg	4.9	1.3	0.10	6356323
Acid Extractable Vanadium (V)	mg/kg	80	56	2.0	6356323
Acid Extractable Zinc (Zn)	mg/kg	1600	310	5.0	6356323
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	15.0°C
Package 2	3.7°C
Package 3	16.0°C
Package 4	16.0°C
Package 5	15.7°C
Package 6	16.7°C

Revised Report - TCLP + Metals analysis added to the below listed samples as per requested fromRob T. HWS Oct 11/19

19SP-1 0.15-0.3m (KWI779) 19SP-3 0.15-0.3m (KWI781) 19SP-5 0-0.15m (KWI782) 19SP-9 0-0.15m (KWI974) 19SP-11 1.2-1.8m (KWI976)

Sample KWI976 [19SP-11 1.2-1.8M] : The minimum weight of 100g for the standard TCLP extraction, as per Reference Method EPA 1311 R1992, could not be achieved due to insufficient sample. Client consent has been received to proceed using the modified TCLP method. The uncertainty of the analysis may be increased, and the reported results may not be suitable for compliance purposes.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6356111	Sample Weight (as received)	2019/09/27					NA	g	0.077 (2)	N/A		
6356323	Acid Extractable Aluminum (Al)	2019/10/01					<10	mg/kg	2.0 (4)	35		
6356323	Acid Extractable Antimony (Sb)	2019/10/01	NC (3)	75 - 125	108	75 - 125	<2.0	mg/kg	1.6 (4)	35		
6356323	Acid Extractable Arsenic (As)	2019/10/01	NC (3)	75 - 125	105	75 - 125	<2.0	mg/kg	6.6 (4)	35		
6356323	Acid Extractable Barium (Ba)	2019/10/01	NC (3)	75 - 125	104	75 - 125	<5.0	mg/kg	7.1 (4)	35		
6356323	Acid Extractable Beryllium (Be)	2019/10/01	107 (3)	75 - 125	100	75 - 125	<2.0	mg/kg	NC (4)	35		
6356323	Acid Extractable Bismuth (Bi)	2019/10/01	NC (3)	75 - 125	106	75 - 125	<2.0	mg/kg	17 (4)	35		
6356323	Acid Extractable Boron (B)	2019/10/01	97 (3)	75 - 125	99	75 - 125	<50	mg/kg	NC (4)	35		
6356323	Acid Extractable Cadmium (Cd)	2019/10/01	NC (3)	75 - 125	100	75 - 125	<0.30	mg/kg	7.4 (4)	35		
6356323	Acid Extractable Chromium (Cr)	2019/10/01	NC (3)	75 - 125	104	75 - 125	<2.0	mg/kg	4.0 (4)	35		
6356323	Acid Extractable Cobalt (Co)	2019/10/01	107 (3)	75 - 125	103	75 - 125	<1.0	mg/kg	1.5 (4)	35		
6356323	Acid Extractable Copper (Cu)	2019/10/01	NC (3)	75 - 125	100	75 - 125	<2.0	mg/kg	2.8 (4)	35		
6356323	Acid Extractable Iron (Fe)	2019/10/01					<50	mg/kg	2.1 (4)	35		
6356323	Acid Extractable Lead (Pb)	2019/10/01	NC (3)	75 - 125	105	75 - 125	<0.50	mg/kg	1.8 (4)	35		
6356323	Acid Extractable Lithium (Li)	2019/10/01	110 (3)	75 - 125	103	75 - 125	<2.0	mg/kg	0.14 (4)	35		
6356323	Acid Extractable Manganese (Mn)	2019/10/01	NC (3)	75 - 125	105	75 - 125	<2.0	mg/kg	5.4 (4)	35		
6356323	Acid Extractable Mercury (Hg)	2019/10/01	99 (3)	75 - 125	102	75 - 125	<0.10	mg/kg	6.3 (4)	35		
6356323	Acid Extractable Molybdenum (Mo)	2019/10/01	NC (3)	75 - 125	104	75 - 125	<2.0	mg/kg	4.8 (4)	35		
6356323	Acid Extractable Nickel (Ni)	2019/10/01	108 (3)	75 - 125	105	75 - 125	<2.0	mg/kg	1.2 (4)	35		
6356323	Acid Extractable Rubidium (Rb)	2019/10/01	102 (3)	75 - 125	103	75 - 125	<2.0	mg/kg	3.4 (4)	35		
6356323	Acid Extractable Selenium (Se)	2019/10/01	101 (3)	75 - 125	107	75 - 125	<1.0	mg/kg	5.9 (4)	35		
6356323	Acid Extractable Silver (Ag)	2019/10/01	NC (3)	75 - 125	101	75 - 125	<0.50	mg/kg	2.2 (4)	35		
6356323	Acid Extractable Strontium (Sr)	2019/10/01	NC (3)	75 - 125	107	75 - 125	<5.0	mg/kg	2.3 (4)	35		
6356323	Acid Extractable Thallium (TI)	2019/10/01	NC (3)	75 - 125	106	75 - 125	<0.10	mg/kg	1.3 (4)	35		
6356323	Acid Extractable Tin (Sn)	2019/10/01	NC (3)	75 - 125	110	75 - 125	<1.0	mg/kg	3.7 (4)	35		
6356323	Acid Extractable Uranium (U)	2019/10/01	107 (3)	75 - 125	113	75 - 125	<0.10	mg/kg	0.29 (4)	35		
6356323	Acid Extractable Vanadium (V)	2019/10/01	NC (3)	75 - 125	106	75 - 125	<2.0	mg/kg	4.4 (4)	35		
6356323	Acid Extractable Zinc (Zn)	2019/10/01	NC (3)	75 - 125	104	75 - 125	<5.0	mg/kg	3.1 (4)	35		
6362110	Sample Weight (as received)	2019/10/01					NA	g	0.052 (1)	N/A		
6362631	Soluble (5:1) pH	2019/10/01							0.70 (1)	N/A		
6368434	Lead-210	2019/10/04					<0.10	Bq/g	NC (5)	N/A	102	74 - 126
6368434	Potassium-40	2019/10/04					<1.0	Bq/g	NC (5)	N/A	90	74 - 126

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	tandard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
6368434	Radium-226	2019/10/04					<0.10	Bq/g	NC (5)	N/A	88	74 - 126	
6368434	Radium-228	2019/10/04					<0.10	Bq/g	NC (5)	N/A	99	74 - 126	
6368434	Thorium-228	2019/10/04					<0.10	Bq/g	NC (5)	N/A	100	74 - 126	
6368434	Thorium-230	2019/10/04					<0.80	Bq/g	NC (5)	N/A	104	74 - 126	
6368434	Thorium-234	2019/10/04					<0.050	Bq/g	NC (5)	N/A	106	74 - 126	
6368434	Uranium-235	2019/10/04					<0.10	Bq/g	NC (5)	N/A	96	74 - 126	
6368435	Lead-210	2019/10/05					<0.10	Bq/g	NC (1)	N/A	103	74 - 126	
6368435	Potassium-40	2019/10/05					<1.0	Bq/g	NC (1)	N/A	100	74 - 126	
6368435	Radium-226	2019/10/05					<0.10	Bq/g	NC (1)	N/A	97	74 - 126	
6368435	Radium-228	2019/10/05					<0.10	Bq/g	NC (1)	N/A	100	74 - 126	
6368435	Thorium-228	2019/10/05					<0.10	Bq/g	NC (1)	N/A	103	74 - 126	
6368435	Thorium-230	2019/10/05					<0.80	Bq/g	NC (1)	N/A	94	74 - 126	
6368435	Thorium-234	2019/10/05					<0.050	Bq/g	NC (1)	N/A	102	74 - 126	
6368435	Uranium-235	2019/10/05					<0.10	Bq/g	NC (1)	N/A	105	74 - 126	
6370557	Lead-210	2019/10/08					<1.0	Bq/L			93	74 - 126	
6370557	Lead-212	2019/10/08					<0.10	Bq/L			105	N/A	
6370557	Radium-226	2019/10/08					<1.0	Bq/L			96	74 - 126	
6370557	Radium-228	2019/10/08					<0.50	Bq/L			104	74 - 126	
6370557	Thorium-230	2019/10/08					<5.0	Bq/L			107	74 - 126	
6370557	Thorium-234	2019/10/08					<1.0	Bq/L			100	74 - 126	
6370557	Uranium-235	2019/10/08					<0.50	Bq/L			108	74 - 126	
6388164	Sample Weight (as received)	2019/10/16					NA	g	0.076 (1)	N/A			
6388780	Leachable Aluminum (Al)	2019/10/18					<100	ug/L	18 (1)	35			
6388780	Leachable Antimony (Sb)	2019/10/18	104	75 - 125	101	75 - 125	<20	ug/L	11 (1)	35			
6388780	Leachable Arsenic (As)	2019/10/18	102	75 - 125	102	75 - 125	<20	ug/L	NC (1)	35			
6388780	Leachable Barium (Ba)	2019/10/18	100	75 - 125	98	75 - 125	<50	ug/L	5.4 (1)	35			
6388780	Leachable Beryllium (Be)	2019/10/18	101	75 - 125	99	75 - 125	<20	ug/L	NC (1)	35			
6388780	Leachable Boron (B)	2019/10/18	97	75 - 125	99	75 - 125	<500	ug/L	NC (1)	35			
6388780	Leachable Cadmium (Cd)	2019/10/18	97	75 - 125	97	75 - 125	<3.0	ug/L	18 (1)	35			
6388780	Leachable Calcium (Ca)	2019/10/18					<1000	ug/L	26 (1)	35			
6388780	Leachable Chromium (Cr)	2019/10/18	100	75 - 125	99	75 - 125	<20	ug/L	NC (1)	35			
6388780	Leachable Cobalt (Co)	2019/10/18	100	75 - 125	99	75 - 125	<10	ug/L	NC (1)	35			

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6388780	Leachable Copper (Cu)	2019/10/18	97	75 - 125	97	75 - 125	<20	ug/L	NC (1)	35		
6388780	Leachable Iron (Fe)	2019/10/18					<500	ug/L	30 (1)	35		
6388780	Leachable Lead (Pb)	2019/10/18	NC	75 - 125	97	75 - 125	<5.0	ug/L	20 (1)	35		
6388780	Leachable Lithium (Li)	2019/10/18	106	75 - 125	104	75 - 125	<20	ug/L	NC (1)	35		
6388780	Leachable Magnesium (Mg)	2019/10/18					<1000	ug/L	2.2 (1)	35		
6388780	Leachable Manganese (Mn)	2019/10/18	101	75 - 125	100	75 - 125	<20	ug/L	6.9 (1)	35		
6388780	Leachable Molybdenum (Mo)	2019/10/18	103	75 - 125	102	75 - 125	<20	ug/L	NC (1)	35		
6388780	Leachable Nickel (Ni)	2019/10/18	99	75 - 125	98	75 - 125	<20	ug/L	NC (1)	35		
6388780	Leachable Potassium (K)	2019/10/18					<1000	ug/L	4.1 (1)	35		
6388780	Leachable Selenium (Se)	2019/10/18	102	75 - 125	102	75 - 125	<10	ug/L	NC (1)	35		
6388780	Leachable Silver (Ag)	2019/10/18	95	75 - 125	95	75 - 125	<5.0	ug/L	NC (1)	35		
6388780	Leachable Strontium (Sr)	2019/10/18	102	75 - 125	101	75 - 125	<50	ug/L	17 (1)	35		
6388780	Leachable Thallium (TI)	2019/10/18	97	75 - 125	95	75 - 125	<1.0	ug/L	11 (1)	35		
6388780	Leachable Tin (Sn)	2019/10/18	101	75 - 125	99	75 - 125	<20	ug/L	NC (1)	35		
6388780	Leachable Uranium (U)	2019/10/18	107	75 - 125	105	75 - 125	<1.0	ug/L	11 (1)	35		
6388780	Leachable Vanadium (V)	2019/10/18	101	75 - 125	101	75 - 125	<20	ug/L	NC (1)	35		
6388780	Leachable Zinc (Zn)	2019/10/18	NC	75 - 125	99	75 - 125	<50	ug/L	35 (1)	35		
6391070	Leachable Aluminum (Al)	2019/10/18					<100	ug/L				
6391070	Leachable Antimony (Sb)	2019/10/18	103	75 - 125	102	75 - 125	<20	ug/L				
6391070	Leachable Arsenic (As)	2019/10/18	101	75 - 125	100	75 - 125	<20	ug/L				
6391070	Leachable Barium (Ba)	2019/10/18	98	75 - 125	98	75 - 125	<50	ug/L				
6391070	Leachable Beryllium (Be)	2019/10/18	100	75 - 125	97	75 - 125	<20	ug/L				
6391070	Leachable Boron (B)	2019/10/18	97	75 - 125	96	75 - 125	<500	ug/L				
6391070	Leachable Cadmium (Cd)	2019/10/18	96	75 - 125	96	75 - 125	<3.0	ug/L				
6391070	Leachable Calcium (Ca)	2019/10/18					<1000	ug/L				
6391070	Leachable Chromium (Cr)	2019/10/18	97	75 - 125	97	75 - 125	<20	ug/L				
6391070	Leachable Cobalt (Co)	2019/10/18	98	75 - 125	98	75 - 125	<10	ug/L				
6391070	Leachable Copper (Cu)	2019/10/18	95	75 - 125	95	75 - 125	<20	ug/L				
6391070	Leachable Iron (Fe)	2019/10/18					<500	ug/L				
6391070	Leachable Lead (Pb)	2019/10/18	103	75 - 125	96	75 - 125	<5.0	ug/L				
6391070	Leachable Lithium (Li)	2019/10/18	104	75 - 125	103	75 - 125	<20	ug/L				
6391070	Leachable Magnesium (Mg)	2019/10/18					<1000	ug/L				

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6391070	Leachable Manganese (Mn)	2019/10/18	101	75 - 125	99	75 - 125	<20	ug/L				
6391070	Leachable Molybdenum (Mo)	2019/10/18	101	75 - 125	99	75 - 125	<20	ug/L				
6391070	Leachable Nickel (Ni)	2019/10/18	98	75 - 125	97	75 - 125	<20	ug/L				
6391070	Leachable Potassium (K)	2019/10/18					<1000	ug/L				
6391070	Leachable Selenium (Se)	2019/10/18	100	75 - 125	99	75 - 125	<10	ug/L				
6391070	Leachable Silver (Ag)	2019/10/18	93	75 - 125	94	75 - 125	<5.0	ug/L				
6391070	Leachable Strontium (Sr)	2019/10/18	101	75 - 125	101	75 - 125	<50	ug/L				
6391070	Leachable Thallium (Tl)	2019/10/18	97	75 - 125	94	75 - 125	<1.0	ug/L				
6391070	Leachable Tin (Sn)	2019/10/18	103	75 - 125	101	75 - 125	<20	ug/L				
6391070	Leachable Uranium (U)	2019/10/18	108	75 - 125	104	75 - 125	<1.0	ug/L				
6391070	Leachable Vanadium (V)	2019/10/18	100	75 - 125	99	75 - 125	<20	ug/L				
6391070	Leachable Zinc (Zn)	2019/10/18	NC	75 - 125	100	75 - 125	<50	ug/L				
6391323	Sample Weight (as received)	2019/10/17					NA	g				
6393264	Leachable Aluminum (Al)	2019/10/22					<100	ug/L	5.4 (1)	35		
6393264	Leachable Antimony (Sb)	2019/10/22	NC	75 - 125	99	75 - 125	<20	ug/L	27 (1)	35		
6393264	Leachable Arsenic (As)	2019/10/22	98	75 - 125	99	75 - 125	<20	ug/L	116 (6,1)	35		
6393264	Leachable Barium (Ba)	2019/10/22	99	75 - 125	98	75 - 125	<50	ug/L	14 (1)	35		
6393264	Leachable Beryllium (Be)	2019/10/22	104	75 - 125	102	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Boron (B)	2019/10/22	100	75 - 125	101	75 - 125	<500	ug/L	3.7 (1)	35		
6393264	Leachable Cadmium (Cd)	2019/10/22	NC	75 - 125	95	75 - 125	<3.0	ug/L	155 (6,1)	35		
6393264	Leachable Calcium (Ca)	2019/10/22					<1000	ug/L	4.5 (1)	35		
6393264	Leachable Chromium (Cr)	2019/10/22	99	75 - 125	98	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Cobalt (Co)	2019/10/22	99	75 - 125	98	75 - 125	<10	ug/L	3.2 (1)	35		
6393264	Leachable Copper (Cu)	2019/10/22	NC	75 - 125	96	75 - 125	<20	ug/L	1.4 (1)	35		
6393264	Leachable Iron (Fe)	2019/10/22					<500	ug/L	NC (1)	35		
6393264	Leachable Lead (Pb)	2019/10/22	NC	75 - 125	98	75 - 125	<5.0	ug/L	22 (1)	35		
6393264	Leachable Lithium (Li)	2019/10/22	107	75 - 125	110	75 - 125	<20	ug/L	8.2 (1)	35		
6393264	Leachable Magnesium (Mg)	2019/10/22					<1000	ug/L	4.9 (1)	35		
6393264	Leachable Manganese (Mn)	2019/10/22	NC	75 - 125	100	75 - 125	<20	ug/L	3.2 (1)	35		
6393264	Leachable Molybdenum (Mo)	2019/10/22	104	75 - 125	102	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Nickel (Ni)	2019/10/22	100	75 - 125	99	75 - 125	<20	ug/L	9.9 (1)	35		
6393264	Leachable Potassium (K)	2019/10/22					<1000	ug/L	9.3 (1)	35		

GHD Limited Client Project #: 11198639-06 Site Location: BELLEDUNE Your P.O. #: 73517254

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6393264	Leachable Selenium (Se)	2019/10/22	101	75 - 125	98	75 - 125	<10	ug/L	1.5 (1)	35		
6393264	Leachable Silver (Ag)	2019/10/22	94	75 - 125	94	75 - 125	<5.0	ug/L	NC (1)	35		
6393264	Leachable Strontium (Sr)	2019/10/22	100	75 - 125	99	75 - 125	<50	ug/L	0.94 (1)	35		
6393264	Leachable Thallium (Tl)	2019/10/22	99	75 - 125	96	75 - 125	<1.0	ug/L	3.4 (1)	35		
6393264	Leachable Tin (Sn)	2019/10/22	99	75 - 125	97	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Uranium (U)	2019/10/22	104	75 - 125	102	75 - 125	<1.0	ug/L	NC (1)	35		
6393264	Leachable Vanadium (V)	2019/10/22	104	75 - 125	100	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Zinc (Zn)	2019/10/22	NC	75 - 125	101	75 - 125	<50	ug/L	37 (6,1)	35		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) Duplicate Parent ID [KWI784-03]

(3) Matrix Spike Parent ID [KWI781-01]

(4) Duplicate Parent ID [KWI781-01]

(5) Duplicate Parent ID [KWI778-02]

(6) Poor RPD due to sample inhomogeneity. Insufficient sample for re-extraction and re-analysis.

GHD Limited Client Project #: 11198639-06 Site Location: BELLEDUNE Your P.O. #: 73517254

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

lauma

Eric Dearman, Scientific Specialist

Kut beachic

Kurt Headrick, Ph.D., C. Chem., Laboratory Manager

Mike MacGillivray, Scientific Specialist (Inorganics)

Robert Allen, Scientific Specialist

Steven Simpson, Lab Director

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Invoice Information		1	Repr	art info	rimat	tinn fil	diffe	it from	er herte	nical	_	Gru	109.1	JFC	2031	TOD .	T PER		RU		R		0	DC #)	100	-	FICO Page of
npany Name: <u>GIHD</u> nater Name: <u>Troy Smell/Ch</u> Iress: <u>IGE Hodg 30, P</u> Fredericton MB Postal Code: <u>E</u> one: <u>Fax:</u> all: <u>froy. Smell@ ghd. Com</u> <u>Cheme: bub.mea.c@ ghd</u>	2010-2000 30-265	Compar Contact Address Phone: Email:	Name:		/	Post	Fax:	fe:		orce			Quoi P.O. Proje Site Site Sam	ation (#: .ocatio #: pled By	н; 2n; у;	roject	73 111 13e	28 98 11e	7 Gd	259	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	ER TR			IF RL DATI	Regionation TASE	Thatound Time (TAT) Required ular TAT (5 business days) Most re- PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS please specify date (Surchorges will be applied) EQUIRED:
EUSTODY SEAL	-			+	-	T	-	-	- 10	Metals	_	_	Me	tuis	_	-	Analy:	sis Req	ueste	Hed T	-	-	1	T	THE P	Tr	Regulatory Bagultements (Specific)
COOLER TEMPERATURES	(00)	ER TEMPERATI	URES	UBMITTED	RESERVED	QUIRED	Aatals) Well / Surface water	red Metals) Ground water	t Method) Sca water	Water Jate Num	TOTAL / DISSOLVED	able (Available) Digest	for Ocean (S) HC(D4)	V Cala Vepaur AA	oron gricuitural/ (andrill)	м (ЯТЕХ, С6-С32)	acable), NS Fuel OII Spill Pality	(CWS-PHC F1/0TEX, F2(F4)	FEX, VPH, Low lovel T.E.N	()(c5/Jat	sed/men()		Bernsteil	lanaarny Januaray Ja	Metal Lenc	L/ZE	Shipped from FREDTON
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF 5,	OATE SAMPLED (YYYY/MM/DD)	ELIVERY TO N TIME SAMPLED (HHLMM)	MATTER	# OF CONTAINERS S	FIELD FILTERED APP	LAB FILTRATION RE	RCAP-MS (Total P	RCAP-MS [Dissol	Total Digest (Dufau) for well water & sur	Dissolved for gro-	Mercury (CIRCLE)	Metals & Mercury Default Acid Extracts	Metals Total Digest sed ments (HNC3/H	Mercury Law level b	Hot Water Soluble E (required for COME /	RBCA Hydrocarbor	Hydrocarbons 50II (1 Low Level BTEX, C6-2	CCME Nydracarbons	NB Potable Water B	PAHs (Default) for we	PAHS IEWAL /COME.	PCBS	VOCS		HOLD FOR	HOLD- DO NOT ANA	COMMENTS
195P-1 0-0.15 m 195P-1 0.15-0.30m 195P-3 0.15-0.30m 195P-3 0.15-0.3m 195P-5 0-0.15m 195P-5 0-0.15m 195P-2 0-0.15m 195P-2 0-0.15m 195P-4 0-0.15m 195P-6 0-0.15m 195P-6 0-0.15m RELINQUISHED BY: (Signature/Print) Teogramel	19/09/JE	/ / / / //////////////////////////////	TIME:	A WAAAAA WAG COM				RI	eceiv Q	ED BY	i:{Sign	XXXXX	Print)				ATE: (Y	YYY/M	M/D	D)	T	IME: (HH:M	IM)	X X X X X X X X X X X X X X X X X X X	59	pH, NORM pH, NORM pH, NORM pH, NORM pH, NORM pH, NORM NORM, NORM Lead NORM, NORM Lead NORM NORM NORM MAXXAM JOBH 108613

insolce initi	rmation		-	Repo	irt Info	rmati	ion (if	differ	s fro	n invoice)			1		p	raject	Inform	ation (where	applic	able)			T	Turr	around Time (TAT) Required
Dany Name: GitD			Compa	ny Name:	-	1		1	1				0	intation	ú:									X	Regu	llar TAT (5 business days) Most
att Name: TODY Soval	1 chent	Bale	Contac	t Name:				/					D	а. <i>н</i> .			7	35	17	12	-4	-		PL	EASE P	ROVIDE ADVANCE NOTICE FOR RUSH
46 the Hode	R ~ GEOL	d+	Addres	5:	_		X				-	-	Pr	Diort B.			11	191	86	39	-17	6	-	IT DI	050 -	PROJECTS
F'ton,NB	Postal Code: F	3020	15			1	Posta	Teed	e)				Sit	e Locati	0/11		3	119	ed	01	P		-	1 ma	usii p	be applied)
e Eax			Phone			1		Fax:					Sit	е Я.			10	an		Or	ic .		-	DAT	TE REC	UIRED:
troy smaller	Ineau ar	Thd.c	Dave Email:	_	1	-			-				Sa	mpled 8	v:		Cad	LIR	los	513	RI	wa	D			
la	boratory Use Only			_	T					-		-	-				Analys	is Req	uestec		-	-	_	3	-	
USTODY SEAL COOLER	TEMPERATURES	1	COOLER TEMPERAT	URES		1		_	5	Meta	ls.	T	- 1	Metals		-	3			T	T	ГТ	Т	131	Re	gulatory Requirements (Specify)
nt intact	0	-	THE PERCENT					e wate	urate	(Wate		+	T	(500)		1	Hot III	2-F4)	H					2		
ACI	4	-		-				surfaci	rounc		DLVEC		olificati	¥	(HH)	-	ds 110	TEX, F.	veltE				(a)uce)	-5		Shipped from
		-		-	-			vel /	els) G		DISSIO		Lizing L	pour A	at/ tan	C6-C3	45 Fue	CELIB	LDW 16			100	c/Abs	ち		FREDTON
COOLING	MEDIA PRESENT	Y/N			WITTE	ERVED	8	tals) I	I Met	fethod p wate f wate	TAL /		Ocea	CIO4)	en culture	BTEX,	ati(n), f	Hd-5N	WPH,	(inent			esono	E		
IPLES MUST BE KEPT CODI / < 10 °C)	FROM TIME OF SAM	APLING	TI DELIVERY TO P	MAYYAM	ens se	EPRES	REGU	al Me	solved	tauft N turfso	LE) TC	2	est -lo	el by C	de Bori	Bons	All (Post	oris (C	IT BTEN	AF SAD			Coli (P	12	NALYZ	
	I			ucooeivi	TAINE	ERED	ATION	5 ITot	s IDIs	ster 5 ater 5 d for 3	(CIRC	Mercu	tal Dig	ow lev	Solub or CCD	drocar	BITEN J	rocarb	e Wate	AL /CC1		4	arm/E	3	NOTA	
SAMPLE IDENTIFICATION		DATE SAMP	ED TIME SAMPLE (D) (DH:MM)	MATRIS	OF CON	IELD FIL	AB FRUTE	CAP-M	CAP-M	issolve	tercury	letals &	letals To	diments ercury (ot Wate	BCAH	Mrocart W Level	ME Hyd	B Potabl	He (Del	NR.	5	tal Colli	19H	00-01	COMMENTS
195P-9 0-	0.15m	19/09/	8	Soil	2	-	1	22	~	680	5	X	2	8 X	# S	0.	E S	8	Z	4	A	5 1	<u>e</u> ;	X	Ξ,	M. Jozal Ha
195P-11 0-1	DISAL	1		1	2							Tx				-					-		+	X	H	M NUR KI
195P-11 1.2	- 1.8m		1		2	-						X	5											12		nd norm
195P-12 0-	- 0.15m		15.00		4		-																			NORM NORMLEG
1957-1201	5-0.3.	_	-		11													111			100				1	NORM
195P-31 0-	-0.15m				1	-																				NORKI NORMLE
195P-31 01	5-0.3m				1	•						1													1	VORM
1938-32 0	- OilSm				4	_																			1	JORM, WORM LAW
1907-320	15-0.3.	46	-		1	1																				NORM
20 QNQC-		U.		0	2	1									11			1.1								NORM
neunquished by: (signature/	Print)	DATE: (YYY/MM/DD]	TIME:	(HH:M	M)	-	-	RE	CEIVED B	/:(Sig	inatury	/Prin	t)		D/	TE: (Y	YYY/M	M/DD		TIME	HH:N	1(1)	-		MAXXAM JOB #
N		and the second se	the second se		and the second s				11	1//		11								_						

	Invoice Information	2.48		Repo	rt Info	ormat	ion (If	diffe	es fron	m invol	(ce)	-	CHAIN	UP	CUS	TOD	Y RI	-CO	RD		offenti	al.	EC	DC #;	10	70	Pageof
maany Name-	GHD		-								inel.	-	+			roject	intorn	artion	Invite	re ap	phicap	e)	-	-		ogular T	AT (5 business days) March
anipunty reasons.	Culture	21	Compar	ny Names	-		1		1		-	-	Quo	tation	H1.		-							-	Δ=0	above	AT (5 business bays) Most
ntart Name: TSC	y Small Cheric	- Debines	Contact	Name	_		1	1	-		_	_	P.O.	#:			7	35	1	7	25	-4		-	PLEA	SEPROVI	PROJECTS
dress: <u>46</u>	6 Hodgson Kad	and a new	Address	s	-	-		X	-		_	-	Proj	act #:			Ť	148	36	3	9-	06	2	-	IF RUS	H please	specify date (Surcharges
r no	Postal Code: 1	-2C 2025	1	-		-	Port	a) bod	le:			-	Site	Locati	ion:		10	ell	ed.	U	06	2	-	-	DATE		be applied)
trozr	Small aghd 200		Phone:		-	-	-	Fax:	-	-	-	-	5ite	H1			-	-		-	-		-	-	DATE	REQUIRE	<u>D:</u>
an -eheri	e, babantaulegh	dicon	Email:		-	1	-	-	_	_		_	Sam	pled B	βγ:	¢	cd	yK	205	S	JI	SL	Da	īl			
	Laboratory Use On	ly															Analy	sis Re	queste	d							
CUSTODY SEAL	COOLER TEMPERATURES	C00	LER TEMPERAT	URES		Γ			sts	M	tetals	T	Me	stats		1	5		1			T	T	T	Т	Regula	tory Requirements (Specify
Present Intact	1000							e wate	wate	1	valer		15		1		HI Poll	(H3-1	Ŧ				1				
	ALTR	-		_				urřaci	ound			DLVED	1:gest	a.	ili i	-	011 Sp	TEX, FI	vel T.E				(ince)			0	
		-						/ell / 5	isl G			D)550	able) c	iour A	I/ Lan	5.03	S Fuel	E1/8	ow lo				Abse				
	COOLING MEDIA PRESENT	V/N			E	RVED	NED	v (sie	Meta	water	wate	TAL/	(Aval) Ocean	of Var	n Sulture	STEX, (bfe), h	Neight	.HdV	(1)05	mont		esenti	(june			
			-		s stuat	PRESS	Indal	Met Not	olved	urtace	punp.	E 10	ctable st-for	EV.CC	& Baro	cus ()	6-C32	ns (CV	BTEX,	vater/	E Sec		ali (Pr	oli (Ce	LALVZE		
SAMPLES MOST BE KEP	T COOL (< 10 °C) FROM TIME OF S	AMPLING UNTIL D	ELIVERY TO N	IAXXAM	AINER	RED A	NOIL	(Tota	Diss	ter Su	for B	CIBCL	t Extra t Dige	winue	Soluble r-CCM	recarb	ns Soi TER, D	ocarbo	Water	OF YOF	/con		m/E.c	m/E.C	OT AN		
SAMPL	DENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH.MM)	MATRIX	# OF CONT	FIELD FILTE	LAB FILTRA	RCAP-MS	RCAP-MS	Total Digos for well wa	Dissolved	Mercury	Metals, B. N Default, Acia Metals Toty sediments (Viercury Io	Hor Water	RBCA Hvd	Aydrocarbo Jow Level B	COME Hydr	48 Potable	AHs (Defai	AHS (FWA)	CBS	otal Colifor	atal Colifor	OLD-DO N		COMMENTS
1 5016	A/QC -5	19/09/18		Soil	2	+																	T	T		101	DRM
195P-	10 0.15-0.3	19/09/18	1.1	Soil	2	-								1	11										T	A	IORM
3				-		1.5																				1	and the
4			1		-										1.1												
5			1.1															1.1									
6																		h la									
7				1																							
8																											
9				-	-																						
and the second se	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					-														1							
RELINOURS	wars (agnature/Print)	DATE: (YYYY	/MM/DD)	TIME: (HH:M	(1/1)	-		RE	CEIVEL	D BY:(S	igna	iture/Print)	_	-	D,	ATE: (Y	YYY/A	/M/D	D)	T	IME: (F	HH:MA	VI)			H BOL MAXXAM
RELINQUISHE	N	1	al 0		1.000	-			2 1 1 1 1 1 1																		

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE Your C.O.C. #: D 34708

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/24 Report #: R5934512 Version: 6 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9383

Received: 2019/09/25, 09:58

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TEH in Soil (PIRI) (2)	1	2019/10/09	2019/10/09	ATL SOP 00111	Atl. RBCA v3.1 m
TEH in Soil (PIRI) (2)	2	2019/10/09	2019/10/10	ATL SOP 00111	Atl. RBCA v3.1 m
Metals Leach TCLP/CGSB extraction	1	2019/10/17	2019/10/18	ATL SOP 00058	EPA 6020B R2 m
Metals Leach TCLP/CGSB extraction	4	2019/10/18	2019/10/18	ATL SOP 00058	EPA 6020B R2 m
Metals Solids Acid Extr. ICPMS	4	2019/09/27	2019/09/28	ATL SOP 00058	EPA 6020B R2 m
Metals Solids Acid Extr. ICPMS	2	2019/09/27	2019/09/30	ATL SOP 00058	EPA 6020B R2 m
Metals Solids Acid Extr. ICPMS	2	2019/09/27	2019/10/02	ATL SOP 00058	EPA 6020B R2 m
Metals Solids Acid Extr. ICPMS	1	2019/09/27	2019/10/04	ATL SOP 00058	EPA 6020B R2 m
Moisture	3	N/A	2019/10/10	ATL SOP 00001	OMOE Handbook 1983 m
pH (5:1 DI Water Extract)	8	2019/09/30	2019/10/01	ATL SOP 00003	SM 23 4500-H+ B m
Phosphorus - ortho by auto Colourimetry	8	2019/09/30	2019/10/02	ATL SOP 00021	SM 23 4500-P E m
VPH in Soil (PIRI) (3)	3	2019/10/09	2019/10/09	ATL SOP 00119	Atl. RBCA v3.1 m
NORM Group Analysis (1)	4	N/A	2019/10/05	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/06	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/15	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/23	BQL SOP-00007	Gamma Spectrometry
TCLP Inorganic extraction - pH	1	N/A	2019/10/01	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - pH	1	N/A	2019/10/17	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - pH	2	N/A	2019/10/18	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	1	N/A	2019/10/01	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	1	N/A	2019/10/17	ATL SOP 00035	EPA 1311 m
TCLP Inorganic extraction - Weight	2	N/A	2019/10/18	ATL SOP 00035	EPA 1311 m
ModTPH (T1) Calc. for Soil	3	N/A	2019/10/10	N/A	Atl. RBCA v3.1 m

Sample Matrix: Water

Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
NORM Group Analysis (1)	1	N/A	2019/10/12	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	2	N/A	2019/10/13	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/14	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (1)	1	N/A	2019/10/15	BQL SOP-00007	Gamma Spectrometry
TCLP Inorganic extraction - pH	5	N/A	2019/09/27	ATL SOP 00035	EPA 1311 m

Page 1 of 25

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE Your C.O.C. #: D 34708

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/24 Report #: R5934512 Version: 6 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9383 Received: 2019/09/25, 09:58

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TCLP Inorganic extraction - Weight	5	N/A	2019/09/27	ATL SOP 00035	EPA 1311 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Kitimat

(2) Soils are reported on a dry weight basis unless otherwise specified.

(3) Sample(s) were not field preserved for VPH when received at the laboratory. Analytical results for VPH parameters should be regarded as minimum values.

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE Your C.O.C. #: D 34708

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/24 Report #: R5934512 Version: 6 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9383 Received: 2019/09/25, 09:58

Encryption Key

Bureau Veritas Laboratories 24 Oct 2019 15:45:06

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		KWN283			KWN283			KWN284		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34708			D 34708			D 34708		
	UNITS	19BP-1	RDL	QC Batch	19BP-1 Lab-Dup	RDL	QC Batch	19BP-2	RDL	QC Batch
Inorganics										
Moisture	%	54	1.0	6377316	54	1.0	6377316			
Orthophosphate (P)	mg/kg	6.3	2.5	6361799				1.5	0.050	6361799
Soluble (5:1) pH	рН	6.98	N/A	6362637				7.53	N/A	6362637
RADIONUCLIDE										
Lead-210	Bq/g	0.90	0.10	6368435				1.15	0.10	6368435
Potassium-40	Bq/g	<1.0	1.0	6368435				<1.0	1.0	6368435
Radium-226	Bq/g	1.65	0.10	6368435				1.74	0.10	6368435
Radium-228	Bq/g	<0.10	0.10	6368435				<0.10	0.10	6368435
Thorium-228	Bq/g	<0.10	0.10	6368435				<0.10	0.10	6368435
Thorium-230	Bq/g	<0.80	0.80	6368435				1.30	0.80	6368435
Thorium-234	Bq/g	0.070	0.050	6368435				1.42	0.050	6368435
Uranium-235	Bq/g	<0.10	0.10	6368435				<0.10	0.10	6368435
RDL = Reportable Detection Li	mit									
QC Batch = Quality Control Ba	tch									
Lab-Dup = Laboratory Initiated	d Duplica	ate								
N/A = Not Applicable										

BV Labs ID		KWN284			KWN285			KWN286		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		1
COC Number		D 34708			D 34708			D 34708		
	UNITS	19BP-2 Lab-Dup	RDL	QC Batch	19BP-3	RDL	QC Batch	19BP-4	RDL	QC Batch
Inorganics										
Moisture	%				12 (1)	1.0	6377316			
Orthophosphate (P)	mg/kg	1.9	0.050	6361799				370	25	6361799
Soluble (5:1) pH	рН	7.62	N/A	6362637				5.77	N/A	6362637
Sample Weight (as received)	g	<u> </u>						100	N/A	6391323
Initial pH	N/A							4.8		6391325
Final pH	N/A							5.0		6391325
RADIONUCLIDE										
Lead-210	Bq/g				<0.10	0.10	6368435			
Potassium-40	Bq/g				3.9	1.0	6368435			 I
Radium-226	Bq/g				0.11	0.10	6368435			
Radium-228	Bq/g				<0.10	0.10	6368435			
Thorium-228	Bq/g				<0.10	0.10	6368435			 I
Thorium-230	Bq/g				<0.80	0.80	6368435			
Thorium-234	Bq/g				0.090	0.050	6368435			
Uranium-235	Bq/g				<0.10	0.10	6368435			 I
RDL = Reportable Detection Li	mit							<u> </u>		
QC Batch = Quality Control Ba	tch									
Lab-Dup = Laboratory Initiated	d Duplica	ate								
N/A = Not Applicable										
(1) Based on physical appeara	nce, san	nple contains	oil.							

BV Labs ID		KWN287			KWN287			KWN288		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34708			D 34708			D 34708		
	UNITS	19BP-5	RDL	QC Batch	19BP-5 Lab-Dup	RDL	QC Batch	19BP-6	RDL	QC Batch
Inorganics										
Moisture	%							18	1.0	6377316
Orthophosphate (P)	mg/kg	0.066	0.050	6361799				1300	50	6361799
Soluble (5:1) pH	рН	6.19	N/A	6362637				5.07	N/A	6362637
RADIONUCLIDE										
Lead-210	Bq/g	0.17	0.10	6368435	0.22	0.10	6368435			
Potassium-40	Bq/g	<1.0	1.0	6368435	<1.0	1.0	6368435			
Radium-226	Bq/g	0.28	0.10	6368435	0.20	0.10	6368435			
Radium-228	Bq/g	<0.10	0.10	6368435	<0.10	0.10	6368435			
Thorium-228	Bq/g	<0.10	0.10	6368435	<0.10	0.10	6368435			
Thorium-230	Bq/g	2.30	0.80	6368435	2.40	0.80	6368435			
Thorium-234	Bq/g	2.07	0.050	6368435	1.98	0.050	6368435			
Uranium-235	Bq/g	0.10	0.10	6368435	<0.10	0.10	6368435			
RDL = Reportable Detection Li	mit									
QC Batch = Quality Control Ba	tch									
Lab-Dup = Laboratory Initiated	ៅ Duplica	ate								
N/A = Not Applicable										

BV Labs ID		KWN289			KWN290			KWN291		
Sampling Date		2019/09/18			2019/09/19			2019/09/18		
COC Number		D 34708			D 34708			D 34708		
	UNITS	19BP-7	RDL	QC Batch	19BP-8	RDL	QC Batch	19BP-9	RDL	QC Batch
Inorganics										
Orthophosphate (P)	mg/kg	<0.050	0.050	6361799	2300	75	6361799	<0.050	0.050	6361799
Soluble (5:1) pH	рН	4.52	N/A	6362637	5.47	N/A	6362637	4.03	N/A	6362637
Sample Weight (as received)	g	100	N/A	6393098				100	N/A	6393098
Initial pH	N/A	4.9		6393100				4.6		6393100
Final pH	N/A	4.8		6393100				4.2		6393100
RADIONUCLIDE										
Lead-210	Bq/g				0.57	0.10	6368435			
Potassium-40	Bq/g				<1.0	1.0	6368435			
Radium-226	Bq/g				0.64	0.10	6368435			
Radium-228	Bq/g				<0.10	0.10	6368435			
Thorium-228	Bq/g				<0.10	0.10	6368435			
Thorium-230	Bq/g				<0.80	0.80	6368435			
Thorium-234	Bq/g				<0.050	0.050	6368435			
Uranium-235	Bq/g				<0.10	0.10	6368435			
RDL = Reportable Detection Li	mit									
QC Batch = Quality Control Ba	tch									
N/A = Not Applicable										

BV Labs ID		KWN292		
Sampling Date		2019/09/19		
COC Number		D 34708		
	UNITS	19BP-10	RDL	QC Batch
Inorganics				
Sample Weight (as received)	g	100	N/A	6362110
Initial pH	N/A	4.9		6362115
Final pH	N/A	8.3		6362115
RADIONUCLIDE				
Lead-210	Bq/g	<0.10	0.10	6368435
Lead-210	Bq/L	<1.0	1.0	6370557
Lead-212	Bq/L	<0.10	0.10	6370557
Potassium-40	Bq/g	<1.0	1.0	6368435
Radium-226	Bq/g	<0.10	0.10	6368435
Radium-226	Bq/L	<1.0	1.0	6370557
Radium-228	Bq/g	<0.10	0.10	6368435
Radium-228	Bq/L	<0.50	0.50	6370557
Thorium-228	Bq/g	<0.10	0.10	6368435
Thorium-230	Bq/g	<0.80	0.80	6368435
Thorium-230	Bq/L	<5.0	5.0	6370557
Thorium-234	Bq/g	<0.050	0.050	6368435
Thorium-234	Bq/L	<1.0	1.0	6370557
Uranium-235	Bq/g	<0.10	0.10	6368435
Uranium-235	Bq/L	<0.50	0.50	6370557
RDL = Reportable Detection Li	mit			
QC Batch = Quality Control Ba	tch			
N/A = Not Applicable				

ELEMENTS BY ICP/MS (SOIL)

BV Labs ID		KWN283		KWN286		KWN287		KWN289		
Sampling Date		2019/09/18		2019/09/18		2019/09/18		2019/09/18		
COC Number		D 34708		D 34708		D 34708		D 34708		
	UNITS	19BP-1	QC Batch	19BP-4	QC Batch	19BP-5	QC Batch	19BP-7	RDL	QC Batch
Metals										
Leachable Aluminum (Al)	ug/L	760	6393264	19000	6391070	39000	6393275	14000	100	6393264
Leachable Antimony (Sb)	ug/L	29	6393264	51	6391070	21	6393275	53	20	6393264
Leachable Arsenic (As)	ug/L	37	6393264	85	6391070	880	6393275	1300	20	6393264
Leachable Barium (Ba)	ug/L	180	6393264	<50	6391070	<50	6393275	<50	50	6393264
Leachable Beryllium (Be)	ug/L	<20	6393264	<20	6391070	<20	6393275	23	20	6393264
Leachable Boron (B)	ug/L	<500	6393264	<500	6391070	530	6393275	1000	500	6393264
Leachable Cadmium (Cd)	ug/L	140	6393264	7.4	6391070	31	6393275	64	3.0	6393264
Leachable Calcium (Ca)	ug/L	550000	6393264	53000	6391070	1100	6393275	9700	1000	6393264
Leachable Chromium (Cr)	ug/L	<20	6393264	27	6391070	64	6393275	83	20	6393264
Leachable Cobalt (Co)	ug/L	<10	6393264	<10	6391070	29	6393275	32	10	6393264
Leachable Copper (Cu)	ug/L	100	6393264	73	6391070	290	6393275	520	20	6393264
Leachable Iron (Fe)	ug/L	<500	6393264	<500	6391070	<500	6393275	<500	500	6393264
Leachable Lead (Pb)	ug/L	210	6393264	8.7	6391070	12	6393275	29	5.0	6393264
Leachable Lithium (Li)	ug/L	<20	6393264	<20	6391070	<20	6393275	38	20	6393264
Leachable Magnesium (Mg)	ug/L	7300	6393264	43000	6391070	<1000	6393275	2900	1000	6393264
Leachable Manganese (Mn)	ug/L	380	6393264	340	6391070	140	6393275	2000	20	6393264
Leachable Molybdenum (Mo)	ug/L	<20	6393264	<20	6391070	41	6393275	<20	20	6393264
Leachable Nickel (Ni)	ug/L	48	6393264	230	6391070	420	6393275	480	20	6393264
Leachable Potassium (K)	ug/L	5900	6393264	2600	6391070	14000	6393275	15000	1000	6393264
Leachable Selenium (Se)	ug/L	<10	6393264	12	6391070	15	6393275	24	10	6393264
Leachable Silver (Ag)	ug/L	<5.0	6393264	<5.0	6391070	<5.0	6393275	<5.0	5.0	6393264
Leachable Strontium (Sr)	ug/L	2600	6393264	63	6391070	<50	6393275	<50	50	6393264
Leachable Thallium (Tl)	ug/L	9.8	6393264	<1.0	6391070	16	6393275	21	1.0	6393264
Leachable Tin (Sn)	ug/L	<20	6393264	<20	6391070	<20	6393275	<20	20	6393264
Leachable Uranium (U)	ug/L	2.3	6393264	5.1	6391070	280	6393275	96	1.0	6393264
Leachable Vanadium (V)	ug/L	<20	6393264	230	6391070	180	6393275	85	20	6393264
Leachable Zinc (Zn)	ug/L	15000	6393264	230	6391070	140	6393275	450	50	6393264
RDL = Reportable Detection Lin QC Batch = Quality Control Bat	nit ch									

BV Labs ID		KWN291		
Sampling Date		2019/09/18		
COC Number		D 34708		
	UNITS	19BP-9	RDL	QC Batch
Metals				
Leachable Aluminum (Al)	ug/L	300	100	6393264
Leachable Antimony (Sb)	ug/L	24	20	6393264
Leachable Arsenic (As)	ug/L	240	20	6393264
Leachable Barium (Ba)	ug/L	<50	50	6393264
Leachable Beryllium (Be)	ug/L	71	20	6393264
Leachable Boron (B)	ug/L	1200	500	6393264
Leachable Cadmium (Cd)	ug/L	160	3.0	6393264
Leachable Calcium (Ca)	ug/L	290000	1000	6393264
Leachable Chromium (Cr)	ug/L	310	20	6393264
Leachable Cobalt (Co)	ug/L	160	10	6393264
Leachable Copper (Cu)	ug/L	160	20	6393264
Leachable Iron (Fe)	ug/L	610	500	6393264
Leachable Lead (Pb)	ug/L	19	5.0	6393264
Leachable Lithium (Li)	ug/L	44	20	6393264
Leachable Magnesium (Mg)	ug/L	9000	1000	6393264
Leachable Manganese (Mn)	ug/L	8700	20	6393264
Leachable Molybdenum (Mo)	ug/L	150	20	6393264
Leachable Nickel (Ni)	ug/L	780	20	6393264
Leachable Potassium (K)	ug/L	31000	1000	6393264
Leachable Selenium (Se)	ug/L	17	10	6393264
Leachable Silver (Ag)	ug/L	<5.0	5.0	6393264
Leachable Strontium (Sr)	ug/L	1100	50	6393264
Leachable Thallium (Tl)	ug/L	16	1.0	6393264
Leachable Tin (Sn)	ug/L	<20	20	6393264
Leachable Uranium (U)	ug/L	970	1.0	6393264
Leachable Vanadium (V)	ug/L	710	20	6393264
Leachable Zinc (Zn)	ug/L	1900	50	6393264
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	nit ch			

ELEMENTS BY ICP/MS (SOIL)

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		KWN283	KWN284		KWN286		KWN287		KWN288		
Sampling Date		2019/09/18	2019/09/18		2019/09/18		2019/09/18		2019/09/18		
COC Number		D 34708	D 34708		D 34708		D 34708		D 34708		
	UNITS	19BP-1	19BP-2	RDL	19BP-4	RDL	19BP-5	RDL	19BP-6	RDL	QC Batch
Metals											
Acid Extractable Aluminum (Al)	mg/kg	19000	17000	10	15000	10	7000	10	43000	10	6356132
Acid Extractable Antimony (Sb)	mg/kg	28	13	2.0	48	2.0	6.8	2.0	13	2.0	6356132
Acid Extractable Arsenic (As)	mg/kg	74	4.8	2.0	45	2.0	23	2.0	19	2.0	6356132
Acid Extractable Barium (Ba)	mg/kg	380	110	5.0	300	5.0	11	5.0	150	5.0	6356132
Acid Extractable Beryllium (Be)	mg/kg	<2.0	2.8	2.0	2.9	2.0	2.1	2.0	3.9	2.0	6356132
Acid Extractable Bismuth (Bi)	mg/kg	12	<2.0	2.0	5.5	2.0	<2.0	2.0	<2.0	2.0	6356132
Acid Extractable Boron (B)	mg/kg	<50	<50	50	<50	50	<50	50	<50	50	6356132
Acid Extractable Cadmium (Cd)	mg/kg	46	7.9	0.30	18	0.30	9.4	0.30	37	0.30	6356132
Acid Extractable Chromium (Cr)	mg/kg	150	72	2.0	8500	200	100	2.0	2800	20	6356132
Acid Extractable Cobalt (Co)	mg/kg	7.6	3.6	1.0	5.2	1.0	5.7	1.0	11	1.0	6356132
Acid Extractable Copper (Cu)	mg/kg	230	12	2.0	170	2.0	26	2.0	170	2.0	6356132
Acid Extractable Iron (Fe)	mg/kg	31000	7700	50	210000	500	22000	50	99000	500	6356132
Acid Extractable Lead (Pb)	mg/kg	4200	84	0.50	1700	0.50	180	0.50	410	0.50	6356132
Acid Extractable Lithium (Li)	mg/kg	6.7	2.9	2.0	<2.0	2.0	2.3	2.0	13	2.0	6356132
Acid Extractable Manganese (Mn)	mg/kg	890	180	2.0	420	2.0	350	2.0	650	2.0	6356132
Acid Extractable Mercury (Hg)	mg/kg	1.8	0.16	0.10	4.5	0.10	0.24	0.10	9.6	0.10	6356132
Acid Extractable Molybdenum (Mo)	mg/kg	7.6	5.2	2.0	26	2.0	16	2.0	14	2.0	6356132
Acid Extractable Nickel (Ni)	mg/kg	35	14	2.0	50	2.0	33	2.0	110	2.0	6356132
Acid Extractable Rubidium (Rb)	mg/kg	19	5.6	2.0	7.7	2.0	8.7	2.0	11	2.0	6356132
Acid Extractable Selenium (Se)	mg/kg	4.1	<1.0	1.0	5.4	1.0	<1.0	1.0	2.9	1.0	6356132
Acid Extractable Silver (Ag)	mg/kg	21	0.71	0.50	12	0.50	1.7	0.50	3.8	0.50	6356132
Acid Extractable Strontium (Sr)	mg/kg	460	1200	5.0	120	5.0	68	5.0	350	5.0	6356132
Acid Extractable Thallium (Tl)	mg/kg	15	0.58	0.10	3.7	0.10	1.2	0.10	1.3	0.10	6356132
Acid Extractable Tin (Sn)	mg/kg	19	<1.0	1.0	15	1.0	1.3	1.0	4.1	1.0	6356132
Acid Extractable Uranium (U)	mg/kg	21	140	0.10	170	0.10	170	0.10	300	0.10	6356132
Acid Extractable Vanadium (V)	mg/kg	50	120	2.0	1200	2.0	190	2.0	1400	2.0	6356132
Acid Extractable Zinc (Zn)	mg/kg	4200	100	5.0	1500	5.0	160	5.0	1800	5.0	6356132
RDL = Reportable Detection Limit QC Batch = Quality Control Batch											

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		KWN289		KWN290	KWN291	KWN292		
Sampling Date		2019/09/18		2019/09/19	2019/09/18	2019/09/19		
COC Number		D 34708		D 34708	D 34708	D 34708		
	UNITS	19BP-7	QC Batch	19BP-8	19BP-9	19BP-10	RDL	QC Batch
Metals								
Acid Extractable Aluminum (Al)	mg/kg	7300	6356132	1200	5900	16000	10	6356395
Acid Extractable Antimony (Sb)	mg/kg	26	6356132	8.0	5.3	3.1	2.0	6356395
Acid Extractable Arsenic (As)	mg/kg	45	6356132	28	10	16	2.0	6356395
Acid Extractable Barium (Ba)	mg/kg	18	6356132	29	<5.0	130	5.0	6356395
Acid Extractable Beryllium (Be)	mg/kg	3.9	6356132	<2.0	2.0	<2.0	2.0	6356395
Acid Extractable Bismuth (Bi)	mg/kg	4.3	6356132	<2.0	<2.0	<2.0	2.0	6356395
Acid Extractable Boron (B)	mg/kg	<50	6356132	<50	<50	<50	50	6356395
Acid Extractable Cadmium (Cd)	mg/kg	26	6356132	4.9	3.4	2.1	0.30	6356395
Acid Extractable Chromium (Cr)	mg/kg	170	6356132	2.7	85	51	2.0	6356395
Acid Extractable Cobalt (Co)	mg/kg	11	6356132	3.7	3.2	12	1.0	6356395
Acid Extractable Copper (Cu)	mg/kg	79	6356132	41	13	46	2.0	6356395
Acid Extractable Iron (Fe)	mg/kg	39000	6356132	1300	19000	54000	50	6356395
Acid Extractable Lead (Pb)	mg/kg	1400	6356132	250	150	73	0.50	6356395
Acid Extractable Lithium (Li)	mg/kg	3.4	6356132	<2.0	<2.0	19	2.0	6356395
Acid Extractable Manganese (Mn)	mg/kg	640	6356132	30	180	810	2.0	6356395
Acid Extractable Mercury (Hg)	mg/kg	0.34	6356132	0.40	<0.10	<0.10	0.10	6356395
Acid Extractable Molybdenum (Mo)	mg/kg	16	6356132	<2.0	7.5	2.3	2.0	6356395
Acid Extractable Nickel (Ni)	mg/kg	46	6356132	14	17	43	2.0	6356395
Acid Extractable Rubidium (Rb)	mg/kg	8.8	6356132	<2.0	9.8	8.1	2.0	6356395
Acid Extractable Selenium (Se)	mg/kg	1.5	6356132	2.1	<1.0	<1.0	1.0	6356395
Acid Extractable Silver (Ag)	mg/kg	7.4	6356132	2.9	1.0	<0.50	0.50	6356395
Acid Extractable Strontium (Sr)	mg/kg	71	6356132	380	33	190	5.0	6356395
Acid Extractable Thallium (TI)	mg/kg	2.8	6356132	1.3	0.92	0.27	0.10	6356395
Acid Extractable Tin (Sn)	mg/kg	6.0	6356132	5.6	1.6	3.4	1.0	6356395
Acid Extractable Uranium (U)	mg/kg	160	6356132	6.8	37	2.9	0.10	6356395
Acid Extractable Vanadium (V)	mg/kg	210	6356132	2.4	180	44	2.0	6356395
Acid Extractable Zinc (Zn)	mg/kg	950	6356132	200	150	130	5.0	6356395
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

ATLANTIC RBCA HYDROCARBONS (SOIL)

BV Labs ID		KWN283			KWN283			KWN285		
Sampling Date		2019/09/18			2019/09/18			2019/09/18		
COC Number		D 34708			D 34708			D 34708		
	UNITS	19BP-1	RDL	QC Batch	19BP-1 Lab-Dup	RDL	QC Batch	19BP-3	RDL	QC Batch
Petroleum Hydrocarbons										
Benzene	mg/kg	<0.025	0.025	6377518	<0.025	0.025	6377518	<0.025	0.025	6377518
Toluene	mg/kg	<0.050	0.050	6377518	<0.050	0.050	6377518	<0.050	0.050	6377518
Ethylbenzene	mg/kg	<0.025	0.025	6377518	<0.025	0.025	6377518	<0.025	0.025	6377518
Total Xylenes	mg/kg	<0.050	0.050	6377518	<0.050	0.050	6377518	<0.050	0.050	6377518
C6 - C10 (less BTEX)	mg/kg	<2.5	2.5	6377518	<2.5	2.5	6377518	<2.5	2.5	6377518
>C10-C16 Hydrocarbons	mg/kg	<100	100	6377476				3800	2500	6377476
>C16-C21 Hydrocarbons	mg/kg	<100	100	6377476				100000	2500	6377476
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>1500</td><td>150</td><td>6377476</td><td></td><td></td><td></td><td>77000</td><td>3800</td><td>6377476</td></c32>	mg/kg	1500	150	6377476				77000	3800	6377476
Modified TPH (Tier1)	mg/kg	1500	150	6375695				180000	3800	6375695
Reached Baseline at C32	mg/kg	No	N/A	6377476				Yes	N/A	6377476
Hydrocarbon Resemblance	mg/kg	COMMENT (1)	N/A	6377476				COMMENT (2)	N/A	6377476
Surrogate Recovery (%)										
Isobutylbenzene - Extractable	%	107		6377476				124		6377476
n-Dotriacontane - Extractable	%	129 (3)		6377476				102 (4)		6377476
Isobutylbenzene - Volatile	%	108		6377518	109		6377518	5.3 (5)		6377518
RDL = Reportable Detection Lim	nit									
QC Batch = Quality Control Batc	h									
Lab-Dup = Laboratory Initiated	Duplicat	e								
N/A = Not Applicable										
(1) Lube oil fraction.										
(2) One product in fuel / lube ra	nge. Un	identified compo	und(s) i	n fuel / lub	e range.					
(3) Elevated TEH RDL(s) due to r) Elevated TEH RDL(s) due to matrix interference.									

(4) Elevated TEH RDL(s) due to sample dilution.

(5) VPH surrogate not within acceptance limits. Insufficient sample to repeat.

BV Labs ID		KWN288									
Sampling Date		2019/09/18									
COC Number		D 34708									
	UNITS	19BP-6	RDL	QC Batch							
Petroleum Hydrocarbons											
Benzene	mg/kg	<0.025	0.025	6377518							
Toluene	mg/kg	<0.050	0.050	6377518							
Ethylbenzene	mg/kg	<0.025	0.025	6377518							
Total Xylenes	mg/kg	<0.050	0.050	6377518							
C6 - C10 (less BTEX)	mg/kg	<2.5	2.5	6377518							
>C10-C16 Hydrocarbons	mg/kg	<100	100	6377476							
>C16-C21 Hydrocarbons	mg/kg	3500	100	6377476							
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>6200</td><td>150</td><td>6377476</td></c32>	mg/kg	6200	150	6377476							
Modified TPH (Tier1)	mg/kg	9700	150	6375695							
Reached Baseline at C32	mg/kg	Yes	N/A	6377476							
Hydrocarbon Resemblance	mg/kg	COMMENT (1)	N/A	6377476							
Surrogate Recovery (%)											
Isobutylbenzene - Extractable	%	112		6377476							
n-Dotriacontane - Extractable	%	74 (2)		6377476							
Isobutylbenzene - Volatile	%	67		6377518							
RDL = Reportable Detection Lim	nit										
QC Batch = Quality Control Batc	QC Batch = Quality Control Batch										
N/A = Not Applicable											
(1) One product in fuel / lube ra	nge.										
2) Elevated TEH RDL(s) due to sample dilution.											

ATLANTIC RBCA HYDROCARBONS (SOIL)

RESULTS OF ANALYSES OF WATER

RV/ Labs ID		K/W/N1202	K/W/N1204			KWN1200		
		KWINZ05	KWINZ04	KWINZOJ	KVVINZO/	KVVINZ90		
Sampling Date		2019/09/18	2019/09/18	2019/09/18	2019/09/18	2019/09/19		
COC Number		D 34708						
	UNITS	19BP-1	19BP-2	19BP-3	19BP-5	19BP-8	RDL	QC Batch
Inorganics								
Sample Weight (as received)	g	100	100	100	100	100	N/A	6356111
Initial pH	N/A	4.8	4.8	4.7	4.1	4.8		6356112
Final pH	N/A	5.7	5.0	4.9	5.1	4.9		6356112
RADIONUCLIDE								
Lead-210	Bq/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6370557
Lead-212	Bq/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	6370557
Radium-226	Bq/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6370557
Radium-228	Bq/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6370557
Thorium-230	Bq/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	6370557
Thorium-234	Bq/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	6370557
Uranium-235	Bq/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6370557
RDL = Reportable Detection Li	mit							
QC Batch = Quality Control Ba	tch							
N/A = Not Applicable								

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	15.0°C
Package 2	3.7°C
Package 3	16.0°C
Package 4	16.0°C
Package 5	15.7°C
Package 6	16.7°C

Samples 19BP-3, 19BP-1 and 19BP-6 analyzed past the recommended hold time for TPH/BTEX.

Revised Report: TCLP + Metals added to the below listed samples as per request from Rob T. HWS Oct 11/19

19BP-1 (KWN283) 19BP-4 (KWN286) 19BP-5 (KWN287) 19BP-7 (KWN289) 19BP-9 (KWN291)

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6377476	Isobutylbenzene - Extractable	2019/10/09	98	60 - 130	98	60 - 130	92	%				
6377476	n-Dotriacontane - Extractable	2019/10/09	88	60 - 130	103	60 - 130	98	%				
6377518	Isobutylbenzene - Volatile	2019/10/09	104 (7)	60 - 130	95	60 - 130	99	%				
6356111	Sample Weight (as received)	2019/09/27					NA	g	0.077 (1)	N/A		
6356132	Acid Extractable Aluminum (Al)	2019/09/27					<10	mg/kg	5.5 (1)	35		
6356132	Acid Extractable Antimony (Sb)	2019/09/27	101	75 - 125	103	75 - 125	<2.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Arsenic (As)	2019/09/27	103	75 - 125	104	75 - 125	<2.0	mg/kg	5.1 (1)	35		
6356132	Acid Extractable Barium (Ba)	2019/09/27	108	75 - 125	102	75 - 125	<5.0	mg/kg	9.4 (1)	35		
6356132	Acid Extractable Beryllium (Be)	2019/09/27	109	75 - 125	105	75 - 125	<2.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Bismuth (Bi)	2019/09/27	102	75 - 125	99	75 - 125	<2.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Boron (B)	2019/09/27	95	75 - 125	116	75 - 125	<50	mg/kg	NC (1)	35		
6356132	Acid Extractable Cadmium (Cd)	2019/09/27	102	75 - 125	99	75 - 125	<0.30	mg/kg	NC (1)	35		
6356132	Acid Extractable Chromium (Cr)	2019/09/27	105	75 - 125	102	75 - 125	<2.0	mg/kg	3.8 (1)	35		
6356132	Acid Extractable Cobalt (Co)	2019/09/27	105	75 - 125	103	75 - 125	<1.0	mg/kg	0.99 (1)	35		
6356132	Acid Extractable Copper (Cu)	2019/09/27	106	75 - 125	104	75 - 125	<2.0	mg/kg	4.7 (1)	35		
6356132	Acid Extractable Iron (Fe)	2019/09/27					<50	mg/kg	2.7 (1)	35		
6356132	Acid Extractable Lead (Pb)	2019/09/27	103	75 - 125	101	75 - 125	<0.50	mg/kg	4.9 (1)	35		
6356132	Acid Extractable Lithium (Li)	2019/09/27	117	75 - 125	107	75 - 125	<2.0	mg/kg	7.4 (1)	35		
6356132	Acid Extractable Manganese (Mn)	2019/09/27	NC	75 - 125	104	75 - 125	<2.0	mg/kg	3.2 (1)	35		
6356132	Acid Extractable Mercury (Hg)	2019/09/27	97	75 - 125	97	75 - 125	<0.10	mg/kg	NC (1)	35		
6356132	Acid Extractable Molybdenum (Mo)	2019/09/27	111	75 - 125	103	75 - 125	<2.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Nickel (Ni)	2019/09/27	105	75 - 125	105	75 - 125	<2.0	mg/kg	1.7 (1)	35		
6356132	Acid Extractable Rubidium (Rb)	2019/09/27	100	75 - 125	102	75 - 125	<2.0	mg/kg	5.8 (1)	35		
6356132	Acid Extractable Selenium (Se)	2019/09/27	103	75 - 125	106	75 - 125	<1.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Silver (Ag)	2019/09/27	104	75 - 125	102	75 - 125	<0.50	mg/kg	NC (1)	35		
6356132	Acid Extractable Strontium (Sr)	2019/09/27	109	75 - 125	102	75 - 125	<5.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Thallium (TI)	2019/09/27	103	75 - 125	101	75 - 125	<0.10	mg/kg	NC (1)	35		
6356132	Acid Extractable Tin (Sn)	2019/09/27	105	75 - 125	108	75 - 125	<1.0	mg/kg	NC (1)	35		
6356132	Acid Extractable Uranium (U)	2019/09/27	109	75 - 125	106	75 - 125	<0.10	mg/kg	3.9 (1)	35		
6356132	Acid Extractable Vanadium (V)	2019/09/27	108	75 - 125	105	75 - 125	<2.0	mg/kg	2.7 (1)	35		
6356132	Acid Extractable Zinc (Zn)	2019/09/27	101	75 - 125	98	75 - 125	<5.0	mg/kg	1.1 (1)	35		

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6356395	Acid Extractable Aluminum (Al)	2019/10/02					<10	mg/kg				
6356395	Acid Extractable Antimony (Sb)	2019/10/02	NC	75 - 125	114	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Arsenic (As)	2019/10/02	NC	75 - 125	107	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Barium (Ba)	2019/10/02	NC	75 - 125	110	75 - 125	<5.0	mg/kg				
6356395	Acid Extractable Beryllium (Be)	2019/10/02	104	75 - 125	104	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Bismuth (Bi)	2019/10/02	NC	75 - 125	108	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Boron (B)	2019/10/02	90	75 - 125	96	75 - 125	<50	mg/kg				
6356395	Acid Extractable Cadmium (Cd)	2019/10/02	109	75 - 125	101	75 - 125	<0.30	mg/kg				
6356395	Acid Extractable Chromium (Cr)	2019/10/02	NC	75 - 125	106	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Cobalt (Co)	2019/10/02	104	75 - 125	108	75 - 125	<1.0	mg/kg				
6356395	Acid Extractable Copper (Cu)	2019/10/02	NC	75 - 125	104	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Iron (Fe)	2019/10/02					<50	mg/kg				
6356395	Acid Extractable Lead (Pb)	2019/10/02	NC	75 - 125	108	75 - 125	<0.50	mg/kg				
6356395	Acid Extractable Lithium (Li)	2019/10/02	107	75 - 125	109	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Manganese (Mn)	2019/10/02	NC	75 - 125	106	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Mercury (Hg)	2019/10/02	104	75 - 125	105	75 - 125	<0.10	mg/kg				
6356395	Acid Extractable Molybdenum (Mo)	2019/10/02	137 (2)	75 - 125	113	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Nickel (Ni)	2019/10/02	103	75 - 125	107	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Rubidium (Rb)	2019/10/02	99	75 - 125	106	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Selenium (Se)	2019/10/02	102	75 - 125	102	75 - 125	<1.0	mg/kg				
6356395	Acid Extractable Silver (Ag)	2019/10/02	NC	75 - 125	107	75 - 125	<0.50	mg/kg				
6356395	Acid Extractable Strontium (Sr)	2019/10/02	115	75 - 125	109	75 - 125	<5.0	mg/kg				
6356395	Acid Extractable Thallium (TI)	2019/10/02	129 (2)	75 - 125	109	75 - 125	<0.10	mg/kg				
6356395	Acid Extractable Tin (Sn)	2019/10/02	NC	75 - 125	106	75 - 125	<1.0	mg/kg				
6356395	Acid Extractable Uranium (U)	2019/10/02	113	75 - 125	115	75 - 125	<0.10	mg/kg				
6356395	Acid Extractable Vanadium (V)	2019/10/02	NC	75 - 125	110	75 - 125	<2.0	mg/kg				
6356395	Acid Extractable Zinc (Zn)	2019/10/02	NC	75 - 125	104	75 - 125	<5.0	mg/kg				
6361799	Orthophosphate (P)	2019/10/02	85 (3)	80 - 120	96	80 - 120	<0.050	mg/kg	20 (4)	25		
6362110	Sample Weight (as received)	2019/10/01					NA	g	0.052 (1)	N/A		
6362637	Soluble (5:1) pH	2019/10/01							1.2 (4)	N/A		
6368435	Lead-210	2019/10/05					<0.10	Bq/g	NC (5)	N/A	103	74 - 126

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6368435	Potassium-40	2019/10/05					<1.0	Bq/g	NC (5)	N/A	100	74 - 126
6368435	Radium-226	2019/10/05					<0.10	Bq/g	NC (5)	N/A	97	74 - 126
6368435	Radium-228	2019/10/05					<0.10	Bq/g	NC (5)	N/A	100	74 - 126
6368435	Thorium-228	2019/10/05					<0.10	Bq/g	NC (5)	N/A	103	74 - 126
6368435	Thorium-230	2019/10/05					<0.80	Bq/g	NC (5)	N/A	94	74 - 126
6368435	Thorium-234	2019/10/05					<0.050	Bq/g	NC (5)	N/A	102	74 - 126
6368435	Uranium-235	2019/10/05					<0.10	Bq/g	NC (5)	N/A	105	74 - 126
6370557	Lead-210	2019/10/08					<1.0	Bq/L			93	74 - 126
6370557	Lead-212	2019/10/08					<0.10	Bq/L			105	N/A
6370557	Radium-226	2019/10/08					<1.0	Bq/L			96	74 - 126
6370557	Radium-228	2019/10/08					<0.50	Bq/L			104	74 - 126
6370557	Thorium-230	2019/10/08					<5.0	Bq/L			107	74 - 126
6370557	Thorium-234	2019/10/08					<1.0	Bq/L			100	74 - 126
6370557	Uranium-235	2019/10/08					<0.50	Bq/L			108	74 - 126
6377316	Moisture	2019/10/10							0.37 (6)	25		
6377476	>C10-C16 Hydrocarbons	2019/10/09	88	30 - 130	87	60 - 130	<10	mg/kg	NC (1)	50		
6377476	>C16-C21 Hydrocarbons	2019/10/09	83	30 - 130	84	60 - 130	<10	mg/kg	NC (1)	50		
6377476	>C21- <c32 hydrocarbons<="" td=""><td>2019/10/09</td><td>99</td><td>30 - 130</td><td>106</td><td>60 - 130</td><td><15</td><td>mg/kg</td><td>13 (1)</td><td>50</td><td></td><td></td></c32>	2019/10/09	99	30 - 130	106	60 - 130	<15	mg/kg	13 (1)	50		
6377518	Benzene	2019/10/09	87 (7)	60 - 130	93	60 - 140	<0.025	mg/kg	NC (6)	50		
6377518	C6 - C10 (less BTEX)	2019/10/09					<2.5	mg/kg	NC (6)	50		
6377518	Ethylbenzene	2019/10/09	94 (7)	60 - 130	96	60 - 140	<0.025	mg/kg	NC (6)	50		
6377518	Toluene	2019/10/09	89 (7)	60 - 130	93	60 - 140	<0.050	mg/kg	NC (6)	50		
6377518	Total Xylenes	2019/10/09	90 (7)	60 - 130	91	60 - 140	<0.050	mg/kg	NC (6)	50		
6391070	Leachable Aluminum (Al)	2019/10/18					<100	ug/L				
6391070	Leachable Antimony (Sb)	2019/10/18	103	75 - 125	102	75 - 125	<20	ug/L				
6391070	Leachable Arsenic (As)	2019/10/18	101	75 - 125	100	75 - 125	<20	ug/L				
6391070	Leachable Barium (Ba)	2019/10/18	98	75 - 125	98	75 - 125	<50	ug/L				
6391070	Leachable Beryllium (Be)	2019/10/18	100	75 - 125	97	75 - 125	<20	ug/L				
6391070	Leachable Boron (B)	2019/10/18	97	75 - 125	96	75 - 125	<500	ug/L				
6391070	Leachable Cadmium (Cd)	2019/10/18	96	75 - 125	96	75 - 125	<3.0	ug/L				
6391070	Leachable Calcium (Ca)	2019/10/18					<1000	ug/L				

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6391070	Leachable Chromium (Cr)	2019/10/18	97	75 - 125	97	75 - 125	<20	ug/L				
6391070	Leachable Cobalt (Co)	2019/10/18	98	75 - 125	98	75 - 125	<10	ug/L				
6391070	Leachable Copper (Cu)	2019/10/18	95	75 - 125	95	75 - 125	<20	ug/L				
6391070	Leachable Iron (Fe)	2019/10/18					<500	ug/L				
6391070	Leachable Lead (Pb)	2019/10/18	103	75 - 125	96	75 - 125	<5.0	ug/L				
6391070	Leachable Lithium (Li)	2019/10/18	104	75 - 125	103	75 - 125	<20	ug/L				
6391070	Leachable Magnesium (Mg)	2019/10/18					<1000	ug/L				
6391070	Leachable Manganese (Mn)	2019/10/18	101	75 - 125	99	75 - 125	<20	ug/L				
6391070	Leachable Molybdenum (Mo)	2019/10/18	101	75 - 125	99	75 - 125	<20	ug/L				
6391070	Leachable Nickel (Ni)	2019/10/18	98	75 - 125	97	75 - 125	<20	ug/L				
6391070	Leachable Potassium (K)	2019/10/18					<1000	ug/L				
6391070	Leachable Selenium (Se)	2019/10/18	100	75 - 125	99	75 - 125	<10	ug/L				
6391070	Leachable Silver (Ag)	2019/10/18	93	75 - 125	94	75 - 125	<5.0	ug/L				
6391070	Leachable Strontium (Sr)	2019/10/18	101	75 - 125	101	75 - 125	<50	ug/L				
6391070	Leachable Thallium (Tl)	2019/10/18	97	75 - 125	94	75 - 125	<1.0	ug/L				
6391070	Leachable Tin (Sn)	2019/10/18	103	75 - 125	101	75 - 125	<20	ug/L				
6391070	Leachable Uranium (U)	2019/10/18	108	75 - 125	104	75 - 125	<1.0	ug/L				
6391070	Leachable Vanadium (V)	2019/10/18	100	75 - 125	99	75 - 125	<20	ug/L				
6391070	Leachable Zinc (Zn)	2019/10/18	NC	75 - 125	100	75 - 125	<50	ug/L				
6391323	Sample Weight (as received)	2019/10/17					NA	g				
6393098	Sample Weight (as received)	2019/10/18					NA	g	0.044 (1)	N/A		
6393264	Leachable Aluminum (Al)	2019/10/22					<100	ug/L	5.4 (1)	35		
6393264	Leachable Antimony (Sb)	2019/10/22	NC	75 - 125	99	75 - 125	<20	ug/L	27 (1)	35		
6393264	Leachable Arsenic (As)	2019/10/22	98	75 - 125	99	75 - 125	<20	ug/L	116 (8,1)	35		
6393264	Leachable Barium (Ba)	2019/10/22	99	75 - 125	98	75 - 125	<50	ug/L	14 (1)	35		
6393264	Leachable Beryllium (Be)	2019/10/22	104	75 - 125	102	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Boron (B)	2019/10/22	100	75 - 125	101	75 - 125	<500	ug/L	3.7 (1)	35		
6393264	Leachable Cadmium (Cd)	2019/10/22	NC	75 - 125	95	75 - 125	<3.0	ug/L	155 (8,1)	35		
6393264	Leachable Calcium (Ca)	2019/10/22					<1000	ug/L	4.5 (1)	35		
6393264	Leachable Chromium (Cr)	2019/10/22	99	75 - 125	98	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Cobalt (Co)	2019/10/22	99	75 - 125	98	75 - 125	<10	ug/L	3.2 (1)	35		

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6393264	Leachable Copper (Cu)	2019/10/22	NC	75 - 125	96	75 - 125	<20	ug/L	1.4 (1)	35		
6393264	Leachable Iron (Fe)	2019/10/22					<500	ug/L	NC (1)	35		
6393264	Leachable Lead (Pb)	2019/10/22	NC	75 - 125	98	75 - 125	<5.0	ug/L	22 (1)	35		
6393264	Leachable Lithium (Li)	2019/10/22	107	75 - 125	110	75 - 125	<20	ug/L	8.2 (1)	35		
6393264	Leachable Magnesium (Mg)	2019/10/22					<1000	ug/L	4.9 (1)	35		
6393264	Leachable Manganese (Mn)	2019/10/22	NC	75 - 125	100	75 - 125	<20	ug/L	3.2 (1)	35		
6393264	Leachable Molybdenum (Mo)	2019/10/22	104	75 - 125	102	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Nickel (Ni)	2019/10/22	100	75 - 125	99	75 - 125	<20	ug/L	9.9 (1)	35		
6393264	Leachable Potassium (K)	2019/10/22					<1000	ug/L	9.3 (1)	35		
6393264	Leachable Selenium (Se)	2019/10/22	101	75 - 125	98	75 - 125	<10	ug/L	1.5 (1)	35		
6393264	Leachable Silver (Ag)	2019/10/22	94	75 - 125	94	75 - 125	<5.0	ug/L	NC (1)	35		
6393264	Leachable Strontium (Sr)	2019/10/22	100	75 - 125	99	75 - 125	<50	ug/L	0.94 (1)	35		
6393264	Leachable Thallium (Tl)	2019/10/22	99	75 - 125	96	75 - 125	<1.0	ug/L	3.4 (1)	35		
6393264	Leachable Tin (Sn)	2019/10/22	99	75 - 125	97	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Uranium (U)	2019/10/22	104	75 - 125	102	75 - 125	<1.0	ug/L	NC (1)	35		
6393264	Leachable Vanadium (V)	2019/10/22	104	75 - 125	100	75 - 125	<20	ug/L	NC (1)	35		
6393264	Leachable Zinc (Zn)	2019/10/22	NC	75 - 125	101	75 - 125	<50	ug/L	37 (8,1)	35		
6393275	Leachable Aluminum (Al)	2019/10/18					<100	ug/L				
6393275	Leachable Antimony (Sb)	2019/10/18	107 (9)	75 - 125	91	75 - 125	<20	ug/L				
6393275	Leachable Arsenic (As)	2019/10/18	104 (9)	75 - 125	98	75 - 125	<20	ug/L				
6393275	Leachable Barium (Ba)	2019/10/18	107 (9)	75 - 125	97	75 - 125	<50	ug/L				
6393275	Leachable Beryllium (Be)	2019/10/18	113 (9)	75 - 125	100	75 - 125	<20	ug/L				
6393275	Leachable Boron (B)	2019/10/18	120 (9)	75 - 125	108	75 - 125	<500	ug/L				
6393275	Leachable Cadmium (Cd)	2019/10/18	111 (9)	75 - 125	96	75 - 125	<3.0	ug/L				
6393275	Leachable Calcium (Ca)	2019/10/18					<1000	ug/L				
6393275	Leachable Chromium (Cr)	2019/10/18	110 (9)	75 - 125	99	75 - 125	<20	ug/L				
6393275	Leachable Cobalt (Co)	2019/10/18	113 (9)	75 - 125	101	75 - 125	<10	ug/L				
6393275	Leachable Copper (Cu)	2019/10/18	109 (9)	75 - 125	99	75 - 125	<20	ug/L				
6393275	Leachable Iron (Fe)	2019/10/18					<500	ug/L				
6393275	Leachable Lead (Pb)	2019/10/18	107 (9)	75 - 125	96	75 - 125	<5.0	ug/L				
6393275	Leachable Lithium (Li)	2019/10/18	112 (9)	75 - 125	104	75 - 125	<20	ug/L				

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6393275	Leachable Magnesium (Mg)	2019/10/18					<1000	ug/L				
6393275	Leachable Manganese (Mn)	2019/10/18	107 (9)	75 - 125	97	75 - 125	<20	ug/L				
6393275	Leachable Molybdenum (Mo)	2019/10/18	110 (9)	75 - 125	98	75 - 125	<20	ug/L				
6393275	Leachable Nickel (Ni)	2019/10/18	111 (9)	75 - 125	102	75 - 125	<20	ug/L				
6393275	Leachable Potassium (K)	2019/10/18					<1000	ug/L				
6393275	Leachable Selenium (Se)	2019/10/18	114 (9)	75 - 125	107	75 - 125	<10	ug/L				
6393275	Leachable Silver (Ag)	2019/10/18	106 (9)	75 - 125	94	75 - 125	<5.0	ug/L				
6393275	Leachable Strontium (Sr)	2019/10/18	105 (9)	75 - 125	93	75 - 125	<50	ug/L				
6393275	Leachable Thallium (Tl)	2019/10/18	106 (9)	75 - 125	95	75 - 125	<1.0	ug/L				
6393275	Leachable Tin (Sn)	2019/10/18	106 (9)	75 - 125	94	75 - 125	<20	ug/L				
6393275	Leachable Uranium (U)	2019/10/18	108 (9)	75 - 125	98	75 - 125	<1.0	ug/L				
6393275	Leachable Vanadium (V)	2019/10/18	111 (9)	75 - 125	102	75 - 125	<20	ug/L				

GHD Limited Client Project #: 11198639-06 Site Location: BELLEDUNE Your P.O. #: 73517254 Sampler Initials: JR

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6393275	Leachable Zinc (Zn)	2019/10/18	106 (9)	75 - 125	101	75 - 125	<50	ug/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) Matrix Spike exceeds acceptance limits, sample inhomogeneity suspected.

(3) Matrix Spike Parent ID [KWN284-01]

(4) Duplicate Parent ID [KWN284-01]

(5) Duplicate Parent ID [KWN287-02]

(6) Duplicate Parent ID [KWN283-04]

(7) Matrix Spike Parent ID [KWN283-04]

(8) Poor RPD due to sample inhomogeneity. Insufficient sample for re-extraction and re-analysis.

(9) Matrix Spike Parent ID [KWN287-01]

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eric Dearman, Scientific Specialist

- Mike Thee the

Mike MacGillivray, Scientific Specialist (Inorganics)

Robert Allen, Scientific Specialist

Kostmarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Steven Simpson, Tab Director

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

mones intornation		-	-	llepo	rt Info	mati	on (if	differ	from	n Invoi	ice)			-		Pr	o)ect h	forma	tion (w	hare	applica	ble)				Turnaround Time (TAT) Required		
my Name GAD Limi	ifed		Compar	y Name:	_			1	1	-				Quo	táticn i	h.			-							Regular TAT (5 business days) M	211	
Mames Troy Small /	cherie	Babin	Contact	Name:			1	/						P.O.H 73517254				4		PLEASE PROVIDE ADVANCE NOTICE FOR RUS PROJECTS			RUSH					
5 466 Holson	Road	-	Address				/							Project #: 11198139			39	-06			1F F	IF RUSH please specify det= (Surcharges will be applied)						
Fredericton, NB Postal Co	de: E3C	265		-	-	1	Posta	Code	e: _	_	_	_		site toration: Belledun			10	e										
506-458-1248 Faxi	,	_	Phanei		1	-	-	Fax:	_	-	-	-		Site	H 1		-	_		,	-			_	DA	TE REQUIRED:		
froy. Small @ ghd	. com		Email:	Cher	ie	. 50	261	hes	in	27	hd		om	Sam	pled By	6		J	K	1C	R	_		_				
Laboratory (Use Only																1	inalysi	s Requ	ested								
USTODY SEAL COOLER TEMPERATU	INFS	000	B TEMPERAT	1855	T				2	N	tetals.	1		M	etals	-		2		T	T	Г	Π		5	Regulatory Requirements (Sp	ecify)	
nt Intact			an Junio Brent					a vinte	d wat	1	vater		-			17		311 PO	12.F4	÷					7			
		-	_	_				Surfac	roune			OLVEI	Digen		3	IIIIpe	a	8 001 2	BTEX, I	evel T				sence)	12	shipped from		
				-				Well /	tals) o	5 5	F.	/ DISS	Ashie)	5	anode	rai/ Lar	CEED	NS FO	HC FI	Interview	-			co/Ab	13	FREDTON		
COOLING MEDIA PR	ESENT Y /	N			LIW	SERVER	DIRED	etals)	d Me	Metha	d wat	OTAL	in (Ava	DC DC 45	Cold V:	ripultu	(875)	(uister)	CWS B	AL MIL	diment			Preser	Count	32		
PLES MUST BE KEPT CODE 1 < 10 °C VEROM TIN	AF OF SAMPLIN	G HINTH DE	IVERY TO A	AXXAM	INS SH	B.PREI	I RECUL	tal Me	solve	fault F	groun	(1) TI	ITY Tactab	Isst-fs	wel tay I	ble Bor	rbons	Dd In	pons (er BTE	ME Se			(lico,	Level	BU	_	
	1	o on the de	Liveni (B)	inan-in	TAINE	TERED	ATION	5 (To	s IDh	est (De	d far	CIR	Merce cid Ext	In Dig	al vice	r Solul	Vdroca	BTEX	diocar	le Wat	AL /CC			form/i	form/	10 Not: Hold Sam	ples	
SAMPLE IDENTIFICATION	DATE	SAMPLED 1 /MM/DD)	IME SAMPLET (HEEMM)	MATRIX	DF CON	TO LIT	E FULTE	AP-W	AP-N	tal Dig	ssolve	ercun	Stats &	stals To	trony	t Wate	CA H	dracar N Level	WE HA	Potab	HS (FW	*	3	al Coli	ai coli	tor possible m	pl	
10001	25.19	Inalia		0.117	11	ž	3	BC	80	10 H	ā	ŝ	2 a	N S	M	위트	8	¥ 91	8	Se la	V VA	D.	3	10	× 10	2 leachast		
1980-2	Roll	10110	-	Dulk	17	-			-	-		-	X	-	-			-	-	-	-	+	+	-		By pit, Norm Gr	PI	
19BP-2			-		17							-	X	1	1			-	-	+	-	t		-	x	A Alagolowa	Dia	
1980-9			-		15					1			X	1						1		1				All phis ahor	hala	
19 BP-5			-		3								V	1						1					X	All Abou Grado	Di	
19 BP-4			2		3								X									1			ſ	pit, Phorphase	110	
19 BP-7		V .	-		3								X									T				of the phate		
19 BP-8	2019	107/A	-		4								X												X	Alt. Norm Grayes	Ph.	
19.38-9	2019	109/18	~		4				-				X				10						1			pt, phosphate	-	
1939-10	2014	109/19	-	V	1								X												X	Norm Grup		
REUNQUISHED BY: (Signature/Print)	D.	ATE: YYYY	MM/DD)	TIME:	(HH:SM	5/1)	-	~	RE	CEIVE	D BY:	(Sign	ature/	Print			DA	TE: (Y)	ww/ini	W/DD)	-	TIME	E: (MH:	MM)		MAXXAM JOB #		
111								1 113	- 1/-	1		11																

Your P.O. #: 73517186 Your Project #: 11198639-04 Site Location: BELLEDENE SMETTER Your C.O.C. #: D34696

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/22 Report #: R5930968 Version: 4 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9518 Received: 2019/09/24, 09:59

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Mercury - Dissolved (CVAA,LL)	7	2019/09/27	2019/09/30	ATL SOP 00026	EPA 245.1 R3 m
ICP-OES Dissolved Metals in Water (1)	7	N/A	2019/10/03	BBY7SOP-00018	EPA 6010d m
Na, K, Ca, Mg, S by CRC ICPMS (diss.) (1)	7	N/A	2019/10/01	BBY WI-00033	Auto Calc
Elements by ICPMS (dissolved) - Seawater (1)	7	N/A	2019/10/01	BBY7SOP-00002	BCMOE BCLM Nov 2015
рН (3)	4	N/A	2019/09/27	ATL SOP 00003	SM 23 4500-H+ B m
рН (3)	2	N/A	2019/10/01	ATL SOP 00003	SM 23 4500-H+ B m
рН (3)	1	N/A	2019/10/02	ATL SOP 00003	SM 23 4500-H+ B m
NORM Group Analysis (2)	2	N/A	2019/10/17	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (2)	2	N/A	2019/10/18	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (2)	2	N/A	2019/10/19	BQL SOP-00007	Gamma Spectrometry
NORM Group Analysis (2)	1	N/A	2019/10/20	BQL SOP-00007	Gamma Spectrometry
Salinity (4)	7	N/A	2019/10/01		SM 22 2520B
Total Suspended Solids	7	2019/09/30	2019/10/01	ATL SOP 00007	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 15

Your P.O. #: 73517186 Your Project #: 11198639-04 Site Location: BELLEDENE SMETTER Your C.O.C. #: D34696

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/22 Report #: R5930968 Version: 4 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9518 Received: 2019/09/24, 09:59

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bedford to Burnaby - Offsite

(2) This test was performed by Bureau Veritas Laboratories Kitimat

(3) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

(4) Non-accredited test method

Encryption Key

Melissa DiPinto Project Manager 22 Oct 2019 12:33:12

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		KWN916			KWN916			KWN917		
Sampling Date		2019/09/23			2019/09/23			2019/09/23		
COC Number		D34696			D34696			D34696		
	UNITS	08GW-95	RDL	QC Batch	08GW-95 Lab-Dup	RDL	QC Batch	09GW-102	RDL	QC Batch
Inorganics										
рН	рН	6.94	N/A	6356971				7.39	N/A	6363133
Salinity	N/A	<2.0	2.0	6359774				<2.0	2.0	6359774
Total Suspended Solids	mg/L	170	10	6359835				30	2.0	6359835
Metals										
Dissolved Aluminum (Al)	ug/L	16	10	6369100	15	10	6369100	13	10	6369100
Dissolved Antimony (Sb)	ug/L	14.0	0.50	6369100	13.8	0.50	6369100	<0.50	0.50	6369100
Dissolved Arsenic (As)	ug/L	5.76	0.50	6369100	5.38	0.50	6369100	1.34	0.50	6369100
Dissolved Barium (Ba)	ug/L	30.2	1.0	6369100	30.1	1.0	6369100	77.7	1.0	6369100
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Boron (B)	ug/L	<50	50	6369100	50	50	6369100	<50	50	6369100
Dissolved Cadmium (Cd)	ug/L	26.7	0.050	6369100	26.1	0.050	6369100	0.284	0.050	6369100
Dissolved Chromium (Cr)	ug/L	<0.50	0.50	6369100	<0.50	0.50	6369100	<0.50	0.50	6369100
Dissolved Cobalt (Co)	ug/L	0.33	0.10	6369100	0.30	0.10	6369100	<0.10	0.10	6369100
Dissolved Copper (Cu)	ug/L	11.7	0.50	6369100	11.9	0.50	6369100	0.97	0.50	6369100
Dissolved Iron (Fe)	ug/L	8.9	2.0	6369100	8.6	2.0	6369100	<2.0	2.0	6369100
Dissolved Lead (Pb)	ug/L	115	0.10	6369100	114	0.10	6369100	13.9	0.10	6369100
Dissolved Lithium (Li)	ug/L	<20	20	6369100	<20	20	6369100	<20	20	6369100
Dissolved Manganese (Mn)	ug/L	418	0.50	6369100	413	0.50	6369100	0.66	0.50	6369100
Dissolved Molybdenum (Mo)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Nickel (Ni)	ug/L	4.69	0.20	6369100	5.30	0.20	6369100	<0.20	0.20	6369100
Dissolved Phosphorus (P)	ug/L	268	50	6369100	290	50	6369100	<50	50	6369100
Dissolved Selenium (Se)	ug/L	15.0	0.50	6369100	14.4	0.50	6369100	1.71	0.50	6369100
Dissolved Silicon (Si)	ug/L	6680	1000	6369100	6690	1000	6369100	3630	1000	6369100
Dissolved Silver (Ag)	ug/L	<0.050	0.050	6369100	<0.050	0.050	6369100	<0.050	0.050	6369100
Dissolved Strontium (Sr)	ug/L	190	10	6369100	187	10	6369100	121	10	6369100
Dissolved Thallium (TI)	ug/L	20.8	0.10	6369100	20.9	0.10	6369100	<0.10	0.10	6369100
Dissolved Tin (Sn)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100	1.6	1.0	6369100
Dissolved Titanium (Ti)	ug/L	<10	10	6369100	<10	10	6369100	<10	10	6369100
Dissolved Uranium (U)	ug/L	0.091	0.050	6369100	0.080	0.050	6369100	0.120	0.050	6369100
Dissolved Vanadium (V)	ug/L	<10	10	6369100	<10	10	6369100	<10	10	6369100
Dissolved Zinc (Zn)	ug/L	814	1.0	6369100	828	1.0	6369100	6.7	1.0	6369100
RDL = Reportable Detection Li	mit			•						

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

BV Labs ID		KWN916			KWN916			KWN917		
Sampling Date		2019/09/23			2019/09/23			2019/09/23		
COC Number		D34696			D34696			D34696		
	UNITS	08GW-95	RDL	QC Batch	08GW-95 Lab-Dup	RDL	QC Batch	09GW-102	RDL	QC Batch
Dissolved Calcium (Ca)	mg/L	135	1.0	6369101				71.1	1.0	6369101
Dissolved Magnesium (Mg)	mg/L	15.7	1.0	6369101				4.6	1.0	6369101
Dissolved Potassium (K)	mg/L	5.4	1.0	6369101				<1.0	1.0	6369101
Dissolved Sodium (Na)	mg/L	145	1.0	6369102	139	1.0	6369102	11.8	1.0	6369102
Dissolved Sulphur (S)	mg/L	93	20	6369101				46	20	6369101
RADIONUCLIDE										
Lead-210	Bq/L	<1.0	1.0	6370557				<1.0	1.0	6370557
Lead-212	Bq/L	<0.10	0.10	6370557				<0.10	0.10	6370557
Radium-226	Bq/L	<1.0	1.0	6370557				<1.0	1.0	6370557
Radium-228	Bq/L	<0.50	0.50	6370557				<0.50	0.50	6370557
Thorium-230	Bq/L	<5.0	5.0	6370557				<5.0	5.0	6370557
Thorium-234	Bq/L	<1.0	1.0	6370557				<1.0	1.0	6370557
Uranium-235	Bq/L	<0.50	0.50	6370557				<0.50	0.50	6370557
RDL = Reportable Detection Lir QC Batch = Quality Control Bat	mit :ch									

Lab-Dup = Laboratory Initiated Duplicate

RESULTS OF ANALYSES OF WATER

BV Labs ID		KWN918			KWN919			KWN920		
Sampling Date		2019/09/23			2019/09/23			2019/09/23		
COC Number		D34696			D34696			D34696		
	UNITS	19GW-118	RDL	QC Batch	19GW-120	RDL	QC Batch	19GW-122	RDL	QC Batch
Inorganics										
рН	рН	6.91	N/A	6356971	5.75	N/A	6364217	7.00	N/A	6356963
Salinity	N/A	<2.0	2.0	6359774	2.9	2.0	6359774	<2.0	2.0	6359774
Total Suspended Solids	mg/L	11	1.0	6359835	240	5.0	6359835	310	10	6359835
Metals										
Dissolved Aluminum (Al)	ug/L	<10	10	6369100	89	10	6369100	<10	10	6369100
Dissolved Antimony (Sb)	ug/L	40.1	0.50	6369100	2.29	0.50	6369100	17.6	0.50	6369100
Dissolved Arsenic (As)	ug/L	28.5	0.50	6369100	66.0	0.50	6369100	3.30	0.50	6369100
Dissolved Barium (Ba)	ug/L	2.2	1.0	6369100	3.8	1.0	6369100	5.8	1.0	6369100
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Boron (B)	ug/L	129	50	6369100	225	50	6369100	<50	50	6369100
Dissolved Cadmium (Cd)	ug/L	156	0.050	6369100	108	0.050	6369100	0.850	0.050	6369100
Dissolved Chromium (Cr)	ug/L	0.73	0.50	6369100	<0.50	0.50	6369100	<0.50	0.50	6369100
Dissolved Cobalt (Co)	ug/L	2.63	0.10	6369100	368	0.10	6369100	3.49	0.10	6369100
Dissolved Copper (Cu)	ug/L	3.57	0.50	6369100	30.2	0.50	6369100	<0.50	0.50	6369100
Dissolved Iron (Fe)	ug/L	<2.0	2.0	6369100	5.2	2.0	6369100	89.2	2.0	6369100
Dissolved Lead (Pb)	ug/L	8.35	0.10	6369100	4.35	0.10	6369100	0.41	0.10	6369100
Dissolved Lithium (Li)	ug/L	<20	20	6369100	382	20	6369100	<20	20	6369100
Dissolved Manganese (Mn)	ug/L	2940	0.50	6369100	47600	0.50	6369100	2610	0.50	6369100
Dissolved Molybdenum (Mo)	ug/L	<1.0	1.0	6369100	4.3	1.0	6369100	2.2	1.0	6369100
Dissolved Nickel (Ni)	ug/L	34.8	0.20	6369100	1210	0.20	6369100	9.21	0.20	6369100
Dissolved Phosphorus (P)	ug/L	18500	50	6369100	184000	50	6369100	<50	50	6369100
Dissolved Selenium (Se)	ug/L	16.3	0.50	6369100	12.5	0.50	6369100	<0.50	0.50	6369100
Dissolved Silicon (Si)	ug/L	8250	1000	6369100	57400	1000	6369100	8410	1000	6369100
Dissolved Silver (Ag)	ug/L	<0.050	0.050	6369100	0.209	0.050	6369100	<0.050	0.050	6369100
Dissolved Strontium (Sr)	ug/L	185	10	6369100	69	10	6369100	277	10	6369100
Dissolved Thallium (Tl)	ug/L	1.61	0.10	6369100	0.37	0.10	6369100	0.11	0.10	6369100
Dissolved Tin (Sn)	ug/L	2.4	1.0	6369100	<1.0	1.0	6369100	1.3	1.0	6369100
Dissolved Titanium (Ti)	ug/L	<10	10	6369100	14	10	6369100	<10	10	6369100
Dissolved Uranium (U)	ug/L	<0.050	0.050	6369100	<0.050	0.050	6369100	0.089	0.050	6369100
Dissolved Vanadium (V)	ug/L	15	10	6369100	21	10	6369100	<10	10	6369100
Dissolved Zinc (Zn)	ug/L	4120	1.0	6369100	14100	1.0	6369100	539	1.0	6369100
Dissolved Calcium (Ca)	mg/L	160	1.0	6369101	447	1.0	6369101	248	1.0	6369101
RDL = Reportable Detection Li	nit									

QC Batch = Quality Control Batch

N/A = Not Applicable

RESULTS OF ANALYSES OF WATER

BV Labs ID		KWN918			KWN919			KWN920			
Sampling Date		2019/09/23			2019/09/23			2019/09/23			
COC Number		D34696			D34696			D34696			
	UNITS	19GW-118	RDL	QC Batch	19GW-120	RDL	QC Batch	19GW-122	RDL	QC Batch	
Dissolved Magnesium (Mg)	mg/L	13.3	1.0	6369101	193	1.0	6369101	22.3	1.0	6369101	
Dissolved Potassium (K)	mg/L	3.4	1.0	6369101	3.2	1.0	6369101	2.8	1.0	6369101	
Dissolved Sodium (Na)	mg/L	102	1.0	6369102	231	1.0	6369102	79.9	1.0	6369102	
Dissolved Sulphur (S)	mg/L	134	20	6369101	344	20	6369101	188	20	6369101	
RADIONUCLIDE										,	
Lead-210	Bq/L	<1.0	1.0	6370557	<1.0	1.0	6370557	<1.0	1.0	6370557	
Lead-212	Bq/L	<0.10	0.10	6370557	<0.10	0.10	6370557	<0.10	0.10	6370557	
Radium-226	Bq/L	<1.0	1.0	6370557	<1.0	1.0	6370557	<1.0	1.0	6370557	
Radium-228	Bq/L	<0.50	0.50	6370557	<0.50	0.50	6370557	<0.50	0.50	6370557	
Thorium-230	Bq/L	<5.0	5.0	6370557	<5.0	5.0	6370557	<5.0	5.0	6370557	
Thorium-234	Bq/L	<1.0	1.0	6370557	<1.0	1.0	6370557	<1.0	1.0	6370557	
Uranium-235	Bq/L	<0.50	0.50	6370557	<0.50	0.50	6370557	<0.50	0.50	6370557	
RDL = Reportable Detection Limit OC Batch = Quality Control Batch											

BV Labs ID		KWN921			KWN922		
Sampling Date		2019/09/23			2019/09/23		
COC Number		D34696			D34696		
	UNITS	19GW-124	RDL	QC Batch	QA/QC-1	RDL	QC Batch
Inorganics							
рН	pН	7.52	N/A	6363133	6.95	N/A	6356963
Salinity	N/A	<2.0	2.0	6359774	<2.0	2.0	6359774
Total Suspended Solids	mg/L	2100	50	6359835	12	1.0	6359835
Metals				J			
Dissolved Aluminum (Al)	ug/L	<10	10	6369100	<10	10	6369100
Dissolved Antimony (Sb)	ug/L	11.2	0.50	6369100	34.9	0.50	6369100
Dissolved Arsenic (As)	ug/L	8.77	0.50	6369100	28.1	0.50	6369100
Dissolved Barium (Ba)	ug/L	45.2	1.0	6369100	2.7	1.0	6369100
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Bismuth (Bi)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Boron (B)	ug/L	185	50	6369100	133	50	6369100
Dissolved Cadmium (Cd)	ug/L	0.984	0.050	6369100	121	0.050	6369100
Dissolved Chromium (Cr)	ug/L	<0.50	0.50	6369100	0.73	0.50	6369100
Dissolved Cobalt (Co)	ug/L	<0.10	0.10	6369100	2.81	0.10	6369100
Dissolved Copper (Cu)	ug/L	2.48	0.50	6369100	4.25	0.50	6369100
Dissolved Iron (Fe)	ug/L	<2.0	2.0	6369100	<2.0	2.0	6369100
Dissolved Lead (Pb)	ug/L	7.33	0.10	6369100	7.20	0.10	6369100
Dissolved Lithium (Li)	ug/L	<20	20	6369100	<20	20	6369100
Dissolved Manganese (Mn)	ug/L	165	0.50	6369100	2980	0.50	6369100
Dissolved Molybdenum (Mo)	ug/L	3.1	1.0	6369100	<1.0	1.0	6369100
Dissolved Nickel (Ni)	ug/L	1.35	0.20	6369100	33.7	0.20	6369100
Dissolved Phosphorus (P)	ug/L	1550	50	6369100	19800	50	6369100
Dissolved Selenium (Se)	ug/L	6.52	0.50	6369100	16.3	0.50	6369100
Dissolved Silicon (Si)	ug/L	4580	1000	6369100	8160	1000	6369100
Dissolved Silver (Ag)	ug/L	<0.050	0.050	6369100	<0.050	0.050	6369100
Dissolved Strontium (Sr)	ug/L	134	10	6369100	181	10	6369100
Dissolved Thallium (Tl)	ug/L	0.38	0.10	6369100	1.29	0.10	6369100
Dissolved Tin (Sn)	ug/L	<1.0	1.0	6369100	<1.0	1.0	6369100
Dissolved Titanium (Ti)	ug/L	<10	10	6369100	<10	10	6369100
Dissolved Uranium (U)	ug/L	0.764	0.050	6369100	<0.050	0.050	6369100
Dissolved Vanadium (V)	ug/L	<10	10	6369100	16	10	6369100
Dissolved Zinc (Zn)	ug/L	21.0	1.0	6369100	3730	1.0	6369100
Dissolved Calcium (Ca)	mg/L	87.1	1.0	6369101	161	1.0	6369101
RDL = Reportable Detection Li QC Batch = Quality Control Bat N/A = Not Applicable	mit tch						

RESULTS OF ANALYSES OF WATER

BV Labs ID		KWN921			KWN922		
Sampling Date		2019/09/23			2019/09/23		
COC Number		D34696			D34696		
	UNITS	19GW-124	RDL	QC Batch	QA/QC-1	RDL	QC Batch
Dissolved Magnesium (Mg)	mg/L	6.5	1.0	6369101	13.1	1.0	6369101
Dissolved Potassium (K)	mg/L	3.6	1.0	6369101	3.5	1.0	6369101
Dissolved Sodium (Na)	mg/L	246	1.0	6369102	101	1.0	6369102
Dissolved Sulphur (S)	mg/L	80	20	6369101	132	20	6369101
RADIONUCLIDE	-						
Lead-210	Bq/L	<1.0	1.0	6370557	<1.0	1.0	6370557
Lead-212	Bq/L	<0.10	0.10	6370557	<0.10	0.10	6370557
Radium-226	Bq/L	<1.0	1.0	6370557	<1.0	1.0	6370557
Radium-228	Bq/L	<0.50	0.50	6370557	<0.50	0.50	6370557
Thorium-230	Bq/L	<5.0	5.0	6370557	<5.0	5.0	6370557
Thorium-234	Bq/L	<1.0	1.0	6370557	<1.0	1.0	6370557
Uranium-235	Bq/L	<0.50	0.50	6370557	<0.50	0.50	6370557
RDL = Reportable Detection Li	mit						
QC Batch = Quality Control Ba	tch						

RESULTS OF ANALYSES OF WATER

MERCURY BY COLD VAPOUR AA (WATER)

BV Labs ID		KWN916	KWN916	KWN917	KWN918	KWN919	KWN920	KWN921		
Sampling Date		2019/09/23	2019/09/23	2019/09/23	2019/09/23	2019/09/23	2019/09/23	2019/09/23		
COC Number		D34696	D34696	D34696	D34696	D34696	D34696	D34696		
	UNITS	08GW-95	08GW-95 Lab-Dup	09GW-102	19GW-118	19GW-120	19GW-122	19GW-124	RDL	QC Batch
Metals										
Metals Dissolved Mercury (Hg)	ug/L	<0.013	<0.013	<0.013	<0.013	0.19	<0.013	<0.013	0.013	6356457
Metals Dissolved Mercury (Hg) RDL = Reportable Detection L	ug/L imit	<0.013	<0.013	<0.013	<0.013	0.19	<0.013	<0.013	0.013	6356457

BV Labs ID		KWN922		
Sampling Date		2019/09/23		
COC Number		D34696		
	UNITS	QA/QC-1	RDL	QC Batch
Metals				
Dissolved Mercury (Hg)	ug/L	<0.013	0.013	6356457
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch			

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	8.7°C	
		·	—
Result	s relate only to th	ie items tested.	

QUALITY ASSURANCE REPORT

GHD Limited Client Project #: 11198639-04 Site Location: BELLEDENE SMETTER Your P.O. #: 73517186 Sampler Initials: MT

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6356457	Dissolved Mercury (Hg)	2019/09/30	100 (1)	80 - 120	101	80 - 120	<0.013	ug/L	NC (2)	20		
6356963	рН	2019/09/27							0.98 (3)	N/A	101	97 - 103
6356971	рН	2019/09/27							0.40 (3)	N/A	101	97 - 103
6359774	Salinity	2019/10/01					<2.0	N/A	NC (3)	25	101	80 - 120
6359835	Total Suspended Solids	2019/10/01					<1.0	mg/L	3.6 (3)	20	97	N/A
6363133	рН	2019/10/01							1.2 (3)	N/A	100	97 - 103
6364217	рН	2019/10/02							0.16 (3)	N/A	100	97 - 103
6369100	Dissolved Aluminum (Al)	2019/10/01	101 (4)	80 - 135	100	80 - 120	<10	ug/L	3.1 (5)	25		
6369100	Dissolved Antimony (Sb)	2019/10/01	NC (4)	80 - 120	98	80 - 120	<0.50	ug/L	2.0 (5)	25		
6369100	Dissolved Arsenic (As)	2019/10/01	98 (4)	80 - 120	100	80 - 120	<0.50	ug/L	6.8 (5)	25		
6369100	Dissolved Barium (Ba)	2019/10/01	98 (4)	80 - 120	98	80 - 120	<1.0	ug/L	0.27 (5)	25		
6369100	Dissolved Beryllium (Be)	2019/10/01	105 (4)	80 - 120	102	80 - 120	<1.0	ug/L	NC (5)	25		
6369100	Dissolved Bismuth (Bi)	2019/10/01	108 (4)	80 - 120	102	80 - 120	<1.0	ug/L	NC (5)	25		
6369100	Dissolved Boron (B)	2019/10/01	101 (4)	80 - 120	99	80 - 120	<50	ug/L	0.82 (5)	25		
6369100	Dissolved Cadmium (Cd)	2019/10/01	103 (4)	80 - 120	101	80 - 120	<0.050	ug/L	2.2 (5)	25		
6369100	Dissolved Chromium (Cr)	2019/10/01	102 (4)	80 - 120	99	80 - 120	<0.50	ug/L	NC (5)	25		
6369100	Dissolved Cobalt (Co)	2019/10/01	103 (4)	80 - 120	98	80 - 120	<0.10	ug/L	8.2 (5)	25		
6369100	Dissolved Copper (Cu)	2019/10/01	111 (4)	80 - 120	102	80 - 120	<0.50	ug/L	1.3 (5)	25		
6369100	Dissolved Iron (Fe)	2019/10/01	102 (4)	80 - 135	98	80 - 120	<10	ug/L	3.6 (5)	25		
6369100	Dissolved Lead (Pb)	2019/10/01	NC (4)	80 - 120	97	80 - 120	<0.10	ug/L	0.36 (5)	25		
6369100	Dissolved Lithium (Li)	2019/10/01	107 (4)	80 - 120	104	80 - 120	<20	ug/L	NC (5)	25		
6369100	Dissolved Manganese (Mn)	2019/10/01	NC (4)	80 - 120	100	80 - 120	<0.50	ug/L	1.1 (5)	25		
6369100	Dissolved Molybdenum (Mo)	2019/10/01	94 (4)	80 - 120	101	80 - 120	<1.0	ug/L	NC (5)	25		
6369100	Dissolved Nickel (Ni)	2019/10/01	108 (4)	80 - 120	100	80 - 120	<0.20	ug/L	12 (5)	25		
6369100	Dissolved Phosphorus (P)	2019/10/01					<50	ug/L	8.1 (5)	25		
6369100	Dissolved Selenium (Se)	2019/10/01	102 (4)	80 - 120	102	80 - 120	<0.50	ug/L	3.9 (5)	25		
6369100	Dissolved Silicon (Si)	2019/10/01					<1000	ug/L	0.046 (5)	25		
6369100	Dissolved Silver (Ag)	2019/10/01	102 (4)	80 - 120	100	80 - 120	<0.050	ug/L	NC (5)	25		
6369100	Dissolved Strontium (Sr)	2019/10/01	NC (4)	80 - 120	90	80 - 120	<10	ug/L	1.7 (5)	25		
6369100	Dissolved Thallium (TI)	2019/10/01	NC (4)	80 - 120	97	80 - 120	<0.10	ug/L	0.64 (5)	25		
6369100	Dissolved Tin (Sn)	2019/10/01	96 (4)	80 - 120	101	80 - 120	<1.0	ug/L	NC (5)	25		

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 11198639-04 Site Location: BELLEDENE SMETTER Your P.O. #: 73517186 Sampler Initials: MT

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6369100	Dissolved Titanium (Ti)	2019/10/01	96 (4)	80 - 120	102	80 - 120	<10	ug/L	NC (5)	25		
6369100	Dissolved Uranium (U)	2019/10/01	97 (4)	80 - 120	97	80 - 120	<0.050	ug/L	13 (5)	25		
6369100	Dissolved Vanadium (V)	2019/10/01	98 (4)	80 - 120	99	80 - 120	<10	ug/L	NC (5)	25		
6369100	Dissolved Zinc (Zn)	2019/10/01	NC (4)	80 - 120	108	80 - 120	<5.0	ug/L	1.6 (5)	25		
6369102	Dissolved Sodium (Na)	2019/10/03	NC (4)	80 - 120	100	80 - 120	<0.10	mg/L	4.0 (5)	20		
6370557	Lead-210	2019/10/08					<1.0	Bq/L			93	74 - 126
6370557	Lead-212	2019/10/08					<0.10	Bq/L			105	N/A
6370557	Radium-226	2019/10/08					<1.0	Bq/L			96	74 - 126
6370557	Radium-228	2019/10/08					<0.50	Bq/L			104	74 - 126
6370557	Thorium-230	2019/10/08					<5.0	Bq/L			107	74 - 126
6370557	Thorium-234	2019/10/08					<1.0	Bq/L			100	74 - 126
6370557	Uranium-235	2019/10/08					<0.50	Bq/L			108	74 - 126

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Matrix Spike Parent ID [KWN917-05]

(2) Duplicate Parent ID [KWN916-05]

(3) Duplicate Parent ID

(4) Matrix Spike Parent ID [KWN916-04]

(5) Duplicate Parent ID [KWN916-04]

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Colleen Acker, Scientific Service Specialist

- Mike Thee the

Mike MacGillivray, Scientific Specialist (Inorganics)

Rob Reinert, B.Sc., Scientific Specialist

Steven Simpson, Tab Director

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Max Jam	200 Bluewaler Rond, Suile 10h. Borth 49-55 Elizzosth Avenue, SLijohn's, Ni 165 George Street, Unit G, Sydney, NS www.inaccam.co. E-mail. C	nt, Nova Scolla 848 1 LATA 1009 8 81P 1KS ustomemenvicubed(ord	G9 Te Te Te @matx	et 902 d. 709 d. 902 d. 902	-420-02 -754-02 -557-12	03 Гал 03 Гал 55 Рих	902-4	20-861 54-861 39-650	12 Tol 12 Tol 04 Tol	Free Free Free CHA	1-800-56 1-888-49 1-858-53	5-7227 2-7227 5-7770 = CUS	STO	DY R	ECO	RD				coc	E	3	46	98	ATLEC	00149	1/22
Invoice Informa	tion	Report	Inform	nation	lif diff	ers fro	m invo	ice)					Projec	t Inforr	nation	(when	e appli	cable)			1	1.1	umarc	und Tir	ne (TAT)	Required	1
mpuny Name: GAP		Company Name:	1			1	1				Quotat	ion #:										X	egular	TAT (5	ousiness	days) Mos	ri -
Adress: Fredenictur Po Hone: Fax:	Chanie Balaiweu Don Kuicz nal Code: <u>63C 265</u>	Edintact Name:	/		estal Ci	sde:			-		P.O. II: Project Site Loc Site II:	#: ation:		Be	73 111 (le	5/98	21	819-54	6 .4 rel	te	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	PLEA IF RUS DATE	denec AE PROV H pleas REQUIS	VIDE ADV PRO De speci be a RED:	ANGE NO D)ECTS fy date (pplied)	ict for ri Surcharge	ush as with
nall truy. Small Oghd	con cheric B	shinew a	al	h	co	n		_	-		Sample	d By:		1	A	Siu	1	hel	1A	Ul	T						
Labor	atory Use Only		0								-			Analy	sis Re	queste	d	-		-	-	-	-	-			
CUSTODY SEAL COOLER TEM	PERATURES COOLER TE	MPERATURES			Surface water	fround waters	3 0	Aetaki Nater)	COLVED	Digest	Metal (Soli)	5	2)	al Oil Spill Falley	31EX, F2-F4)	EVELTEN				sence)			Regu	atory R	equirem	ents (Spec	cify)
COOLING MED SAMPLES MUST BE KEPT COOL (< 10 ^V C) FRO SAMPLE IDENTIFICATION	DIA PRESENT Y / N DM TIME OF SAMPLING UNTIL DELIVE DATE SAMPLED (YYYY/MM/DD) []H	RV.TO MAXXAM SAMPLED H:MM)	OF CONTAINERS SUMMITTED	ELD FILTERED & FRESCRAED	IS FILTRATION REQUIRED	CAP-MS (Dissolved Metals) (tat Dignst (Default Method) • well water is surface water	issolved for ground water	wreury (CIRCLE) TOTAL /DISS	etals & Mercury //ault Acid Extractable (Available)	etals Total Digest-for Glean denema (MMD3/HF/HCIDA)	ercury (pw)evel by Cald Vapour at Water Soluble Baron	aquired for CCME Agricultural/ La BCA Budencarbons (BTEX CG-C	idrocarbons Sail (Potubia), NS Fu w Imoni BTEX (C6-C32	ME Hydrocarbons (CWS-PHC F1)	Potable Water STEX, VPH, Low	H5 (Default) for water/soll)	tHs (EW/AL/CCME Sediment)	00	tal Caliform/E.coli (Presence/Ab	tal Coliform/E.Coli (Count)	DID- DO HOT ANALYZE			COMME	VT5	
1 08/11.95	19/09/23	2 601	1	7	3 2		5 5	a V	X	2.6	2 8	ž ž	2 2	<u> </u>	8	ž	PA	A -	2 02	ta	70	13	6/	1.77	2 0	1.1	11
2 29611.107	13/09/22	1 (11)	5	4	V	-		6	10				+	1	-			+	-	1	-		Pr	1,12	2,24	LIN. T	M
3 1961.2-118	19/09/23	1 41	5	41	1			5	5	1.1.1			1					1	1	1	1		1			6	-
19GW-120	19/19/23 -	aw	51	41	N			6	6	c i			1										1			-	Þ
19GW-122	19/00/73	(41)	51	41	V			6	4														1	v			
· 1964-124	19/09/22 2	GU	51	41	N			Ø	4														1	p		. · · ·	
" QA/QC-1	19/09/23-	41	51	41	N			Ø	X														4	\mathcal{H}_{i}		4	
8				1		1																	5	- 29	19 SF	224	1
9				1																1							
10		1999		1						1			-														_
RELINGUISHED BY: (Senature/Prin	19/09/2	3 5:0	3	0	~	ne	fal.	C / /	Hg	ch 5	Print)	_	t	DATE: (YYYY/I	MM/D	D)	TIM	VIE: (14	H:MM	0	R	91	DQ	51	X	
nless otherwise agreed to in writing, work subr	A-JH nitted on this Chain of Custody is subje	ect to Maxiam's stand	atd 7e	HINS 2	(L	ditions	SU signi	N/	This Ci	lain of	Custody	docum	ent is a	knowle	sdgmes	nt and	accept	ance c	ofour	lerms	which	are av	allable	X for view	ling at	~	_

White: Maxxam

Pink: Client

Invoice Informa	www.maxdam.ca. E-n ion	nali Cojtomen	Repor	rd@mi	mati	on (if diff	ers from	igvoid	ce}		HAIN	OF (P	oject	r RE	ation (RD where	applic	able)		CDC	#: 14	T	urnaroun	d Time (TA	e of T) Required	1
any Name: GHD		Compa	ny Name:	1			1	-			Que	tation	in.										Re	gular TA	T (S busines	ss days) Mos	st
ct Name: TIBY SMALL ss: 466 Hodo Frederation Poi Fas: tray Small Oghd	Chan; e Babin Don Kucas Halcode: E3C265 . con Cheriz	De Lu Delrataci Addres Phane: N Ehaji)	t Name: s:	1	/ /	Postal C	ode:				P.Q Pro Site Site San	H: ect II: Locati II: spled B	oni iy:		7 1 1 1 1	73: 110 100	18	71	86 Sh Lec	A el	te.		PLEAS F RUSI	i please s EQUIRED	PROJECTS PROJECTS specify date be applied	iotics FOR 8 = (Surcharge)	IUSR es wi
Labor	tory Use Only	_	_		_			_		-	_		_		Analys	is Requ	ested		_	_	_	_	-				
COOLING MEE COOLING MEE MPLES MUST BE KEPT COOL (< 10 °C) FRO	IA PRESENT Y / N M TIMEOF SAMPLING UNTIL DATE SAMPLED	DELIVERY TO T	MAXXAM 9 MATRIX	F CONTAINERS SUBMITTED	D FRITERED &PRESERVED	RILTRATION REQUIRED AP-MS (Total Metals) Well / Surface wa	4P-MS (Dissalved Metals) Ground wa	al Digest (Default Method) well water & surface water	solved for ground water	rcury (CIRCLE) TOTAL (DISSOLVED)	als & Mercury Nilf Acid Extractable (Available) Digen als Total Digest «for Doaur	cury tow level by Cold Vapour 44	Water Soluble Boron uites for CONE Apreukural/ Landrill	CA Hydrocerbans (BTEX, C6-C32)	rocarbons Soft (Potoblo), NS Fuel Oil Spill P Level BTEK , CB-C32	tE Hydrocarbons (CWS-PHC F1/ATEX, (2-))4	Potable Water BTEX, VPH, Cow level T.E.H	is (Default for water/soll) a lowAL of Add Sectiment)			il Caliform/E.coli (Presence/Absence)	il Califerm/E.Cali (Count)	D-DO NOT AVALYZE	_	сомм	IENTS	
100/11.05	10/10/12		0.1	0.	L FIEL	RC	8	for	in the second	Ň	Me Me	P/16	Hat (reg	RB	Hyd	CCN	EN.	PAP	E Dd	Vac	Tott	Tot	PE		-	- L - L	
296442	12/0/12)	1	GUS	3	5	N	+		X	1	-	-	-	-	-		-	+	+	1	-		-	PH,	155,5	Alin tr	A
19/10-112	19/19/12	1	60	5	4	N			5	6		1	1					-	-	1	-		-		-	4	-
19 GW-120	19/09/13	11	Gu	E	4	N		1	61	6								1	t	t	-		1	p .		-	
1964-122	19/00/23	1	(41)	5	4	N			6	6										1				1			5
1966-124	1/03/22	1	Ciu	5	4	N)	0	6														1	4	W.	
QA/QC-1	19/09/23	-	Gul	5	4	N			0	X														ti i	13	14	
	1	11.0			1			1.1																E-	20195	474	_
					1			-													1				_		_
- Anno 10 - 100	1				1							1						-									_
NELINGGASHED DT: (SUMATURE/PTH	a DATE (TT	1/1/1/100	TIME	HHaw	1MI) {	4.2	an d	ale	D BY:	(Signa	ture/Print)	-	DA	ATE: (Y	YYY/M	M/DD	"	TIN	1E: (H	H:IVIIVI)		IV	AXXAM JC)B #	

White: Maxxam

Pink: Client

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE SMELTER Your C.O.C. #: D34692

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/02 Report #: R5904731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R0928 Received: 2019/09/25, 09:58

Sample Matrix: Solid # Samples Received: 10

		Date	Date		
Analyses	Quantity	<pre>Extracted</pre>	Analyzed	Laboratory Method	Reference
Asbestos by PLM - 0.5 RDL (1, 2)	10	N/A	N/A	COR3SOP-00002	EPA 600R-93/116

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Bureau Veritas Laboratories' Asbestos Laboratory is accredited by NVLAP for bulk asbestos analysis by polarized light microscopy, NVLAP Code 600163-0.

This report may not be reproduced, except in full, without the written approval of Bureau Veritas Laboratories. This report may not be used by the client to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Bureau Veritas Laboratories' scope of accreditation includes EPA-600/M4-82-020: "Interim Method for the Determination of Asbestos in Bulk Insulation Samples" and EPA-600/R-93/116: "Method for the Determination of Asbestos in Bulk Building Materials".

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) P.O.B. - Percent of Bulk

When Asbestos data is reported with other data, this report contains data that are not covered by the NVLAP accreditation.

Page 1 of 8

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE SMELTER Your C.O.C. #: D34692

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/02 Report #: R5904731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9R0928 Received: 2019/09/25, 09:58

Encryption Key

Bureau Veritas Laboratories 02 Oct 2019 16:12:48

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Asbestos Analytical Results

EPA/600R-93/116 by Polarized Light Microscopy

19ACM-1							
BV Labs ID:	KWV424					Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos		Other Fibres		Particulate
Layer 1	50	Homogeneous beige fibrous material	Not Detected		Fibrous Glass	75%	Perlite Non-Fibrous
Layer 2	50	Homogeneous grey cementitious material	Chrysotile	12%			Non-Fibrous

19ACM-2							
BV Labs ID:	KWV425					Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos		Other Fibres		Particulate
Layer 1	100	Homogeneous grey cementitious material	Chrysotile	55%			Non-Fibrous

19ACM-3						
BV Labs ID:	KWV426				Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous beige rubbery material	Not Detected			Non-Fibrous
	Comment:	fibrous glass present.				

The limit of quantitation is 0.50%, although asbestos may be qualitatively detected at concentrations less than 0.50%. Samples for which asbestos is detected at <0.50% are reported as trace, "<0.50%". "Not Detected" indicates that no asbestos fibres were observed.

Calibrated Visual Estimate (%) Date Format : yyyy/mm/dd

Asbestos Analytical Results

EPA/600R-93/116 by Polarized Light Microscopy

19ACM-4						
BV Labs ID:	KWV427	,			Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous grey cementitious material	Not Detected			Non-Fibrous

19ACM-5							
BV Labs ID:	KWV428					Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos		Other Fibres		Particulate
Layer 1	100	Homogeneous beige fibrous material	Amosite	85%			Non-Fibrous

19ACM-6						
BV Labs ID:	KWV429				Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous white insulation	Not Detected	Cellulose	15%	Non-Fibrous
				Glass Fibres	5%	

KWV430				Date Analyzed:	2019/10/02
P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
100	Homogeneous beige cementitious material	Not Detected	Fibrous Glass	15%	Non-Fibrous
	KWV430 <u>P.O.B</u> 100	KWV430 P.O.B Sample Morphology 100 Homogeneous beige cementitious material	KWV430 Sample Morphology Asbestos 100 Homogeneous beige cementitious material Not Detected	KWV430 Sample Morphology Asbestos Other Fibres 100 Homogeneous beige cementitious material Not Detected Fibrous Glass	KWV430 Date Analyzed: P.O.B Sample Morphology Asbestos Other Fibres 100 Homogeneous beige cementitious material Not Detected Fibrous Glass 15%

The limit of quantitation is 0.50%, although asbestos may be qualitatively detected at concentrations less than 0.50%. Samples for which asbestos is detected at <0.50% are reported as trace, "<0.50%". "Not Detected" indicates that no asbestos fibres were observed.

Calibrated Visual Estimate (%) Date Format : yyyy/mm/dd

Asbestos Analytical Results

EPA/600R-93/116 by Polarized Light Microscopy

19ACM-8							
BV Labs ID:	KWV431					Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos		Other Fibres		Particulate
Layer 1	100	Homogeneous white insulation	Chrysotile	12%	_		Non-Fibrous

19ACM-9						
BV Labs ID:	KWV432				Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos	Other Fibres		Particulate
Layer 1	100	Homogeneous grey cementitious material	Not Detected	Fibrous Glass	10%	Non-Fibrous

19ACM-10					
BV Labs ID:	KWV433			Date Analyzed:	2019/10/02
	P.O.B	Sample Morphology	Asbestos	Other Fibres	Particulate
Layer 1	100	Homogeneous yellow foam	Not Detected		Foam
					Non-Fibrous
					Non-norod

The limit of quantitation is 0.50%, although asbestos may be qualitatively detected at concentrations less than 0.50%. Samples for which asbestos is detected at <0.50% are reported as trace, "<0.50%". "Not Detected" indicates that no asbestos fibres were observed.

Calibrated Visual Estimate (%) Date Format : yyyy/mm/dd

GENERAL COMMENTS

Fach ter	nnerature	is the av	erage of u	o to thr	ee cooler	temperatu	ires taken at	receint
Lacii tei	inperature	is the av	ciage of up			temperatu	iles takell a	ιιετειρι

Package 1	15.0°C
Package 2	3.7°C
Package 3	16.0°C
Package 4	16.0°C
Package 5	15.7°C
Package 6	16.7°C

Results relate only to the items tested.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Banu Gurgen-Keough, Supervisor

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

nyName: <u>GHD</u>			Repor	t Info	rmati	on (if a	differ	s from	invoi	ice}			-	P	ro]ect	Inform	ation	(wher	e app	icable	:)			1.00	Turnaround Time (TAT) Required
	1 1	Company	y Name:	_					>	_	_	Quo	tation	R:		_	_			_	_	_		X.	(egular TAT (5 business days) Mont values
Name Tray SMA	11 . Cherie	BALASTAR	NORM	_	_		1	_		_	_	P.D.	<i>n</i> .			7	35	17.	25	4	-			PLEA	SE PROVIDE ADVANCE NOTICE FOR INS PROJECTS
* 466 Hodgs	mrd	Address	_	_	1	/	_	_			-	Proj	ect II:			11	19	86	39	7-0	Ø			IF RUS	SH please specify date (Surcharges
Fredericton Bostal	Code: <u>E3(2G)</u>		-	1	_	Posta	Cod	e: _	_		-	Site	locano	0rti		Be	llee	lur	2	Sm	el1	fer	-		be applied)
Fax.	1.	Phone:	-1		_		Fax:	11	1.01		-	Site	#:			-	-	-	-	_	_	_	-	DATE	REQUIRED:
troy. Small a gr	id com c	A Canadit.	- De b	+ NJC	in.	R	gl	ad.	60	m	-	Sam	pled B	Vi.		JY	5-	Ce)dy	1	-	_			
Laborator	y Use Only						Ť									Analys	is Rec	ueste	d						
COOLER TEMPERA	TURES COOL	ER TEMPERATU	RES	Γ			5	sus	N/	Aetais Nater)	T	Mi (5	ctals ioIII			à			T	T	1	T	Γ	T	Regulatory Requirements (Speci
nt Intact			-	1			te wat	d wat			0	T	T			Did Hid	61-643	H3							
			-	1			Surfac	Sroun	1		OLVE	Digent	1	odfil)	Ŧ	el 00 5	BTEX	Evel 7.				vence)			
			-				Mell /	(slai)		er	sia	able)	point	el /le	C6-C3	NS Fu	ICF1/	Linw!	1	-		ce/Ab		3	Shipped from
COOLING MEDIA	PRESENT Y / N		-	LLIW	ERVEL	INED	tals)	d Me	Sethor e svete	d wat	DIAL	r Dou	ald Vi	on icultu	(BTEX	abiel.	WS-P	HdV.,	(200)	filmetr		reser	pund	PC-	FREDTON
NOISS MUST BE KEDT COOL (+ 10 CALERONA)	TIME OF SAMPLING UNITE D	NINGAY TO M	AUVANA	Ins su	& PRE	HEDI	al Me	solve	fault 1	graun	A IT	der - fe	el lav	te Bor	bohs	1041110	ans lo	n litte	state	8		call [(io) (2 C	
The smoot be need code (s 10 C) thomas	THE OF SAMPENG ON THE D	CIVERT TO W	AAAAM	TAINE	ERED	ATION	SITO	s lois	ster &	d for	Merco	tal Dig	out lev	t solub	aroca	BTEK.	rocark	e Wate	ault fo	AL/CC		orm/E	orm/E	P P	
SAMPLE IDENTIFICATION	DATE SAMPLED (VYYY/MM/DD)	TIME SAMPLED (HH-MIM)	MATRIX	PF COM	TO FILT	BFILTR	AP-M	AP-M	with Digo	solve	tals &	tals Ta tals Ta	4cury	t Wate	CAH	frocarb	ME HVd	Potski	ts (Det	4s (FW)	= 0	al Coll	at coll	N7.	COMMENTS
1000m-1	124/0/19/17	1	R. Hill	F	212	4	¥	BC	102	đ	Ne N	Me	Me	Ho	RB	HAN	8	NB	PA	PA3	PCF 07	TOP	top	7 9	21 44 1 44
IODOM. 2	00100111		ALATEN	1	-		-	-	-		+	-	-	-	-		-		-	-	-	-	-	N.	FLM for AC
19000-2	2011/01/17	1	M	H.	-		-	+	-		+	+	-	-			-		-	+	+	+	+	N	PLAN JOINC
100000-41	12/0/10/17	1		1				+	-	-	+	+-		-	-	-	-		-	-	+	-	-	17	PLM POTMC
JAACM-5	2010/01/17	1		ti			-	-		-	+	-	-	-		-	-		-	+	+	+	+	0	PIN POTAC
19 Acm-6	2019/03/17	/	1	17	-		-	+			+	-	1	-		-	-		-	-	+	+	+	1	PLIN JOI HC
100000	57/9/19/17	1	1	1	-				-	-	+	+-	-				-			-	-	+	+	A	PIN IN AC
19 ACM - 1	2012/12/12	1		1			-	1	-	-	+	-	-	-			-		-	+	-	1	-	1	PLAN LO PIC
19 ACM - 9		1		17				1	-		-	-	-		-				-	+	+	1	-	X	11 MILO DO
19ACM - 7 19ACM - 8 19ACM - 9	2014/04/17			-	-	-	-	-		-	-		1	-	-					+	+	-	-	N	PLUM AUMAN
19 ACM - 7 19 ACM - 8 19 ACM - 9 19 ACM - 10	2014/04/17	1	V	11								1.10												1.17	
19 ACM - 7 19 ACM - 8 19 ACM - 9 19 ACM - 10 RELINQUISHED BY: (Signature/Print)	201404/17 2019/04/17 22/9/09/17 DATE: (YYYY	/ /MM/DD)	TIME: (НН:М	M)		_	REC	CEIVE	D BY:(5	ignatu	elprint)			D	ATE: (Y	YYY/N	/M/DI))	TI	ME: (H	H:MM	1)	17	MAXXAMJOB #

White: Maxxam

Pink; Client

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE SMELTER Your C.O.C. #: D 34695

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/01 Report #: R5902950 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9381 Received: 2019/09/25, 09:58

Sample Matrix: Rock # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
PCBs in Solid by GC/ECD (1)	2	2019/09/27	2019/10/01	ATL SOP 00105	EPA 8082A m
PCB Aroclor sum (solid)	2	N/A	2019/10/01	N/A	Auto Calc.

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Samples were analyzed for PCB using an accredited standard procedure modified for a non-standard matrix. Best laboratory practice and all routine QC procedures were employed. The accreditation does not extend to the matrix analyzed.

Your P.O. #: 73517254 Your Project #: 11198639-06 Site Location: BELLEDUNE SMELTER Your C.O.C. #: D 34695

Attention: Troy Small

GHD Limited 466 Hodgson Rd Fredericton , NB CANADA E3C 2G5

> Report Date: 2019/10/01 Report #: R5902950 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9Q9381 Received: 2019/09/25, 09:58

Encryption Key

Melissa DiPinto Welissa N Project Manager 01 Oct 2019 13:06:56

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

POLYCHLORINATED BIPHENYLS BY GC-ECD (ROCK)

BV Labs ID		KWN281	KWN282			KWN282		
Sampling Date		2019/09/18	2019/09/18			2019/09/18		
COC Number		D 34695	D 34695			D 34695		
	LINITS	19-CONCRETE-1	19-CONCRETE-2	RDI	OC Batch	19-CONCRETE-2	RDI	OC Batch
	01113	19-CONCRETE-1	19-CONCRETE-2	NDL	QC Batch	Lab-Dup	NDL	QC Batch
PCBs								
Aroclor 1016	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Aroclor 1221	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Aroclor 1232	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Aroclor 1248	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Aroclor 1242	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Aroclor 1254	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Aroclor 1260	mg/kg	<0.50	<0.50	0.50	6356857	<0.50	0.50	6356857
Calculated Total PCB	mg/kg	<0.50	<0.50	0.50	6353740			
Surrogate Recovery (%)								
Decachlorobiphenyl	%	94	94		6356857	92		6356857
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							
Lab-Dup = Laboratory Initiate	d Duplic	cate						

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt	Each	temperature	is the average o	f up to th	ree cooler	temperatures	taken at receipt
---	------	-------------	------------------	------------	------------	--------------	------------------

Package 1	15.0°C
Package 2	3.7°C
Package 3	16.0°C
Package 4	16.0°C
Package 5	15.7°C
Package 6	16.7°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited Client Project #: 11198639-06 Site Location: BELLEDUNE SMELTER Your P.O. #: 73517254 Sampler Initials: JR

		Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6356857	Decachlorobiphenyl	2019/10/01	92 (1)	30 - 130	94	30 - 130	91	%		
6356857	Aroclor 1016	2019/10/01					<0.50	mg/kg	NC (2)	50
6356857	Aroclor 1221	2019/10/01					<0.50	mg/kg	NC (2)	50
6356857	Aroclor 1232	2019/10/01					<0.50	mg/kg	NC (2)	50
6356857	Aroclor 1242	2019/10/01					<0.50	mg/kg	NC (2)	50
6356857	Aroclor 1248	2019/10/01					<0.50	mg/kg	NC (2)	50
6356857	Aroclor 1254	2019/10/01	101 (1)	30 - 130	98	30 - 130	<0.50	mg/kg	NC (2)	50
6356857	Aroclor 1260	2019/10/01					<0.50	mg/kg	NC (2)	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Matrix Spike Parent ID [KWN282-01]

(2) Duplicate Parent ID [KWN282-01]

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Kostmain MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Invoice Information Report							ort Information (if differs from invoice)							Project Information (where ap										-		1	Turni	around Time (TAT) Required		
mpany Name: <u>GHD Limitel</u> Company Name												10	Dumpilion II.													Regular TAT (5 business days) Most				
											-												PLEASE PROVIDE ADVANCE NOTICE FOR HOS							
tart Name: 16 Y SIM 19 11 C White 122 (2) VACU Contact Name:				Nume:	2					-	P.O. #:				73517254								-	PROJECTS IF RUSH please specify date (Surcharges be applied)						
Adress: TEC Hadopon (Cad			Address	Roderess:							-	1	Site Location				Balla Loop Constant													
1.5	Fax		Phone	-	1	-	1.Dar	Fav		-		-	5	te Lo	cauton		6	<u>uen</u>	ce		-	ant	eu		-	DATE	REQ	UIRED		
Troys	nell Quild . con	cher.	e Elizabert	ine in	1	0,0	gh.	1.2	ch	r		_	Si	ample	ed By:			TA	10	00	15									
1-1	Laboratory Use Or	lv	1.5-16		-	-			-	_		-	-			-		Analysi	s Reg	ueste	1			-	- 1	-	-			
	1	-		-		-			-	h	4etals	Т	_	Meta	ls	T		~ [-	-	T		ГГ	Re	gulatory Requirements (Sper		
esent Intac	COOLER TEMPERATURES	(00	ER TEMPERATI	RES				water	water	10	Valer)	+	1	(Soil))	-		I Polic	-F4)	I										
			-					urtace	puno		Starr .		1510	1993			10	009	_	Ids IIO	10X, F2	el T.E				(auto				Shipped from
								ell / S	Is Gr		2 Links	DISSO	(age	our Ar	ober Ar	idur Al	I/ Land	S Fuel	E fuel	C. 74/18	Lowle				e/Abs	-			FREDTON	
		T V / N	AUTTEL	RVED	BED	w Isie	Meta	ethod) Water	water wate	TAL	Avail	Ocean CIO4)	old Vap	cultura	BTEX.	this), h	WS-PH	HdA	(jios/	(ment)		Nesenc	(tuno							
and the second second	COOLING MEDIA PRESEN	I Y / N		a la casa de	s subs	PRESE	REQUIT	I Wet	panjo	ault Mi urface	round	E) 10	y Ictable	HEAH	i by Co	E Agri	pons ()	1 (Pota	ans (C)	r.BTEX	water	AESed		coli (P	Coll (C	College -	NALYZ			
SAMPLES MUST BE KEPT COOL (<10 °C) FROM TIME OF SAMPLIN		SAMPLING UNTIL D	IELIVERY TO MAXXAM		AINER	ERED 8	NOUN	Total	(Diss	st (Deň Her & s	st (Def Her & J d For g	CIRCU	d Extra d Extra al Dige (HND3)	Al Dige (HND3)	Solubl or CCM	drocar	oris Sol aTEX ,C	e Wate	sult for	AL/COD		arm/E	ann/E	-int a	NOTA					
540	MPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX	E CONT	LD FLT	S FILTR	AP-MS	AP-IM	al Diger well wa	solve	arcury	Tats To tats To	imments ercury Li ercury L Maren Mareny d Mareny d Mareny d Mareny d Mareny d Mareny d Mareny d		al Colli	tal Coll	100	- D0	COMMENTS										
100	1 1	10/10/10			1	분	3	5	5	for	ä	ž	Ne Oal	Sed	Ne	9 E	8	H 6	8	NB	PA	PA	2 5	Tet A	Tot	- 19	2			
19-0	oncreje - 1	17/01/10	-	Concret	11	-	-	-			-	+		+	-	+	-		-		-		¥-	+	+	+	+			
11-0	onduit-L	11101110	-	COACTER	1	1	1			-		+	-	+	-	+	-	-	-				~	+		H	+			
1		-		-	1	-		-		-		+	-	-		+		-		-	-	-	-			tt				
/		1			1							1		1											1	tt	T			
1 11 -				1																						T				
t I.																														
1																								1	1					
1													- 1						-					1		Ц				
RELINQ	UISHED BY: (Signature/Print)	DATE: (YYY)	/MM/DD)	TIME: (HH:N	(M)	+	-	R	ECEIVI	ED BY:(Signa	eture/Pri	int)		-	DA	TE: (Y	VYV/I	MM/D	D)	-	TIME: (HH:M	M)			MAXXAM JOB II		
111.	D.Then 11	19/601	71	16.6	12	11	1	(iN	ta	ND	11				. 1						1				1 1	na	120201		

White: Maxxam

Pink: Client

21

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Troy Small Troy.Small@ghd.com 506.458.1248

Cody Ross Cody.Ross @ghd.com 403.538.7489

www.ghd.com