Burchill Wind Project Environmental Impact Assessment
Natural Forces
February 2020

Appendix G: Watercourse/Wetlands Assessment

JOB FILE:	13972		
PROJECT TITLE:	Burchill Wind Project		
VERSION	ISSUANCE DATE	PREPARED BY	REVIEWED BY
0.9 (DRAFT)	22 November 2019	MDA	CC, DM
1.0 (FINAL)	29 November 2019	MDA	CC
FUNDY Engineering Serving Our Clients' Needs First This report was prepared for the sole use of the Client. The material and observations presented reflects Fundy Engineering \& Consulting Ltd.' 's opinion and best judgment based on the information available. Fundy Engineering \& Consulting Ltd. accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon the material, observations, and / or opinions by any third-party or for any damages suffered by any third-party resulting from the use of this report.		PROFE	

EXECUTIVE SUMMARY

Fundy Engineering \& Consulting Ltd. and Boreal Environmental were contracted by Natural Forces to complete watercourse and wetland assessments for the Burchill Wind Project being proposed for west Saint John, New Brunswick. Between 5 and 10 wind turbines are expected to be constructed on the 1658 ha parcel of Crown land adjacent to the Spruce Lake Industrial Park yielding between 20 MW and 40 MW of electricity to be connected to Saint John Energy's electrical grid.

The scope of work was to: visit the survey area to identify the presence of watercourses, rare plants, and wetlands; ground-truth, or aerially interpret with spot ground-truthing, the flowpaths of watercourses within the survey area; ground-truth, or aerially interpret with spot ground-truthing, the boundaries of wetlands within the survey area; complete wetland functional assessments for wetlands ≥ 0.5 ha; and identify the location and abundance of rare plants within the survey area. The work was completed between 10 June 2019 and 15 October 2019 within a survey area ~ 530 ha in size.

In addition to wetlands, five general types of habitat were observed across the property. All told, 294 plant species were identified on the property. Five rare plants were identified: purple false foxglove (Agalinis purpurea); coastal sedge (Carex exilis); Wiegand's sedge (Carex wiegandii); Loesel's twayblade (Liparis loeselii); and cloudberry (Rubus chamaemorus). The only species considered as May Be At Risk is purple false foxglove. Locally, it appears to be flourishing in disturbed areas across the property, such as along the pipeline right-of-way, all-terrain vehicle trails, and the sides of Burchill Road. The other four species are considered secure.

Four second order watercourses, Burchill's Brook, Frenchman's Creek, Mill Creek, and Marsh Brook, extend on to the property. Overall, 74 watercourses were identified and delineated within the survey area. Most of the watercourses are ephemeral and likely do not support fish and / or fish habitat. The watercourses either drain to the Musquash River or the Bay of Fundy.

A total of 27 small wetlands (i.e., <0.5 ha in size) with a total area of 3.45 ha were delineated within the survey area. Overall, 28 large (i.e., ≥ 0.5 ha in size) and / or distinctive wetlands (i.e., those <0.5 ha in size, but displayed some noteworthy feature in the field, such as being the source of a perennial tributary, being located in a highly disturbed area, etc., with a combined area of 76.5 ha were delineated within the survey area. Wetland functional assessments were completed for 23 wetlands and results showed eight ranked as having a higher wetland condition and six ranked as having a higher wetland risk. Five wetlands still require ground-truthing and wetland functional assessments to be completed in spring 2020.

CONTENTS

EXECUTIVE SUMMARY i
LIST OF TABLES iii
LIST OF FIGURES iv
LIST OF ACRONYMS v
1.0 INTRODUCTION 1
1.1 Regulatory Framework 1
1.1.1 Definitions 3
1.2 Scope of Work 4
2.0 METHODOLOGY 6
2.1 Watercourse Delineations 6
2.1.1 Desk-Top Assessment 6
2.1.2 Field Assessment 6
2.2 Rare Plant Survey 6
2.3 Wetland Delineations 7
2.3.1 Desk-Top Assessment 7
2.3.2 Field Assessment 7
2.3.2.1 Hydrology 7
2.3.2.2 Hydric Soils 8
2.3.2.3 Hydrophytic Vegetation 8
2.3.2.4 Boundary Delineation 9
2.4 Wetland Functional Assessments 9
2.4.1 WESP-AC Model 9
2.4.2 Desk-Top Assessment 11
2.4.3 Field Assessment 11
2.5 Assessors 11
3.0 SITE DESCRIPTION 12
3.1 Survey Area 12
3.2 Habitat Types Observed 14
4.0 WATERCOURSE DELINEATIONS 20
4.1 Desk-Top Assessment 20
4.2 Field Assessments 22
4.2.1 Burchill Road Culvert Locations 26
5.0 RARE PLANTS 27
5.1 Field Assessment 27
5.1.1 Purple False Foxglove 36
5.1.2 Coastal Sedge 37
5.1.3 Wiegand's Sedge 38
5.1.4 Loesel's Twayblade 38
5.1.5 Cloudberry 39
6.0 WETLAND DELINEATIONS 41
6.1 Desk-Top Assessment. 41
6.2 Field Assessments 41
6.2.1 Note on Hydric Soils 41
6.2.2 Boundary Delineation 41
6.2.3 Small Wetlands 44
6.2.4 Large and / or Distinctive Wetlands 45
7.0 WETLAND FUNCTIONAL ASSESSMENTS 50
7.1 WESP-AC Model Results 50
8.0 SUMMARY 57
8.1 Closing 57
9.0 REFERENCES 58
10.0 REPORT DISCLAIMERS AND DISCLOSURES 59
APPENDICES
APPENDIX I: Watercourse and Wetland PhotographsAPPENDIX II: WESP-AC Model Results
TABLES
Table 1. Wetland functions and other attributes scored by NonTidal WESP-AC in Atlantic Canada. After NBDELG [2018]. 9
Table 2. Habitat types observed, including dominant species, on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 14
Table 3. Characteristics of the watercourses identified within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project 24
Table 4. Summary of culverts observed below Burchill Road in west Saint John, New Brunswick. 26
Table 5. Flora species observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. Red shaded entries indicate rare or sensitive species 27
Table 6. The Atlantic Canada Conservation Data Centre's Sub-national (i.e., provincial) rarity rank (S-rank) of species and S-rank definitions. 34
Table 7. Locations of Agalinis purpurea identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.36
Table 8. Locations of Liparis loeselii identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 38
Table 9. Summary of small wetlands (i.e., < 0.5 ha) delineated on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 44
Table 10. Summary of large (i.e., $>0.5 \mathrm{ha}$) and / or distinctive wetlands delineated within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 46
Table 11. Summary of wetland functional assessments completed for large (i.e., $\geq 0.5 \mathrm{ha}$) and / or distinctive wetlands identified within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 52
FIGURES
Figure 1. Aerial photograph showing the location of PID 00412189 in west Saint John, New Brunswick being considered for the Burchill Wind Project. 2
Figure 2. Federal and Provincial Government's preference hierarchy. Based on reports by Bond et al. [1992], Environment Canada [1996], Milko [1998], Cox and Grose [2000], and the Interagency Workshop on Wetland Restoration [Undated]. 3
Figure 3. Aerial photograph showing up to ten turbines on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 5
Figure 4. Aerial photograph showing the survey areas on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 13
Figure 5. Photograph showing an example of shrub land habitat (i.e., Type 1) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project 15
Figure 6. Photograph showing another example of shrub land habitat (i.e., Type 1) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project 16
Figure 7. Photograph showing an example of the mixed softwood aged 50 to 100+ years habitat (i.e., Type 2) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 16
Figure 8. Photograph showing another example of the mixed softwood aged 50 to 100+ years habitat (i.e., Type 2) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 17
Figure 9. Photograph showing an example of dry with rocky outcrops habitat (i.e., Type 3) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 17
Figure 10. Photograph showing an example of dry with rocky outcrops habitat (i.e., Type 3) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 18

Figure 11. Photograph showing an example of dry with mixed softwood and rocky outcrops habitat (i.e., Type 4) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.18

Figure 12. Photograph showing another example of dry with mixed softwood and
rocky outcrops habitat (i.e., Type 4) observed on the lands in west Saint John, New
Brunswick being considered for the Burchill Wind Project. 19
Figure 13. Photograph showing an example of mixed softwood habitat (i.e., Type 5) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 19
Figure 14. Mapped watercourses present on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 21
Figure 15. Watercourses delineated in the field within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 23
Figure 16. Location and population density of rare plants observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 35
Figure 17. Photographs of Agalinis purpurea specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 36
Figure 18. Photograph of Carex exilis specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 37
Figure 19. Photographs of Carex wiegandii specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 38
Figure 20. Photograph of Liparis loeselii specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 39
Figure 21. Photograph of Rubus chamaemorus identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 40
Figure 22. Mapped wetlands present on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 42
Figure 23. Wetlands delineated in the field within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. 43Figure 24. Condition risk assessment for large (i.e., ≥ 0.5 ha) and / or distinctivewetlands identified within the survey area on the lands in west Saint John, NewBrunswick being considered for the Burchill Wind Project.56

ACRONYMS

ACCDC: Atlantic Canada Conservation Data Centre
B.Sc.F.: \quad Bachelor of Science in Forestry

BB: Burchill's Brook
cm: centimeter
DFO: Department of Fisheries and Oceans
e.g.: (exempli gratia) for example

EP: etc.:	Environmental Professional (et cetera) and so forth
FC:	Frenchman's Creek
GPS:	Global Positioning System
ha:	hectare
HADD:	Harmful Alteration, Disruption, or Destruction (of fish or fish habitat)
i.e.:	(id est) namely / that is
ID:	IDentification
LIDAR:	Llght Detecting And Ranging
Ltd.:	Limited
m:	meters
MC:	Mill Creek
MCB:	Maguires Cove Brook
MCBW:	Maguires Cove Brook Wetland
mm:	millimeter
MW:	MegaWatts
N :	North
NBDELG:	New Brunswick Department of Environment and Local Government
NBDNRED:	New Brunswick Department of Natural Resources and Energy Development
OD:	Old Dump
P.Geo.:	Professional Geoscientist
P.Tech.:	Professional Technologist
Ph.D.:	Doctorate of Philosophy
PH:	Paddys Hill
PID:	Property IDentifier
PLE:	PipeLine East
PLW:	PipeLine West
PMP:	Project Management Professional
RPF:	Registered Professional Forester
sp.:	species unknown
Trib:	Tributary
USACE:	United States Army Corps of Engineers
USDA-NRCS:	United States Department of Agriculture - Natural Resources Conservation Service
FuNDY Engineerin	

W:	West or Wetland depending on the context
WAWA:	Watercourse And Wetland Alteration
WC:	WaterCourse
WESP-AC:	Wetland Ecosystems Services Protocol for Atlantic Canada
WFA:	Wetland Functional Assessment
$\circ:$	degrees
$\vdots:$	minutes
u:	seconds
$\%:$	percent
©:	registered
$\geq:$	greater than
$\leq:$	leaser than or equal to
$\leq:$	approximately
$\sim:$	plus or minus
$\pm:$	

1.0 INTRODUCTION

Fundy Engineering \& Consulting Ltd. (Fundy Engineering) was contracted by Natural Forces (i.e., the Client) to complete watercourse and wetland assessments (i.e., the Work) for the Burchill Wind Project being proposed for west Saint John (i.e., Saint John County and the City of Saint John Parish), New Brunswick. Fundy Engineering subcontracted Boreal Environmental (Boreal) to assist with the Work. The property subject of the Work is identified in the New Brunswick Geomatics Information Centre database as Property IDentification (PID) number 00412189 (Figure 1). This report describes the results of the Work completed by Fundy Engineering and Boreal.

1.1 ReguLatory Framework

New Brunswick's wetlands and watercourses (i.e., streams) are afforded protection under the Watercourse and Wetland Alteration Regulation [90-80] of the New Brunswick Clean Water Act [S.N.B. 1989, c. C-6.1]. Any proposed alterations within most wetlands and / or streams, or within their 30 m regulated buffer, require permitting through the New Brunswick Department of the Environment and Local Government (NBDELG) Watercourse and Wetlands Alteration (WAWA) Program through a WAWA permit. Any project that has the potential to impact a wetland ≥ 2 hectare (ha) in size, and / or its regulated 30 m buffer, must be registered through the Environmental Impact Assessment Regulation [87-83] of the New Brunswick Clean Environment Act [R.S.N.B. 1973, C. C-6]. New Brunswick's fish-bearing wetlands and watercourses are also afforded protection under Section 35(2) of the Fisheries Act [R.S.C., 1985, c. F-14] administered by the Department of Fisheries and Oceans (DFO), through a Harmful Alteration, Disruption, or Destruction (HADD) of fish habitat authorization. It is the proponent's responsibility to ensure that these features are properly determined through due diligence investigations and that all necessary permits, authorizations, etc. are obtained prior to any impact. Failure to do so could result in fines and remediation if a wetland and/or watercourse is impacted without proper approvals in place.

A no-net-loss approach to wetlands, which New Brunswick has adopted, acknowledges that alterations will continue to occur, both naturally and through necessary and beneficial human activities. The approach, which does not consider project economics, applies to all wetlands ≥ 1 ha and strives to preserve wetland functions and values and the benefits that are derived from them. The Federal and Provincial government's wetland preference hierarchy is shown in Figure 2. Avoidance is preferred and is achieved by choosing an alternate project, alternative project design, or alternate development site. Minimization is the reduction of adverse effects of development on wetland functions and values at all project stages to the smallest degree possible and must always be undertaken when impacting a wetland. Compensation, which 'makes up' for unavoidable wetland loss or damage, is required for any and all wetland function and value that is impacted by a project. Wetland compensation ratios are established by the NBDELG. A Wetland Functional Assessment (WFA) may also be required to determine wetland functions, values, and benefits and assess the required compensation ratio.

Figure 1. Aerial photograph showing the location of PID 00412189 in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 2. Federal and Provincial Government's preference hierarchy. Based on reports by Bond et al. [1992], Environment Canada [1996], Milko [1998], Cox and Grose [2000], and the Interagency Workshop on Wetland Restoration [Undated].

1.1.1 Definitions

As defined under the New Brunswick Clean Water Act [S.N.B. 1989, c. C-6.1], a watercourse:
means the full width and length, including the bed, banks, sides and shoreline, or any part, of a river, creek, stream, spring, brook, lake, pond, reservoir, canal, ditch or other natural or artificial channel open to the atmosphere, the primary function of which is the conveyance or containment of water whether the flow be continuous or not.

The NBDELG considers watercourses to include any incised channel $\geq 0.5 \mathrm{~m}$ wide that displays a rock or soil bed.

As defined under the New Brunswick Clean Environment Act [R.S.N.B. 1973, c. C-6], a wetland:
means land that (a) either periodically or permanently, has a water table at, near or above the land's surface or that is saturated with water, and (b) sustains aquatic processes as indicated by the presence of hydric soils, hydrophytic vegetation and biological activities adapted to wet conditions.

1.2 Scope OF WORK

The Burchill Wind Project is being proposed for a portion of the 1658 ha parcel of Crown land adjacent to the Spruce Lake Industrial Park (i.e., PID 00412189; Figure 1). It is expected that 5 to 10 turbines (Figure 3) with a total installed generating capacity between 20 MegaWatts (MW) and 42 MW will be erected at the site and subsequently be connected to Saint John Energy's electrical grid. As per the Environmental Impact Assessment Regulation [87-83] of the New Brunswick Clean Environment Act [R.S.N.B. 1973, c. C-6], any wind farm project exceeding 3 MW of installed capacity must undergo EIA review. Part of the assessment of potential environmental impacts of the Burchill Wind Project includes the assessment of watercourses and wetlands.

The scope of work was to:
> visit the survey area to identify the presence of watercourses, rare plants, and wetlands;
> ground-truth, or aerially interpret with spot ground-truthing, the flowpaths of watercourses within the survey area;
> ground-truth, or aerially interpret with spot ground-truthing, the boundaries of wetlands within the survey area;
> complete wetland functional assessments for wetlands ≥ 0.5 ha;
> identify the location and abundance of rare plants within the survey area; and
> generate a report, complete with maps, describing the results of the watercourse delineations, rare plant survey, wetland delineations, and wetland functional assessments.

Figure 3. Aerial photograph showing up to ten turbines on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

2.0 METHODOLOGY

2.1 Watercourse Delineations

2.1.1 Desk-Top Assessment

A desk-top assessment of watercourses that may be present at the site is completed by reviewing GeoNB's online maps. The GeoNB database includes watercourses that appear on 1:10 000 scale maps. The watercourses included are those that are on file with the NBDELG and the New Brunswick Department of Natural Resources and Energy Development (NBDNRED). Topographic and LIght Detection And Ranging (LIDAR) maps are also reviewed to determine where potential watercourses may be present on the site.

2.1.2 Field Assessment

Watercourses are delineated in the field by first walking the perimeter of the subject area. Potential watercourses are flagged at that time. Later, the potential watercourses are followed into the subject area to confirm their identification and determine their extent. Generally, location measurements (i.e., latitude and longitude) are made every 5 m to 10 m along the flowpath. Assessment of watercourses includes collecting the following information:
> average width;
> average depth;
> substrate materials;
$>$ flow conditions (i.e., ephemeral or perennial);
$>$ streamside vegetation; and
$>$ fish presence.

2.2 Rare Plant Survey

The Atlantic Canada Conservation Data Centre (ACCDC) maintains a comprehensive list of plant and animal species for New Brunswick. That list includes a conservation status rank and legal status. The conservation status rank is assessed by the ACCDC in collaboration with other experts.

A rare plant survey is done to determine the presence and locations of any rare plant species and rare vegetation communities. Random meander searches are typically conducted throughout a growing season because the best time to identify specific plants varies (e.g., budding stage, flowering stage, moisture conditions, maturity, etc.). During the searches, a complete list of vegetation in the area is compiled.

The conservation ranks for species identified in the field are obtained from the ACCDC database. Those ranks are then used to assess the rarity of the species observed. The locations of any rare plants observed in the field are recorded along with their approximate density.

2.3 Wetland Delineations

2.3.1 Desk-Top Assessment

A desk-top assessment of wetlands that may be present at the site is completed by reviewing GeoNB's online maps. The GeoNB database includes wetlands that appear on 1:10 000 scale maps. The wetlands included are those that are on file with the NBDELG and the NBDNRED. Topographic and LIDAR maps are also reviewed to determine where potential wetlands may be present on the site.

2.3.2 Field Assessment

Fundy Engineering's process for delineating a wetland boundary is based upon the United States Army Corps of Engineers (USACE) Wetlands Delineation Manual [Environmental Laboratory, 1987], the USACE [2008] regional supplement, and Tiner [1999]. We base our assessments on the New Brunswick Clean Environment Act [R.S.N.B. 1973, c. C-6] definition of a wetland (i.e., Section 1.1.1).

We use three criteria for delineating wetland boundaries. Based on this approach, an area is deemed a wetland based on the presence of:
> wetland hydrology;
> wetland hydrophytic vegetation; and
> wetland hydric soils.
The three criteria noted above are not required to be perennially present for an area to be deemed a wetland. For example, wetland hydrology may not exist during a drought or vegetation may not be present if the wetland has been impacted by infilling. The three criteria are discussed in detail below.

2.3.2.1 Hydrology

The Environmental Laboratory [1987], defines wetland hydrology as comprising all hydrological characteristics of areas that are periodically inundated or have soils saturated to the surface at some time during the growing season (i.e., the period between the last spring killing frost and the first fall killing frost, which is dependent on local climate and geography).

There are primary and secondary hydrological indicators and areas deemed as wetland should have one primary and two or more secondary indicators present in conjunction with the other two wetland criteria (i.e., wetland hydrophytic vegetation and wetland hydric soils).

Primary indicators of wetland hydrology may include, but are not limited to:
> ponded water;
$>$ saturated soils;
> water marks on woody vegetation, fixed objects, etc.;
> drift lines;
$>$ sediment and debris deposits on the surface, vegetation, etc.; and
> drainage patterns, such as channels, scours, etc.
In addition to the primary indicators, there are a variety of secondary wetland hydrology indicators. Secondary indicators include, but are not limited to:
> oxidized root channels in the upper 30 cm of the soil profile;
> water-stained leaves;
> local soil survey hydrology data;
$>$ the faculative-neutral test of the vegetation as described in detail by Environmental Laboratory [1987]; and
> salt deposits, mud casts, and surface soil cracks.

2.3.2.2 Hydric Soils

Hydric soils are defined as those that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part [USDA-NRCS, 2003]. Primary indicators of wetland hydric soils may include, but are not limited to, the presence of:
$>$ organic soils (i.e., histosols), such as peats and mucks;
$>$ histic epipedons;
$>$ sulfidic material (i.e., emits an odour of rotten eggs);
$>$ aquic or peraquic moisture regimes (i.e., soils saturated by groundwater);
$>$ reducing conditions;
$>$ soil colours indicative of hydric soils (e.g., gleyed soils, bright mottles, low matrix chroma, etc.);
$>$ iron and manganese concretions;
$>$ high organic matter in the surface horizon;
> streaking of subsurface horizons by organic matter; and
$>$ organic pans.
Hydric soils are assessed in the field by excavating test pits using a shovel. Notes on the soil horizons present and the depth located within the pit(s) are noted. The matrix colour and mottle colour, if present, of the soils are determined using Munsell Soil Colour Charts [Gretag-Macbeth, 2000].

2.3.2.3 Hydrophytic Vegetation

Hydrophytic vegetation is defined as the sum total of macrophytic plant life that occurs in areas where the frequency and duration of inundation or soil saturation produce permanent or periodically saturated soils of sufficient duration to exert a controlling influence on the plant species present [Environmental Laboratory, 1987]. Hydrophytic vegetation should be the dominant plant type and is characterized by the dominant species that comprises the plant community.

2.3.2.4 Boundary Delineation

The wetland perimeter is delineated by assessing the relationship between hydrological indicators, hydrophytic vegetation, and hydric soils. Each datum point in the field, spaced about 5 m apart, is collected using a handheld Global Positioning System (GPS) unit with an estimated accuracy rating of $\pm 3 \mathrm{~m}$.

2.4 Wetland Functional Assessments

For this Work, WFAs were only completed on wetlands ≥ 0.5 ha in size and / or those wetlands considered distinctive.

2.4.1 WESP-AC Model

The NBDELG requires that a WFA be conducted using the Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC), which is a standardized method for assessing some of the important natural functions of all types of wetlands in Atlantic Canada. WESPAC generates normalized scores (i.e., 0 to 10) and ratings (i.e., Lower, Moderate, and Higher) for each function / attribute of a wetland and does so in a consistent and transparent manner. The scores and ratings are used by the Regulator(s) to inform their decisions regarding avoidance, minimization, and replacement.

The, "NB_WESP-AC_Nontidal_Calculator_SingleSite_23July2018_protected.xlsx" model was used for the wetland functional assessments described herein [NBDELG, 2018]. The NonTidal, versus the Tidal, model was chosen because the wetlands are located above the head of tide. The supplementary data contained in Supplnfo_Nontidal_WESP-AC.xlsx file were also used for the assessment.

Non-tidal wetlands are vegetated wetlands that do not experience a fluctuation in their surface water levels at any time of the year as a result of oceanic tides. They are commonly categorized as a swamp, marsh, bog, or fen.

After completing a desk-top assessment and a field assessment, input data are used by the logic models programmed within the WESP-AC Excel ${ }^{\circledR}$ spreadsheets to calculate normalized scores and ratings for each of the wetland attributes summarized in Table 1.

Table 1. Wetland functions and other attributes scored by NonTidal WESP-AC in Atlantic Canada. After NBDELG [2018].

Function or Attribute	Definition	Potential Benefits
Hydrologic Functions		
Water storage and delay	The effectiveness for storing runoff or delaying the downslope movement of surface water for long or short periods	Flood control and maintain ecological systems
Stream flow support	The effectiveness for contributing water to streams especially during the driest part of a growing season	Support fish and other aquatic life
Water Quality Maintenance Functions		
Water cooling	The effectiveness for maintaining or reducing temperature of downslope waters	Support coldwater fish and other aquatic life

Function or Attribute	Definition	Potential Benefits
Sediment retention and stabilization	The effectiveness for intercepting and filtering suspended inorganic sediments, thus allowing their deposition, as well as reducing energy of waves and currents, resisting excessive erosion, and stabilizing underlying sediments or soil	Maintain quality of receiving waters and protect shoreline structures from erosion
Phosphorus retention	The effectiveness for retaining phosphorus for long periods (> 1 growing season)	Maintain quality of receiving waters
Nitrate removal and retention	The effectiveness for retaining particulate nitrate and converting soluble nitrate and ammonium to nitrogen gas while generating little or no nitrous oxide (a potent greenhouse gas)	Maintain quality of receiving waters
Organic nutrient export	The effectiveness for producing and subsequently exporting organic nutrients (mainly carbon), either particulate or dissolved	Support food chains in receiving waters
Ecological Habitat Functions		
Fish habitat	The capacity to support an abundance and diversity of native fish (both anadromous and resident species)	Support recreational and ecological values
Aquatic invertebrate habitat	The capacity to support or contribute to an abundance or diversity of invertebrate animals, which spend all or part of their life cycle underwater or in moist soil and includes dragonflies, midges, clams, snails, water beetles, shrimp, aquatic worms, and others	Support salmon and other aquatic life and maintain regional biodiversity
Amphibian and reptile habitat	The capacity to support or contribute to an abundance or diversity of native frogs, toads, salamanders, and turtles	Maintain regional biodiversity
Waterbird feeding habitat	The capacity to support or contribute to an abundance or diversity of waterbirds that migrate or winter, but do not breed in the region	Support hunting and ecological values and maintain regional biodiversity
Waterbird nesting habitat	The capacity to support or contribute to an abundance or diversity of waterbirds that nest in the region	Maintain regional biodiversity
Songbird, raptor, and mammal habitat	The capacity to support or contribute to an abundance or diversity of native songbird, raptor, and mammal species and functional groups, especially those that are most dependent on wetlands or water	Maintain regional biodiversity
Native plant habitat and pollinator habitat	The capacity to support or contribute to a diversity of native, hydrophytic, vascular plant species, communities, and / or functional groups, as well as the pollinating insects linked to them	Maintain regional biodiversity and food chains
Public use and recognition*	Prior designation of the wetland, by a natural resource or environmental agency, as some type of special protected area; also, the potential and actual use of a wetland for lowintensity outdoor recreation, education, or research	Commercial and social benefits of recreation and protection of prior public investments

NOTES:
*A wetland benefit that is not considered a function

2.4.2 Desk-Top Assessment

A desk-top assessment is completed prior to visiting the wetland. Aerial images and data from various sources, such as Google Earth, are consulted in order to answer 38, mostly multiple-choice, questions about the wetland.

2.4.3 Field Assessment

After the desk-top assessment is completed, the wetland is visited. Field observations and discussions with the landowner(s) are used to answer 66 specific questions related to the wetland. A stressor datasheet is also completed.

2.5 Assessors

Matt Alexander, Ph.D., P.Geo., EP and Derrick Mitchell, B.Sc.F., R.P.F. completed the watercourse and wetland assessments described herein. Derrick took the WESP-AC training in July 2016 in Fredericton, New Brunswick where the instructor was Dr. Paul Adamus. Matt attended the WESP-AC training session held on 12 and 13 September 2016 in Aulac, New Brunswick where the instructor was Dr. Paul Adamus. Derrick and Matt have both completed hundreds of wetland delineations in New Brunswick, Nova Scotia, and Prince Edward Island.

3.0 SITE DESCRIPTION

3.1 Survey Area

Based on preliminary turbine sighting studies, Natural Forces identified lands where watercourse and wetland surveys were required (i.e., the survey area). Initially, this included the following:
> 30 m buffers along roads required to access turbine sites during construction and operation;
> 30 m buffers along powerline easements;
> 30 m buffers around substations and ancillary equipment; and
> 150 m buffers around turbine bases.
Following discussions with the Regulatory Authorities (i.e., representatives with the NBDELG, NBDNRED, and the Canadian Wildlife Institute), the buffers around the proposed turbine bases were increased from 150 m to 300 m ; however, this was done late in the field season. Therefore, this Work involved ground-truthing delineation exercises within the initial survey area and aerial photo interpretation and LIDAR interpretation with spot ground-truthing delineation exercises within the expanded survey area (i.e., from 150 m to 300 m from the turbine bases). It is expected that additional ground-truthing delineation exercises will be done in spring 2020 to confirm the aerial interpretation with spot ground-truthing delineation exercises.

Figure 4 shows the survey areas on the Project lands. The total area of lands where ground-truthing delineation exercises were completed is approximately 315 ha while the total area of lands where aerial interpretation with spot ground-truthing delineation exercises were completed is about 215 ha (i.e., total survey area ~ 530 ha). Some delineation work was also completed outside of the survey areas.

Figure 4. Aerial photograph showing the survey areas on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

3.2 Habitat Types Observed

The survey area is located in the Fundy Coastal Ecodistrict of the Fundy Coast Ecoregion [Ecosystem Classification Working Group, 2007]. The Fundy Coast Ecoregion spans the entire southern coastline of New Brunswick along the Bay of Fundy from the east side of Passamaquoddy Bay to the east side of Shepody Bay. A mainly coniferous forest, dominated by red spruce, balsam fir, black spruce, white spruce, and tamarack, thrives in the cool, moist climate of the Ecoregion. Cedar is a dominant species in the limestonederived soils around Saint John. The most common hardwood species include heartleaved birch, mountain ash, red maple, and some yellow birch. The Fundy Coast Ecoregion also has a rich diversity of wetlands.

In addition to wetlands, five general types of habitat were observed across the Project site. The dominant species observed within each habitat are summarized in Table 2. Photographs are provided in Figure 5 through Figure 13.

Table 2. Habitat types observed, including dominant species, on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Habitat Type	Stratum	

[^0]| Habitat Type | Stratum | Dominant Species |
| :---: | :---: | :---: |
| | Herbs | -Bunchberry, 5\%
 -Wild sarsaparilla, 2\% |
| | Moss | -Red-stemmed feather moss, 60%
 -Reindeer lichen, 20\% |
| Type 4 - Dry with mixed softwood and rocky outcrops | Trees | - Red spruce, 75%
 -Balsam fir, 10\% |
| | Shrubs | - Sheep laurel, 5%
 -Red spruce, 2\% |
| | Herbs | - Bunchberry, 5\% |
| | Moss | -Red-stemmed feather moss, 50%
 -Three-toothed whipwort, 10\%
 -Dicranum sp., 5% |
| Type 5 - Mixed softwood | Trees | - Red spruce, 60%
 - Balsam fir, 15\%
 - Heart-leaved birch, 5%
 -Tamarack, 5\% |
| | Shrubs | - Red spruce, 20\%
 - Mountain holly, 10\%
 -Balsam fir, 5\%
 - Sheep laurel, 2\%
 - Late lowbush blueberry, 1% |
| | Herbs | - No herbs |
| | Moss | - Red-stemmed feather moss, 90%
 - Reindeer lichen, 5% |
| | | |

Figure 5. Photograph showing an example of shrub land habitat (i.e., Type 1) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 6. Photograph showing another example of shrub land habitat (i.e., Type 1) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 7. Photograph showing an example of the mixed softwood aged 50 to 100+ years habitat (i.e., Type 2) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 8. Photograph showing another example of the mixed softwood aged 50 to 100+ years habitat (i.e., Type 2) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 9. Photograph showing an example of dry with rocky outcrops habitat (i.e., Type 3) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 10. Photograph showing an example of dry with rocky outcrops habitat (i.e., Type 3) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 11. Photograph showing an example of dry with mixed softwood and rocky outcrops habitat (i.e., Type 4) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 12. Photograph showing another example of dry with mixed softwood and rocky outcrops habitat (i.e., Type 4) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 13. Photograph showing an example of mixed softwood habitat (i.e., Type 5) observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

4.0 WATERCOURSE DELINEATIONS

4.1 Desk-Top Assessment

GeoNB mapping shows four named watercourses within the boundaries of the overall site (Figure 14):
> Burchill's Brook;
> Frenchman's Creek;
> Mill Creek; and
> Marsh Brook.
All are second order watercourses. Burchill's Brook and Frenchman's Creek fall within the Musquash River watershed whereas Mill Creek and Marsh Brook drain directly to the Bay of Fundy. Although not confirmed through field assessments, it is believed that the main stems of all these watercourses are salmonid-bearing and support fish habitat.

There are also several unnamed watercourses that appear within the GeoNB mapping database (Figure 14).

Figure 14. Mapped watercourses present on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

4.2 Field Assessments

Depth to bedrock across the Project lands is typically only a few centimetres below the surface and the soils atop the bedrock are poorly drained clays. As a result, many watercourses are present on the lands. Watercourses were delineated in the field between 19 August 2019 and 15 October 2019. Those watercourses are shown in Figure 15 and Table 3 summarizes their characteristics. Photographs of the watercourses are provided in Appendix I, which includes all photographs taken during the field program.

Overall, 74 watercourses were identified and delineated within the survey area. Most of the watercourses delineated are ephemeral and likely do not support fish and / or fish habitat. Other than Burchill's Brook (BB), Frenchman's Creek (FC), Mill Creek (MC), and Marsh Brook (MB), the only watercourse delineated in the field where fish were observed was Maguires Cove Brook (MCB). Several brook trout (Salvelinus fontinalis) were observed in pools below the outlet from the wetland connected to MCB.

Figure 15. Watercourses delineated in the field within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Table 3. Characteristics of the watercourses identified within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

*BB = Burchill's Brook; Trib = Tributary; FC = Frenchman's Creek; MB = Marsh Brook; MC = Mill Creek; MCB = Maguires Cove Brook; MCBW = Maguires Cove Brook Wetland; PH = Paddy's Hill; PLE = PipeLine East; PLW = PipeLine West; WC = Watercourse; OD = Old Dump

4.2.1 Burchill Road Culvert Locations

Noticeable culverts below Burchill Road were recorded during the field assessments. A summary of those culverts is provided in Table 4.

Table 4. Summary of culverts observed below Burchill Road in west Saint John, New Brunswick.

Culvert	Inside diameter (mm)	Material	Latitude	Longitude	Comments
1	450	Concrete	$45^{\circ} 10^{\prime} 27.34{ }^{\prime \prime N}$	$66^{\circ} 12^{\prime 22} .73^{\prime \prime} \mathrm{W}$	
2	450	Concrete	$45^{\circ} 10^{\prime} 29.72{ }^{\prime \prime} \mathrm{N}$	$66^{\circ} 12 \cdot 23.68{ }^{\prime \prime} \mathrm{W}$	
3	450	Concrete	$45^{\circ} 10^{\prime} 32.30^{\prime \prime} \mathrm{N}$	$66^{\circ} 12^{\prime} 25.40^{\prime \prime} \mathrm{W}$	
4	1800	Corrugated steel	$45^{\circ} 10^{\prime} 36.44^{\prime \prime} \mathrm{N}$	$66^{\circ} 12{ }^{\prime} 30.511^{\prime \prime W}$	Conveys mainstem of Burchill's Brook
5	310	Concrete	$45^{\circ} 10^{\prime} 56.95{ }^{\prime \prime N}$	$66^{\circ} 12{ }^{\prime} 25.63^{\prime \prime} \mathrm{W}$	Considerably undersized
6	450	Concrete	$45^{\circ} 11{ }^{\prime} 11.62^{\prime \prime} \mathrm{N}$	66º $12{ }^{\prime 2} 27.62^{\prime \prime W}$	Conveys tributary of Frenchman's Creek; likely undersized; full of woody debris

5.0 RARE PLANTS

5.1 Field Assessment

A vegetation survey was conducted across the Project site between 10 June 2019 and 15 October 2019 to determine the presence and locations of any rare plant species and rare vegetation communities. All told, 294 plant species were identified on the property (Table 5). According to ACCDC databases, five of those species are considered rare:
$>$ purple false foxglove (Agalinis purpurea);
> coastal sedge (Carex exilis);
$>$ Wiegand's sedge (Carex wiegandii);
> Loesel's twayblade (Liparis loeselii); and
$>$ cloudberry (Rubus chamaemorus).
Interpretation of the ACCDC S-rank system is provided in Table 6. Figure 16 shows the general location of the rare plants observed at the Project site and the population density. More detailed information is included in the sections that follow.

Table 5. Flora species observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project. Red shaded entries indicate rare or sensitive species.

Common Name	Scientific Name	SRank	SRankDate	Sgsrank
Balsam fir	Abies balsamea	S5	20150715	Secure
Striped maple	Acer pensylvanicum	S5	20150715	Secure
Red maple	Acer rubrum	S5	20150715	Secure
Mountain maple	Acer spicatum	S5	20150715	Secure
Common yarrow	Achillea millefolium	SNA	19991129	Exotic
Bishop's goutweed	Aegopodium podagraria	SNA	20150715	Exotic
Purple false foxglove	Agalinis purpurea	S1	20150715	May Be At Risk
Redtop	Agrostis gigantea	SNA	20150715	Exotic
Rough bent grass	Agrostis scabra	S5	20150715	Secure
Northern water plantain	Alisma triviale	S5	20150715	Secure
Speckled alder	Alnus incana	S5	20150715	Secure
Green alder	Alnus viridis	S5	20150715	Secure
Woodland angelica	Angelica sylvestris	SNA	20150715	Exotic
Field pussytoes	Antennaria neglecta	SNA	20021112	Exotic
Wild sarsaparilla	Aralia nudicaulis	S5	20150715	Secure
Common lady fern	Athyrium filix-femina	S5	20150715	Secure
Three-toothed whipwort	Bazzania Tricrenata	SU	20150325	
Yellow birch	Betula alleghaniensis	S5	20150715	Secure
Heart-leaved birch	Betula cordifolia	S5	20150715	Secure
Nodding beggarticks	Bidens cernua	S5	20150715	Secure
Devil's beggarticks	Bidens frondosa	S5	20150715	Secure
Bluejoint reed grass	Calamagrostis canadensis	S5	20150715	Secure
Chee reed grass	Calamagrostis epigeios	SNA	20150715	Exotic
Hedge false bindweed	Calystegia sepium	S5	20150715	Secure
Pennsylvania bittercress	Cardamine pensylvanica	S5	20150715	Secure

[^1]| Common Name | Scientific Name | SRank | SRankDate | Sgsrank |
| :---: | :---: | :---: | :---: | :---: |
| Black sedge | Carex arctata | S5 | 20150715 | Secure |
| Golden sedge | Carex aurea | S4 | 20150715 | Secure |
| Brownish sedge | Carex brunnescens | S5 | 20150715 | Secure |
| Silvery sedge | Carex canescens | S5 | 20150715 | Secure |
| Chestnut sedge | Carex castanea | S4 | 20150715 | Secure |
| Crawford's sedge | Carex crawfordii | S5 | 20150715 | Secure |
| Hidden-scaled sedge | Carex cryptolepis | S4 | 20150715 | Secure |
| White-edged sedge | Carex debilis | S5 | 20150715 | Secure |
| Two-seeded sedge | Carex disperma | S5 | 20150715 | Secure |
| Star sedge | Carex echinata | S5 | 20150715 | Secure |
| Coastal sedge | Carex exilis | S3 | 20150715 | Secure |
| Yellow sedge | Carex flava | S5 | 20150715 | Secure |
| Graceful sedge | Carex gracillima | S5 | 20150715 | Secure |
| Nodding sedge | Carex gynandra | S5 | 20150715 | Secure |
| Bladder sedge | Carex intumescens | S5 | 20150715 | Secure |
| Slender sedge | Carex lasiocarpa | S5 | 20150715 | Secure |
| Bristly-stalked sedge | Carex leptalea | S5 | 20150715 | Secure |
| Finely-nerved sedge | Carex leptonervia | S5 | 20150715 | Secure |
| Sallow sedge | Carex lurida | S5 | 20150715 | Secure |
| Boreal bog sedge | Carex magellanica | S5 | 20150715 | Secure |
| Smooth black sedge | Carex nigra | S4S5 | 20150715 | Secure |
| New England sedge | Carex novae-angliae | S5 | 20150715 | Secure |
| Pale sedge | Carex pallescens | S5 | 20150715 | Secure |
| Few-flowered sedge | Carex pauciflora | S4S5 | 20150715 | Secure |
| Cyperuslike sedge | Carex pseudocyperus | S5 | 20150715 | Secure |
| Broom sedge | Carex scoparia | S5 | 20150715 | Secure |
| Awl-fruited sedge | Carex stipata | S5 | 20150715 | Secure |
| Tussock sedge | Carex stricta | S5 | 20150715 | Secure |
| Blunt broom sedge | Carex tribuloides | S4S5 | 20150715 | Secure |
| Three-seeded sedge | Carex trisperma | S5 | 20150715 | Secure |
| Northern beaked sedge | Carex utriculata | S5 | 20150715 | Secure |
| Greenish sedge | Carex viridula | S4 | 20150715 | Secure |
| Fox sedge | Carex vulpinoidea | S4S5 | 20150715 | Secure |
| Wiegand's sedge | Carex wiegandif | S3 | 20150715 | Secure |
| Black knapweed | Centaurea nigra | SNA | 20150715 | Exotic |
| Leatherleaf | Chamaedaphne calyculata | S5 | 20150715 | Secure |
| Fireweed | Chamaenerion angustifolium | S5 | 20150715 | Secure |
| White turtlehead | Chelone glabra | S5 | 20150715 | Secure |
| American golden saxifrage | Chrysosplenium americanum | S5 | 20150715 | Secure |
| Small enchanter's nightshade | Circaea alpina | S5 | 20150715 | Secure |
| Reindeer lichen | Cladonia polyscarpoides | SNA | 20150329 | Undetermined |
| Goldthread | Coptis trifolia | S5 | 20150715 | Secure |
| Alternate-leaved dogwood | Cornus alternifolia | S5 | 20150715 | Secure |
| Bunchberry | Cornus canadensis | S5 | 20150715 | Secure |
| Red osier dogwood | Cornus sericea | S5 | 20150715 | Secure |
| Pink lady's-slipper | Cypripedium acaule | S5 | 20150715 | Secure |
| Poverty oat grass | Danthonia spicata | S5 | 20150715 | Secure |

[^2]| Common Name | Scientific Name | SRank | SRankDate | Sgsrank |
| :---: | :---: | :---: | :---: | :---: |
| Shrubby cinquefoil | Dasiphora fruticosa | S4 | 20150715 | Secure |
| Eastern hay-scented fern | Dennstaedtia punctilobula | S5 | 20150715 | Secure |
| Woolly panic grass | Dichanthelium acuminatum | SNA | 20181211 | Secure |
| Northern bush honeysuckle | Diervilla lonicera | S5 | 20150715 | Secure |
| Hairy flat-top white aster | Doellingeria umbellata | S5 | 20150715 | Secure |
| Round-leaved sundew | Drosera rotundifolia | S5 | 20150715 | Secure |
| Mountain wood fern | Dryopteris campyloptera | S5 | 20150715 | Secure |
| Spinulose wood fern | Dryopteris carthusiana | S5 | 20150715 | Secure |
| Crested wood fern | Dryopteris cristata | S5 | 20150715 | Secure |
| Evergreen wood fern | Dryopteris intermedia | S5 | 20150715 | Secure |
| Marginal wood fern | Dryopteris marginalis | S5 | 20150715 | Secure |
| Large barnyard grass | Echinochloa crus-galli | SNA | 20150715 | Exotic |
| Common viper's bugloss | Echium vulgare | SNA | 20150715 | Exotic |
| Needle spikerush | Eleocharis acicularis | S5 | 20150715 | Secure |
| Blunt spikerush | Eleocharis obtusa | S5 | 20150715 | Secure |
| Common spikerush | Eleocharis palustris | S5 | 20150715 | Secure |
| Black crowberry | Empetrum nigrum | S5 | 20150715 | Secure |
| Trailing arbutus | Epigaea repens | S5 | 20150715 | Secure |
| Northern willowherb | Epilobium ciliatum | S5 | 20150715 | Secure |
| Bog willowherb | Epilobium leptophyllum | S5 | 20150715 | Secure |
| Marsh willowherb | Epilobium palustre | S5 | 20150715 | Secure |
| Helleborine | Epipactis helleborine | SNA | 20150715 | Exotic |
| Field horsetail | Equisetum arvense | S5 | 20150715 | Secure |
| Woodland horsetail | Equisetum sylvaticum | S5 | 20150715 | Secure |
| Variegated horsetail | Equisetum variegatum | S4 | 20150715 | Secure |
| Philadelphia fleabane | Erigeron philadelphicus | S4 | 20150715 | Secure |
| Rough fleabane | Erigeron strigosus | S5 | 20150715 | Secure |
| Narrow-leaved cottongrass | Eriophorum angustifolium | S5 | 20150715 | Secure |
| Tussock cottongrass | Eriophorum vaginatum | S5 | 20150715 | Secure |
| Tawny cottongrass | Eriophorum virginicum | S5 | 20150715 | Secure |
| Common dog mustard | Erucastrum gallicum | SNA | 20150715 | Exotic |
| Spotted Joe-pye-weed | Eupatorium maculatum | S5 | 20150715 | Secure |
| Common eyebright | Euphrasia nemorosa | SNA | 20150715 | Exotic |
| Low rough aster | Eurybia radula | S5 | 20150715 | Secure |
| Grass-leaved goldenrod | Euthamia graminifolia | S5 | 20150715 | Secure |
| Wild strawberry | Fragaria virginiana | S5 | 20150715 | Secure |
| Glossy buckthorn | Frangula alnus | SNA | 20150715 | Exotic |
| White ash | Fraxinus americana | S4S5 | 20150715 | Secure |
| Common hemp-nettle | Galeopsis tetrahit | SNA | 20150715 | Exotic |
| Rough bedstraw | Galium asprellum | S5 | 20150715 | Secure |
| Smooth bedstraw | Galium mollugo | SNA | 20150715 | Exotic |
| Three-petaled bedstraw | Galium trifidum | S5 | 20150715 | Secure |
| Three-flowered bedstraw | Galium triflorum | S5 | 20150715 | Secure |
| Creeping snowberry | Gaultheria hispidula | S5 | 20150715 | Secure |
| Eastern teaberry | Gaultheria procumbens | S5 | 20150715 | Secure |
| Black huckleberry | Gaylussacia baccata | S5 | 20150715 | Secure |
| Yellow avens | Geum aleppicum | S5 | 20150715 | Secure |

Common Name	Scientific Name	SRank	SRankDate	Sgsrank
Water avens	Geum rivale	S5	20150715	Secure
Canada manna grass	Glyceria canadensis	S5	20150715	Secure
Common tall manna grass	Glyceria grandis	S5	20150715	Secure
Slender manna grass	Glyceria melicaria	S5	20150715	Secure
Fowl manna grass	Glyceria striata	S5	20150715	Secure
Spurred gentian	Halenia deflexa	S4S5	20150715	Secure
Orange hawkweed	Hieracium aurantiacum	SNA	20150715	Exotic
Meadow hawkweed	Hieracium caespitosum	SNA	20150715	Exotic
Rough hawkweed	Hieracium scabrum	S5	20150715	Secure
Common hop	Humulus lupulus	SU	20150715	Sensitive
American marsh pennywort	Hydrocotyle americana	S5	20150715	Secure
Stairstep moss	Hylocomium splendens	S5	20150331	Secure
Northern St. John's-wort	Hypericum boreale	S5	20021112	Secure
Common St. John's-wort	Hypericum perforatum	SNA	20150715	Exotic
Mountain holly	Ilex mucronata	S5	20150715	Secure
Common winterberry	llex verticillata	S5	20150715	Secure
Harlequin blue flag	Iris versicolor	S5	20150715	Secure
Narrow-panicled rush	Juncus brevicaudatus	S5	20150715	Secure
Soft rush	Juncus effusus	S5	20150715	Secure
Thread rush	Juncus filiformis	S5	20150715	Secure
Slender rush	Juncus tenuis	S5	20150715	Secure
Common juniper	Juniperus communis	S5	20150715	Secure
Sheep laurel	Kalmia angustifolia	S5	20150715	Secure
Pale bog laurel	Kalmia polifolia	S5	20150715	Secure
Tamarack	Larix laricina	S5	20150715	Secure
Common Labrador tea	Ledum groenlandicum	S5	20150715	Secure
Oxeye daisy	Leucanthemum vulgare	SNA	20150715	Exotic
Butter-and-eggs	Linaria vulgaris	SNA	20150715	Exotic
Twinflower	Linnaea borealis	S5	20150715	Secure
Loesel's twayblade	Liparis loeselif	S3	20150715	Secure
Inflated lobelia	Lobelia inflata	S5	20150715	Secure
Canada fly honeysuckle	Lonicera canadensis	S5	20150715	Secure
Mountain fly honeysuckle	Lonicera villosa	S5	20150715	Secure
Garden bird's-foot trefoil	Lotus corniculatus	SNA	20150715	Exotic
Large-leaved lupine	Lupinus polyphyllus	SNA	20150715	Exotic
Hairy woodrush	Luzula acuminata	S5	20150715	Secure
Stiff clubmoss	Lycopodium annotinum	S5	20150715	Secure
Creeping jenny	Lycopodium complanatum	S4S5	20150715	Secure
Round-branched tree-clubmoss	Lycopodium dendroideum	S5	20150715	Secure
Northern water horehound	Lycopus uniflorus	S5	20150715	Secure
Northern starflower	Lysimachia borealis	S5	20150715	Secure
Swamp yellow loosestrife	Lysimachia terrestris	S5	20150715	Secure
Purple loosestrife	Lythrum salicaria	SNA	20150715	Exotic
Wild lily-of-the-valley	Maianthemum canadense	S5	20150715	Secure
Three-leaved false Soloman's seal	Maianthemum trifolium	S5	20150715	Secure
White sweet-clover	Melilotus albus	SNA	20150715	Exotic
Wild mint	Mentha arvensis	S5	20150715	Secure

[^3]| Common Name | Scientific Name | SRank | SRankDate | Sgsrank |
| :---: | :---: | :---: | :---: | :---: |
| Partridgeberry | Mitchella repens | S5 | 20150715 | Secure |
| Naked Bishop's-cap | Mitella nuda | S5 | 20150715 | Secure |
| Pinesap | Monotropa hypopithys | S4 | 20150715 | Secure |
| Convulsion-root | Monotropa uniflora | S5 | 20150715 | Secure |
| Sweet gale | Myrica gale | S5 | 20150715 | Secure |
| Alternate-flowered water milfoil | Myriophyllum alterniflorum | S4S5 | 20150715 | Secure |
| Mountain holly | Nemopanthus mucronatus | S5 | 20150715 | Secure |
| Whorled wood aster | Oclemena acuminata | S5 | 20150715 | Secure |
| Bog aster | Oclemena nemoralis | S5 | 20150715 | Secure |
| White panicled American-aster (hybrid) | Oclemena x blakei | SNA | 20060613 | Not Assessed |
| Red bartsia | Odontites vernus | SNA | 20150715 | Exotic |
| Common evening primrose | Oenothera biennis | S5 | 20150715 | Secure |
| Sensitive fern | Onoclea sensibilis | S5 | 20150715 | Secure |
| One-sided wintergreen | Orthilia secunda | S5 | 20150715 | Secure |
| White-grained mountain rice | Oryzopsis asperifolia | S5 | 20150715 | Secure |
| Interrupted fern | Osmunda claytoniana | S5 | 20150715 | Secure |
| Royal fern | Osmunda regalis | S5 | 20150715 | Secure |
| Cinnamon fern | Osmundastrum cinnamomeum | S5 | 20150715 | Secure |
| Common wood sorrel | Oxalis montana | S5 | 20150715 | Secure |
| European wood sorrel | Oxalis stricta | S5 | 20150715 | Secure |
| Golden groundsel | Packera aurea | S4S5 | 20150715 | Secure |
| Virginia creeper | Parthenocissus quinquefolia | SNA | 20150715 | Exotic |
| Reed canary grass | Phalaris arundinacea | S5 | 20150715 | Secure |
| Northern beech fern | Phegopteris connectilis | S5 | 20150715 | Secure |
| Common Timothy | Phleum pratense | SNA | 20150715 | Exotic |
| Black chokeberry | Photinia melanocarpa | S5 | 20150715 | Secure |
| Eastern ninebark | Physocarpus opulifolius | SNA | 20150715 | Exotic |
| Black spruce | Picea mariana | S5 | 20150715 | Secure |
| Red spruce | Picea rubens | S5 | 20150715 | Secure |
| White bog orchid | Platanthera dilatata | S4 | 20150715 | Secure |
| Red-stemmed feather moss | Pleurozium schreberi | S5 | 20150331 | Secure |
| Canada blue grass | Poa compressa | SNA | 20150715 | Exotic |
| Wood blue grass | Poa nemoralis | SNA | 20150715 | Exotic |
| Fowl blue grass | Poa palustris | S5 | 20150715 | Secure |
| Fringed black bindweed | Polygonum cilinode | S5 | 20150715 | Secure |
| Marshpepper smartweed | Polygonum hydropiper | SNA | 20150715 | Exotic |
| Spotted lady's thumb | Polygonum persicaria | SNA | 20150715 | Exotic |
| Rock polypody | Polypodium virginianum | S5 | 20150715 | Secure |
| Balsam poplar | Populus balsamifera | S5 | 20150715 | Secure |
| Trembling aspen | Populus tremuloides | S5 | 20150715 | Secure |
| Ribbon-leaved pondweed | Potamogeton epihydrus | S5 | 20150715 | Secure |
| Common silverweed | Potentilla anserina | S5 | 20150715 | Secure |
| Rough cinquefoil | Potentilla norvegica | S5 | 20150715 | Secure |
| Old field cinquefoil | Potentilla simplex | S5 | 20150715 | Secure |
| Gall of the Earth | Prenanthes trifoliolata | S5 | 20150715 | Secure |
| Common self-heal | Prunella vulgaris | S5 | 20150715 | Secure |
| Pin cherry | Prunus pensylvanica | S5 | 20150715 | Secure |

[^4]| Common Name | Scientific Name | SRank | SRankDate | Sgsrank |
| :---: | :---: | :---: | :---: | :---: |
| Bracken fern | Pteridium aquilinum | S5 | 20150715 | Secure |
| Knight's plume moss | Ptilium crista-castrensis | S5 | 20150331 | Secure |
| Common buttercup | Ranunculus acris | SNA | 20150715 | Exotic |
| Bristly buttercup | Ranunculus hispidus | S4S5 | 20150715 | Secure |
| Creeping buttercup | Ranunculus repens | SNA | 20150715 | Exotic |
| Alder-leaved buckthorn | Rhamnus alnifolia | S4S5 | 20150715 | Secure |
| European buckthorn | Rhamnus cathartica | SNA | 20150715 | Exotic |
| Little yellow rattle | Rhinanthus minor | SNA | 20150715 | Secure |
| Rhodora | Rhododendron canadense | S5 | 20150715 | Secure |
| Skunk currant | Ribes glandulosum | S5 | 20150715 | Secure |
| Smooth gooseberry | Ribes hirtellum | S5 | 20150715 | Secure |
| Bristly black currant | Ribes lacustre | S5 | 20150715 | Secure |
| Swamp red currant | Ribes triste | S5 | 20150715 | Secure |
| Smooth rose | Rosa blanda | S5 | 20150715 | Secure |
| Shining rose | Rosa nitida | S5 | 20150715 | Secure |
| Rugosa rose | Rosa rugosa | SNA | 20150715 | Exotic |
| Alleghaney blackberry | Rubus allegheniensis | S5 | 20150715 | Secure |
| Smooth blackberry | Rubus canadensis | S5 | 20150715 | Secure |
| Cloudberry | Rubus chamaemorus | S3S4 | 20150715 | Secure |
| Bristly dewberry | Rubus hispidus | S5 | 20150715 | Secure |
| Red raspberry | Rubus idaeus | S5 | 20150715 | Secure |
| Dwarf red raspberry | Rubus pubescens | S5 | 20150715 | Secure |
| Curled dock | Rumex crispus | SNA | 20150715 | Exotic |
| Greater water dock | Rumex orbiculatus | S5 | 20150715 | Secure |
| Bebb's willow | Salix bebbiana | S5 | 20150715 | Secure |
| Pussy willow | Salix discolor | S5 | 20150715 | Secure |
| Shining willow | Salix lucida | S5 | 20150715 | Secure |
| Balsam willow | Salix pyrifolia | S5 | 20150715 | Secure |
| Red elderberry | Sambucus racemosa | S5 | 20150715 | Secure |
| Northern pitcher plant | Sarracenia purpurea | S5 | 20150715 | Secure |
| Black-girdled bulrush | Scirpus atrocinctus | S5 | 20150715 | Secure |
| Common woolly bulrush | Scirpus cyperinus | S5 | 20150715 | Secure |
| Mosquito bulrush | Scirpus hattorianus | S5 | 20150715 | Secure |
| Small-fruited bulrush | Scirpus microcarpus | S5 | 20150715 | Secure |
| Autumn hawkbit | Scorzoneroides autumnalis | SNA | 20150715 | Exotic |
| White stonecrop | Sedum album | SNA | 20150715 | Exotic |
| Sticky ragwort | Senecio viscosus | SNA | 20150715 | Exotic |
| Bladder campion | Silene vulgaris | SNA | 20150715 | Exotic |
| Mountain blue-eyed-grass | Sisyrinchium montanum | S5 | 20150715 | Secure |
| Bittersweet nightshade | Solanum dulcamara | SNA | 20150715 | Exotic |
| Canada goldenrod | Solidago canadensis | S5 | 20150715 | Secure |
| Giant goldenrod | Solidago gigantea | S5 | 20150715 | Secure |
| Downy goldenrod | Solidago puberula | S5 | 20150715 | Secure |
| Rough-stemmed goldenrod | Solidago rugosa | S5 | 20150715 | Secure |
| American mountain ash | Sorbus americana | S5 | 20150715 | Secure |
| American burreed | Sparganium americanum | S5 | 20150715 | Secure |
| Broad-fruited burreed | Sparganium eurycarpum | S4S5 | 20150715 | Secure |

Common Name	Scientific Name	SRank	SRankDate	Sgsrank	
White meadowsweet	Spiraea alba	S5	20150715	Secure	
Steeplebush	Spiraea tomentosa	S5	20150715	Secure	
Clasping-leaved twisted-stalk	Streptopus amplexifolius	S5	20150715	Secure	
Lance-leaved aster	Symphyotrichum lanceolatum	S5	20150715	Secure	
Calico aster	Symphyotrichum lateriflorum	S5	20150715	Secure	
New York aster	Symphyotrichum novi-belgii	S5	20150715	Secure	
Purple-stemmed aster	Symphyotrichum puniceum	S5	20150715	Secure	
Common tansy	Tanacetum vulgare	SNA	20150715	Exotic	
Common dandelion	Taraxacum officinale	SNA	20150715	Exotic	
Tall meadow-rue	Thalictrum pubescens	S5	20150715	Secure	
New York fern	Thelypteris noveboracensis	S5	20150715	Secure	
Eastern marsh fern	Thelypteris palustris	S5	20150715	Secure	
Eastern white cedar	Thuja occidentalis	S5	20150715	Secure	
Fraser's marsh-St. John's-wort	Triadenum fraseri	S5	20150715	Secure	
Rabbit's-foot clover	Trifolium arvense	SNA	20150715	Exotic	
Red clover	Trifolium pratense	SNA	20150715	Exotic	
Painted trillium	Trillium undulatum	S5	20150715	Secure	
Coltsfoot	Tussilago farfara	SNA	20150715	Exotic	
Broad-leaved cattail	Typha latifolia	S5	20150715	Secure	
Late lowbush blueberry	Vaccinium angustifolium	S5	20150715	Secure	
Velvet-leaved blueberry	Vaccinium myrtilloides	S5	20150715	Secure	
Small cranberry	Vaccinium oxycoccos	S5	20150715	Secure	
Mountain cranberry	Vaccinium vitis-idaea	S4S5	20150715	Secure	
American speedwell	Veronica americana	S5	20150715	Secure	
Common speedwell	Veronica officinalis	S5	20150715	Exotic	
Marsh speedwell	Veronica scutellata	S5	20150715	Secure	
Thyme-leaved speedwell	Veronica serpyllifolia	SNA	20150715	Secure	
Hobblebush	Viburnum lantanoides	S5	20150715	Secure	
Northern wild raisin	Viburnum nudum	S5	20150715	Secure	
Tufted vetch	Vicia cracca	SNA	20150715	Exotic	
Marsh blue violet	Viola cucullata	S5	20150715	Secure	
Lance-leaved violet	Viola lanceolata	S4	20150715	Secure	
Small white violet	S4S5	20150715	Secure		
Kidney-leaved white violet					

Table 6. The Atlantic Canada Conservation Data Centre's Sub-national (i.e., provincial) rarity rank (S-rank) of species and S-rank definitions.

| ACCDC |
| :---: | :--- |
| S-rank |\quad| S1 | Extremely rare: may be especially vulnerable to extirpation; typically five or fewer occurrences
 or very few remaining individuals. |
| :--- | :--- |
| S2 | Rare: may be vulnerable to extirpation due to rarity or other factors; six to 20 occurrences or
 few remaining individuals. |
| S3 | Uncommon: found only in a restricted range, even if abundant at some locations; 21 to 100
 occurrences. |
| S4 longer-term concern (e.g., watch list); 100 + occurrences. | |

Figure 16. Location and population density of rare plants observed on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

5.1.1 Purple False Foxglove

Agalinis purpurea (Figure 17) is an annual forb native to eastern Canada. In late summer or early fall, the plant, which stands 10 cm to 120 cm tall, produces purple flowers that last about a month. It is hemiparasitic on a variety of hosts, particularly graminoids and appears to thrive in areas with occasional disturbance. According to the ACCDC databases, it is listed as S 1 and May Be At Risk in New Brunswick (Table 5).

Purpurea was found at several locations on the property, but mainly in disturbed areas, such as along all-terrain vehicle trails, the pipeline right-of-way, and along the edges of roadways growing up through cracks in the asphalt (Figure 16). Specific locations in the field where observations were made along with approximate densities are provided in Table 7.

Figure 17. Photographs of Agalinis purpurea specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Table 7. Locations of Agalinis purpurea identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Latitude	Longitude	Approximate Density
$45^{\circ} 11^{\prime} 11.99^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 10.34^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 10^{\prime} 20.31^{\prime \prime} \mathrm{N}$	$66^{\circ} 12^{\prime} 19.19^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 10^{\prime} 22.96^{\prime \prime} \mathrm{N}$	$66^{\circ} 12^{\prime} 15.84^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 10^{\prime} 27.24^{\prime \prime} \mathrm{N}$	$66^{\circ} 12^{\prime} 8.64^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 10^{\prime} 30.56^{\prime \prime} \mathrm{N}$	$66^{\circ} 12^{\prime} 3.35^{\prime \mathrm{W}}$	Several hundred
$45^{\circ} 10^{\prime} 33.09^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 59.28^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 11^{\prime} 6.99^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 17.20^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 11^{\prime} 11.10 \mathrm{~N}$	$66^{\circ} 11^{\prime} 11.64^{\prime \prime} \mathrm{W}$	Several hundred

Latitude	Longitude	Approximate Density
$45^{\circ} 11^{\prime} 58.88{ }^{\prime \prime} \mathrm{N}$	$66^{\circ} 11{ }^{\prime} 33.766^{\prime \prime} \mathrm{W}$	Several hundred
$45^{\circ} 11^{\prime} 57.93$ "	$66^{\circ} 11^{\prime} 30.91{ }^{\prime \prime W}$	Several hundred
$45^{\circ} 111^{\prime} 11.17^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 11.02^{\prime \prime} \mathrm{W}$	A few hundred
$45^{\circ} 11^{\prime} 48.04{ }^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 39.65{ }^{\prime \prime} \mathrm{W}$	A few hundred
$45^{\circ} 11^{\prime} 58.94{ }^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 28.48^{\prime \prime} \mathrm{W}$	5
$45^{\circ} 11^{\prime} 56.05^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 24.49^{\prime \prime} \mathrm{W}$	50+
$45^{\circ} 11^{\prime} 55.70{ }^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 22.68{ }^{\prime \prime} \mathrm{W}$	50+
$45^{\circ} 11^{\prime} 56.38^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 22.42^{\prime \prime} \mathrm{W}$	50+
$45^{\circ} 11^{\prime} 57.01{ }^{\prime \prime} \mathrm{N}$	66011'22.13"W	50+
$45^{\circ} 11^{\prime} 58.11^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 21.09^{\prime \prime} \mathrm{W}$	50+
$45^{\circ} 11^{\prime} 57.40 \mathrm{~N}$	$66^{\circ} 11^{\prime} 20.60^{\prime \prime} \mathrm{W}$	50+
$45^{\circ} 11^{\prime} 55.90$ " N	660 ${ }^{\circ} 11^{\prime} 20.90^{\prime \prime} \mathrm{W}$	50+

5.1.2 Coastal Sedge

Several hundred specimens of Carex exilis were observed (Figure 18) throughout the bog with central coordinates $45^{\circ} 11^{\prime} 10.01^{\prime \prime} \mathrm{N}$ and $66^{\circ} 12^{\prime} 10.22^{\prime \prime} \mathrm{W}$ (Figure 16). This species of sedge is found in open peatlands and patterned fens, which distinguishes it from all other Carex species. It blooms in late May through early June and fruiting occurs in early June through late July. The ACCDC lists the coastal sedge as being uncommon but secure in New Brunswick (Table 5).

Figure 18. Photograph of Carex exilis specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

5.1.3 Wiegand's Sedge

Wiegand's sedge (Carex wiegandii) is a grass-like densely clumped sedge found in thin peatlands and bogs and acidic swamps in the shade of conifers or alder thickets. It generally has numerous flowering / fruiting stems 10 cm to 100 cm long with four to six flower / fruit clusters (Figure 19). The ACCDC lists Wiegand's sedge as being uncommon but secure in New Brunswick (Table 5). Three clumps of wiegandii were observed at $45^{\circ} 11^{\prime} 41.11^{\prime \prime} \mathrm{N}$ and $66^{\circ} 12^{\prime} 17.20^{\prime \prime} \mathrm{W}$ (Figure 16) within a swamp.

Figure 19. Photographs of Carex wiegandii specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

5.1.4 Loesel's Twayblade

Loesel's twayblade (Liparis loeselii) was found in three locations on the property (Table 8; Figure 16). Loeselii (Figure 20) is a small (i.e., 15 cm to 20 cm tall) bright yellowish green orchid often overlooked in fens, bogs, and disturbed habitats because of its size. It has two dark green, often glossy, basal leaves that appear in the spring and produces up to 18 small flowers in June and July. The ACCDC lists Loesel's twayblade as being uncommon but secure in New Brunswick (Table 5).

Table 8. Locations of Liparis loeselii identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Latitude	Longitude	Approximate Density
$45^{\circ} 11^{\prime} 47.77^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 42.01^{\prime W} \mathrm{~W}$	Nine plants over $1 \mathrm{~m}^{2}$
$45^{\circ} 11^{\prime} 55.27^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 21.28^{\prime \prime} \mathrm{W}$	Seven plants over $10 \mathrm{~m}^{2}$
$45^{\circ} 11^{\prime} 54.90^{\prime \prime} \mathrm{N}$	$66^{\circ} 11^{\prime} 21.09^{\prime W} \mathrm{~W}$	Three plants over $1 \mathrm{~m}^{2}$

Figure 20. Photograph of Liparis loeselii specimens identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

5.1.5 Cloudberry

Cloudberry (Rubus chamaemorus) was found throughout the two bogs at the Project site (Figure 16). Chamaemorus (Figure 21) is a 10 cm to 25 cm tall rhizomatous herb that produces an amber-coloured edible fruit in the fall similar to raspberries or blackberries. It is typically found in cool boggy places and calcareous soils. The ACCDC lists the cloudberry as being uncommon but secure in New Brunswick (Table 5).

Figure 21. Photograph of Rubus chamaemorus identified on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

6.0 WETLAND DELINEATIONS

6.1 Desk-Top Assessment

GeoNB mapping shows several large wetlands within the boundaries of the property (Figure 22). Several of the wetlands are contiguous with on-site watercourses, such as Burchill's Brook, Frenchman's Creek, Mill Creek, and Marsh Brook. The wetlands at the mouth of each of those aforementioned watercourses are considered provincially significant because they are tidal wetlands.

6.2 Field Assessments

Wetlands were delineated in the field between 19 August 2019 and 15 October 2019. Those wetlands are shown in Figure 23 and summarized in sections below.

6.2.1 Note on Hydric Soils

The soils within the study area are extremely shallow and sit atop bedrock. Wicklund and Langmaid [1953] described the soils in the area as Lorneville silty clay loam derived from marine deposits. The Lorneville series comprises red coloured fine-textured soils occurring along the coast. The soils are described as being poorly drained. Water is removed from the soil so slowly that the water table remains at or on the surface for the greater part of the time the soil is not frozen. These conditions are consistent across the site. Because of this, digging test pits and assessing the soils was considered extraordinary considering the landscape. Representatives with the NBDELG and NBDNRED were consulted and agreed that test pitting was not required for soils assessments.

6.2.2 Boundary Delineation

The majority of the wetland boundaries were delineated in the field; however, given the size of the survey area, some of the wetland boundaries were interpreted using aerial photography and LIDAR data with spot ground-truthing. Those boundaries are represented as dashed lines on the mapping of the survey area. It is expected that the ground-truthed boundary will be confirmed in the field during the 2020 field season.

Figure 22. Mapped wetlands present on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Figure 23. Wetlands delineated in the field within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

6.2.3 Small Wetlands

For this Project, wetlands < 0.5 ha in size are considered small wetlands. Detailed paired point analyses (i.e., upland versus wetland) and WFAs were not completed for small wetlands. Instead, information gathered from the large nearby wetlands (i.e., $\geq 0.5 \mathrm{ha}$) were used for delineating the wetland boundaries.

A total of 27 small wetlands with a total area of 3.45 ha were delineated within the study area (Table 9). Overall, there is a fairly even mix of small tall shrub swamps and coniferous swamps located within the study area.

Table 9. Summary of small wetlands (i.e., $<0.5 \mathrm{ha}$) delineated on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Map ID	Unique ID*	Classification	Size (ha)
1	BB-Trib1-W-01	Black spruce tall shrub swamp	0.118
3	BB-Trib1-W-03	Coniferous riparian linked swamp	0.034
4	BB-Trib5-W-01	Coniferous riparian linked swamp	0.041
6	BB-Trib5A-W-01	Coniferous riparian linked swamp	0.038
7	BB-Trib5A-W-02	Coniferous riparian linked swamp	0.036
8	BB-Trib5A-W-03	Coniferous basin swamp	0.026
9	BB-Trib5A-W-04	Coniferous basin swamp	0.030
18	FC-Trib1-W-05	Tall shrub swamp	0.207
22	MB-Trib2-W-02	Coniferous basin swamp	0.055
23	MB-Trib2-W-03	Coniferous basin swamp	0.377
24	MB-Trib2-W-04	Coniferous basin swamp	0.123
25	MB-Trib2-W-05	Coniferous basin swamp	0.222
27	MC-Trib1C-W-01	Tall shrub swamp	0.194
28	MC-Trib1C-W-02	Coniferous swamp	0.025
31	MC-Trib1C-W-04B	Tall shrub swamp	0.096
32	MC-Trib1C-W-05	Tall shrub swamp	0.039
34	MC-Trib1E-W-01	Riverine tall shrub swamp	0.018
37	MCB-Trib1A-W-01	Balsam fir riparian linked slope swamp	0.203
41	PH-W-03	Coniferous basin swamp	0.207
42	PH-W-04	Tall shrub swamp	0.069
43	PH-W-05	Tall shrub basin swamp	0.029
46	PLE-W-02	Tall shrub riparian linked swamp	0.045
48	PLE-W-04	Coniferous basin swamp	0.304
51	PLW-W-03	Coniferous basin swamp	0.356
52	PLW-W-04	Tall shrub swamp	0.307
53	PLW-W-05	Tall shrub swamp	0.211
55	WC-02-W-01	Mixed forest riparian linked slope swamp	0.040
$07 E$			

NOTES:
*BB = Burchill's Brook; Trib = Tributary; W = Wetland; FC = Frenchman's Creek; MB = Marsh Brook; MC = Mill Creek; MCB = Maguires Cove Brook; PH = Paddy's Hill; PLE = PipeLine East; PLW = PipeLine West; WC = Watercourse

6.2.4 Large and / or Distinctive Wetlands

For this Project, wetlands ≥ 0.5 ha in size are considered large wetlands. Distinctive wetlands are those small wetlands (i.e., $<0.5 \mathrm{ha}$) that displayed some noteworthy feature in the field (e.g., the source of a perennial tributary, located in a highly disturbed area, etc.). Detailed paired point analyses (i.e., upland versus wetland) and functional assessments were completed for all large and / or distinctive wetlands and the results are provided below (Table 10).

Overall, 28 large and / or distinctive wetlands with a combined area of 76.5 ha were delineated within the survey area. Five wetlands still require detailed ground-truthing to be completed in spring 2020 and include:
> BB-W-01 (i.e., 12);
> FC-Trib1-W-03 (i.e., 16);
> MC-W-02 (i.e., 36);
$>$ PH-W-06 (i.e., 44); and
$>$ PLW-W-06 (i.e., 54).

Table 10. Summary of large (i.e., > 0.5 ha) and / or distinctive wetlands delineated within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Map ID	Unique ID*	Classification	Size (ha)	wetand				Ypland				
				Dominant Trees	Dominant Strubs	Dominant Herbs	Moss Cover	Classification	Dominant Trees	Dominant Shrubs	Dominant Herbs	Moss Cover
2	BB-Trib1-W-02	Eastern white cedar tall shrub swamp	0.681	- Eastern white cedar, 50\% - Balsam fir, 20\% - Black spruce, 15\%	- Speckled alder, 50% - Eastern white cedar, 20\% - Balsam fir, 10\% - Black spruce, 20\%	- Bunchbery, 15\% - Fow manna grass, 10\%	- Sphagnum sp., 90\%	Immature mixed forest (40 years old)	- Balsam fir, 30\% - Eastern white cedar, 20\% - Red spruce, 20\% - Heart-leaved birch, 20\%	- Balsam fir, 20\% - Heart-leaved birch, 15\% - Red spruce, 15%	- Bunchberry, 10\%	- Sphagnum sp., 60\%
5	BB-TTibs-W-02	Coniferous riparian linked swamp	0.708	- Eastern white cedar, 35\% - Balsam fir, 30\% - Black spruce, 15% - Red maple, 10\%	- Speckled alder, 30\% - Balsam fir, 10\% - Eastern white cedar, 10\% - Red spruce, 10%	- Fow manna grass, 30\% - Bunchberry, 10\% - Spinulose woodfern, 10\%	- Sphagnum sp., 90\%	Immature mixed forest (40 years old)	- Balsam fir, 35\% - Heart-leaved birch, 20\% - Eastern white cedar, 15\% - Red spruce, 15\% - Red maple, 10%	- Balsam fir, 20\% - Heart-leaved birch, 15\% - Red spruce, 15\%	- Bunchbery, 10\% - Evergreen woodfer, 10% - Tuinflower, 5\%	- Sphagnum sp., 60\%
10	BE-Tribe-W-01	Mature eastern white cedar (150 years old) swamp	7.538	- Eastern white cedar, 85\% - Balsam fir, 5\%	- Balsam fir, 2\%		- Rhytidiadelphus sp., 80\% - Hylocomiastrum sp. 10\%	Immature softwood (40 years old)	- Balsamfir, 65\% - Heart-leaved birch, 10\% - Eastern white cedar, 5\% - Red spruce, 5\%	- Balsamfir, 10\%		- Threetoothed whipwort, 15\%
11	BB-Trib7-W-01	Coniferous basin swamp	${ }^{0.289}{ }^{+}$	- Eastern white cedar, 30\% - Tamarack, 20\% - Balsam fir, 20\% - Black spruce, 15\%	- Speckled alder, 35% - Balsam fir, 10\% - Red maple, 3\%	- Broad-leaved cattail, 15\% - Three-seeded sedge, 15\% - Spinulose woodfern,15\% - Allegheny blackberry, 2\%	- Sphagnum sp., 90\%	Mature softwood	- Balsamfir, 40\% - Red spruce, 25\% - Heart-leaved birch, 10\%	- Balsamfir, 15\% - American mountain ash, 5\% - Norther wild raisin, 5\%	- Evergreen woodfern, 15\% - Bunchberry 10%	- Red-stemmed feather moss, 50%
12	BB-W-01	Tall shrub wetland	1.242	TO BE COMPLEIED IN SPRING 2020								
13	BE-W-02	Mixed forested swamp basin	1.211	- Tamarack, 20\% - Red maple, 20\% - Heart-leaved birch, 15\% - Balsam fir, 5\% - Black spruce, 5\% - Red spruce, 5\%	- American mountain ash, 5\% - Black spruce, 5\% - Balsamfir, 2\% - Sheep laurel, 10% - Northern vild raisin, 2\% - Heart-leaved birch, 2\% - Mountain holly, 1\%	- Three-seeded sedge, 30\% - Cinnamon fern, 20\% - Bunchberry, 20\% - Slender manna grass, 2\%	- Sphagnum sp., 90\%	Mature softwood	- Balsam fir, 40\% - Red spruce, 35\% - Heart-leaved birch, 5\%	- Red spruce, 15\% - Balsam fir, 10\% - Sheep laurel, 5% - Late lowbush blueberry, 1\%		- Red-stemmed feather moss, 60\% - Stairstep moss, 10\%
14	FC-Trib1-W-01	Coniferous swamp	2.759	- Balsam fir, 50\% - Tamarack, 30\% - Black spruce, 5%	- Balsam fir, 20\% - Sheep laurel, 10%	- Three-seeded sedge, 30\% - Bunchberry, 10\%	- Sphagnum sp., 90\% - Threetoothed whipwort, 5\%	Mature softwood	- Balsam fir, 40\% - Red spruce, 25\% - Heart-leaved birch, 10\%	- American mountain ash, 5\% - Balsam fir, 5\% - Northern vild raisin, 2\%	- Evergreen woodfern, 10\% - Bunchberry 2\%	- Dicranum sp., 10\%

Map ID	Unique ID*	Classification	Size (ha)	wetand				Ypland				
				Dominant Trees	Dominant Shrubs	Dominant Herbs	Moss Cover	Classification	Dominant Trees	Dominant Shrubs	Dominant Herbs	Moss Cover
15	FC-Trib1-W-02	Bog	5.097	- Black spruce, 50\% - Balsam fir, 10\% - Tamarack, 10\% - Heart-leaved birch, 2\%	- Black spruce, 10\% - Sheep laurel, 10\% - American mountain ash, 5\% - Mountain holly, 5\% - Balsamfir, 3\% - Common Labrador tea, 1\% - Velvet-leaved blueberry, 1\%	- Three-seeded sedge, 25\% - Three-leaved false Solomon's seal, 10\% - Bunchberry, 10\%	- Sphagnum sp., 100\%	Mature softwood	- Red spruce, 20\% - Balsam fir, 20\% - Black spruce, 10\% - Tamarack, 10\% - Heart-leaved birch, 5\% - American mountain ash, 3\%	- Black spruce, 15\% - Sheep laurel, 15% - Northern wild raisin, 2\% - American mountain ash, 1\%	- Bunchberry, 20\%	- Red-stemmed feather moss, 50% - Dicranum sp., 10\%
16	FC-Trib1-W-03	Coniferous basin swamp	1.160	TO BE COMPLEIED IN SPRING 2020								
17	FC-Trib1-W-04	Eastern white cedar swamp	4.763	- Eastern white cedar, 40\% - Black spruce, 10\% - Balsam fir, 5\%	- Common Labrador tea, 15\% - Balsam fir, 10\% - Mountain holly, 10\% - Black spruce, 5\% - Common winterberry, 5\% - Eastern white cedar, 5\% - Sheep laurel, 5%	- Three-seeded sedge, 20\% - Bog aster, 15\% - Bunchberry, 15% - Cinnamon fern, 10\% - Fowl manna grass, 3\%	- Rhytidiadelphus sp., 80\% - Hylocomiastrum sp. 10\%	Mature softwood	- Heart-leaved birch, 10\% - Red maple, 10\% - Balsam fir, 5\%	- American mountain ash, 20\% - Mountain holly, 20\% - Northern wild raisin, 20\% - Sheep laurel, 10\% - Balsam fir, 5% - Speckled alder, 5% - Velvet-leaved blueberry, 5\%	- Bunchbery, 30\% - Tuinflower, 5\% - Creeping snowbery, 2\% - Easterm teaberry, 1\%	
19	FC-Trib2-W-01	Tall shrub swamp	1.014	- Balsam fir, 15\% - Red maple, 15\%	- Speckled alder, 25\% - Mountain holly, 20\% - Red maple, 20\% - Balsam fir, 15\%	- Three-seeded sedge, 25\% - Hairy flat-top white aster, 20\% - Broad-leaved cattail, 15\% - Bladder sedge, 5\% - Bunchberry, 5\% - Crested wood fern, 5\% - Dwarf red raspberry, 5\%	- Sphagnumsp., 95\%	Mature softwood	- Balsamfir, - Red spruce - Heart-leaved birch	- Balsamfir		- Red-stermed feather moss, 30\% - Three toothed whipwort, 5%
20	FC-Trib2-W-02	Tall shrub swamp	0.503	- Heart-leaved birch, 10\% - Balsam fir, 5\%	- Bristly denberry, 50\% - Mountain holly, 30% - Northerm wild raisin, 20\% - American mountain ash, 20\% - Speckled alder, 5%	- Bunchbery, 25\% - Hairy flat-top white aster, 20\% - Bog aster, 5% - Spinulose wood ferm, 5\% - Three-seeded sedge, 5\%	- Sphagnum sp., 95\%	Mature softwood	- Balsam fir, 35\% - Heart-leaved birch, 20\% - Red spruce, 10\%	- Balsam fir, 25\% - Sheep laurel, 15\% - Mountain holly, 10\% - American mountain ash, 5\% - Velvet-leaved blueberry, 5\%	- Bunchberry, 40\%	- Red-stermmed feather moss, 25\%
21	MB-Trib2-W-01	Coniferous slope swamp	9.760	- Balsamfir, 30\% - Red spruce, 25\% - Heart-leaved birch, 10\% - Eastern white cedar, 5\%	- Red spruce, 25\% - Balsam fir, 15\% - Heart-leaved birch, 5\%	- Bunchberry, 25\% - Three seeded sedge, 15\% - Evergreen woodferm, 5\% - Spinulose woodfern, 5\%	- Sphagnum sp., 95\%	Mature softwood	- Black spruce, 35% - Red spruce, 30\% - Balsamfir, 5\% - Heart-leaved birch, 2\%	- Sheep laurel, 20\% - Mountain holly, 5\% - Velvet-leaved blueberry, 5\%	- Bunchberry, 15\% - Creeping snowbery, 10\% - Mountain cranberry, 5\%	- Red-stermmed feather moss, 70\% - Reindeer lichen, 10\% - Dicranum sp., 10\%

Map ID	Unique ID*	Classification	Size (ha)	wetand				Upland				
				Dominant Trees	Dominant Shrubs	Dominant Herbs	Moss Cover	Classification	Dominant Trees	Dominant Shrubs	Dominant Herbs	Moss Cover
26	MC-Trib1B-W-01	Riverine tall shrub swamp	$0.479^{\text {+ }}$	- Balsam fir, 5\%	- Speckled alder, 50% - Balsamfir, 5\% - Eastern white cedar, 2\%	- Aat-topped aster, 20\% - Slender manna grass, 20\% - Nodding sedge, 15\% - Rough-stemmed goldenrod, 10\% - Tall meadow-rue, 5\% - Swamp yellow loosestrife, 2\% - Northern water horehound, 2\% - Three flowered bedstraw, 2\%		Mature softwood	- Red spruce, 60\% - Balsamfir, 10\% - Eastern white cedar, 5\% - Heart-leaved birch, 5\%	- Balsam fir, 40\%		- Red-stemmed feather moss, 15\% - Dicranum sp., 10\% - Three-toothed whipwort, 10\%
29	MC-Trib1C-W-03	Mature eastern white cedar (100 years+ old) riparian linked swamp	3.337	- Eastern white cedar, 85\% - Red spruce, 5\%		- Spinulose wood fern, 1\% - Eastern white cedar, 1\%	- Rhytidiadelphus sp., 50\% - Red-stemmed feather moss, 25\% - Stairstep moss, 20\%	Immature mixed forest (40 years old)	- Balsam fir, 50\% - Heart-leaved birch, 25\% - Yellow birch, 5\%	- Balsamfir, 10\%		
30	MC-Tribic-w-04A	Mature eastern white cedar (40 years+ old) riparian linked swamp	0.936	- Eastern white cedar, 90\% - Red spruce, 5\%		- Spinulose wood fern, 10\% - Eastern white cedar, 5\%	- Sphagnum sp., 100\%	Immature mixed forest (40 years old)	- Balsam fir, 50\% - Heart-leaved birch, 25\% - Yellow birch, 5\%	- Balsam fir, 10\%		
33	MC-Trib1D-W-01	Mature eastern white cedar (100 years+ old) swamp	5.530	- Eastern white cedar, 70\% - Black spruce, 10\%	- Eastern white cedar, 20\% - Sheep laurel, 5\%	- Three-seeded sedge, 15\% - Three-leaved false Solomon's seal, 10\% - Dwarf red raspberry, 5\% - Naked Bishop's-cap, 5\% - One-sided wintergreen, 5\% - Bristly-stalked sedge, 3\% - Bunchberry, 2\% - Fowl manna grass, 2\% - Twinflower, 2%	- Red-stermed feather moss, 80\% - Knight's plume moss, 5\% - Rhytidiadelphus sp., 5\% - Sphagnum sp., 5\%	Mature softwood (80 years+ old)	- Red spruce, 30\% - Balsamfir, 20\% - Heart-leaved birch, 10\%	- Balsam fir, 25\% - Eastern white cedar, 5\%	- Bunchbery, 30\% - Twinflower, 5% - Goldthread, 1\%	- Red-stemmed feather moss, 50\% - Stairstep moss, 25\% - Three-toothed whipwort, 5\%
35	MC-W-01	Mature eastern white cedar swamp	8.868	- Eastern white cedar, 85\% - Red spruce, 5\%		- Tuinflower, 5\% - Bunchberry, 3\% - Spinulose woodfern, 2\% - Dwarf red raspberry, 1\%	- Red-stemmed feather moss, 80\% - Stairstep moss, 10% - Three-toothed whipwort, 5\%	Immature mixed forest (40 years old)	- Balsamfir, 40\% - Heart-leaved birch, 35\% - Red spruce, 5\%	- Balsamfir, 5\% - Heart-leaved birch, 5\%		- Three-toothed whipwort, 15\% - Red-stemmed feather moss, 5\%
36	Mc-w-02	Coniferous basin swamp	1.600	TO BE COMPLEIED IN SPRING 2020								
38	MCB-W-01	Tall shrub riparian linked basin swamp	4.975	- Eastern white cedar, 40\% - Black spruce, 15\% - Tamarack, 15\% - Balsamfir, 10\%	- Tamarack, 15\% - Speckled alder, 15\% - Balsam fir, 10\%	- Three-seeded sedge, 50\% - Foul manna grass, 20\% - Bunchberry, 10\%	- Sphagnum sp., 95\%	Immature mixed forest (40 years old)	- Balsam fir, 40\% - Heart-leaved birch, 35\% - Red spruce, 10% - Eastern white cedar, 5\%	- Balsam fir, 5% - Heart-leaved birch, 5\%	- Bunchbery, 25\% - Evergreen woodfem, 5\%	- Red-stemmed feather moss, 50\%

Mapld	Unique ID*	Classification	Size (ha)	Wettand				Ypland				
				Dominant Trees	Dominant Shrubs	Dominant Herbs	Moss Cover	Classification	Dominant Trees	Dominant Strubs	Dominant Herbs	Moss Cover
39	PHWW-01	Tall shrub basin swamp	1.815	- Balsamfir, 25\% - Tamarack, 15\% - Black spruce, 10\% - Red maple, 5\%	- Speckled alder, 60% - Tamarack, 15\% - Balsam fir, 10\% - Red spruce, 5\%	- Three-seeded sedge, 30\% - Broad-leaved cattail, 15\% - Fowl manna grass, 10\% - Spinulose woodfern, 5\%	- Sphagmum sp., 100\%	Mixed forest	- Balsam fir, 70\% - Red spruce, 10\% - Heart-leaved birch, 10\%	- Balsamfir, 20\% - Heart-leaved birch, 5\% - Mountain holly, 5\% - Red spruce, 5\%	- Bunchberry, 15\%	- Sphagnum sp., 70\%
40	PHW-02	Eastern white cedar swamp	8.727	- Eastern White cedar, 75\% - Black spruce, 10\%	- Eastern white cedar, 5\% - American mountain ash, 2\%	- Three-seeded sedge, 30\% - Cinnamon fern, 20\% - Bunchbery, 5\% - New York fern, 5\% - Wild sarsaparilla, 5% - Bladder sedge, 2\%	- Sphagnum sp., 100\%	Mature softwood	- Balsamfir, 75\%	- Balsam fir, 20\%	- Bunchberry, 5\%	- Red-stemmed feather moss, 30\% - Three-toothed whipwort, 30\% - Stairstep moss, 30\%
44	PHW-W6	Coniferous basin swamp	0.724	TO BE COMPLTED INSPRING 2020								
45	PLEW-01	Coniferous tall shrub riparian linked swamp	0.610	- Balsam fir, 20\% - Black spruce, 20\% - Eastern white cedar, 5\% - Heart-leaved birch, 5\%	- Speckled alder, 20\% - Balsamfir, 10\% - Eastern white cedar, 5\%	- Broad-leaved cattail, 25\% - Three-seeded sedge, 15\% - Fowl manna grass, 10\%	- Sphagnum sp., 90\%	Immature mixed forest (40 years old)	- Balsamfir, 35\% - Heart-leaved birch, 20\% - Eastern white cedar, 15\% - Red spruce, 15% - Red maple, 10\%	- Balsam fir, 20\% - Heart-leaved birch, 15\% - Red spruce, 15\%	- Bunchbery, 10\% - Evergreen woodfer, 10\% - Twinflower, 5\%	- Sphagnum sp., 60\%
47	PLEW-W3	Coniferous basin swamp	0.705	- Balsam fir, 40\% - Eastern white cedar, 30\% - Black spruce, 15\%	- Balsam fir, 10\%	- Bunchberry, 10\% - Spinulose woodfern, 10\% - Manna grass, 5\%	- Sphagnum sp., 95\%	Immature mixed forest (40 years old)	- Balsamfir, 40% - Heart-leaved birch, 35\% - Red spruce, 10% - Easterm white cedar, 5%	- Balsam fir, 5\% - Heart-leaved birch, 5\%	- Bunchbery, 25\% - Evergreen woodfern, 5%	- Red-stermmed feather moss, 50\%
49	PLW-W-01	Spruce tall shrub riparian linked swamp	$0.368{ }^{\text {7 }}$	- Black spruce, 20\% - Balsam fir, 10\% - Eastern white cedar, 10\% - Heart-leaved birch, 5\% - Tamarack, 5\%	- Speckled alder, 30% - Balsam fir, 10\% - Eastern white cedar, 10\%	- Broad-leaved cattail, 15\% - Three-seeded sedge, 20\% - Fowl manna grass, 10\%	- Sphagnum sp., 90\%	Immature mixed forest (40 years old)	- Balsamfir, 35\% - Heart-leaved birch, 20\% - Easterm white cedar, 15\% - Red spruce, 15\% - Red maple, 10\%	- Balsam fir, 20\% - Heart-leaved birch, 15\% - Red spruce, 15\%	- Bunchbery, 10\% - Evergreen woodfer, 10% - Twinflower, 5\%	- Sphagnum sp., 60\%
50	PLW-W-02	Eastern white cedar basin swamp	0.516	- Eastern white cedar, 30\% - Black spruce, 15\% - Balsam fir, 10\% - Heart-leaved birch, 10\%	- Speckled alder, 50% - Balsam fir, 10% - Black spruce, 10\%	- Bunchberry, 10\% - Spinulose woodfern, 10\% - Manna grass, 5\%	- Sphagnum sp., 95\%	Mature softwood	- Black spruce, 35\% - Red spruce, 30\% - Balsamfir, 10\% - Heart-leaved birch, 10\%	- Sheep laurel, 20\% - Mountain holly, 10\% - Velvet-leaved bluebery, 10\%	- Bunchberry, 15\% - Creeping snowberry, 10\% - Mountain cranberry, 5\%	- Sphagnum sp., 75\%
54	PLW-W-06	Tall shrub swamp	0.606	TOBE COMPLEIED IN SPRING 2020								

${ }^{*} \mathrm{BB}=$ Burchill's Brook; Trib = Tributary; W = Wetland; FC = Frenchman's Creek; MB = Marsh Brook; MC = Mill Creek; MCB = Maguires Cove Brook; PH = Paddy's Hill; PLE $=$ PipeLine East; PLW $=$ PipeLine West; WC $=$ Watercourse ${ }^{\dagger}$ Considered distinctive because it is the source of $B B$-Trib7 and is impacted by activities within the adjacent rock quarry
\ddagger Considered distinctive because it is the source of MC-Trib1B
"Considered distinctive because it is located along the pipeline right-of-way and is impacted regularly by all-terrain vehicles

7.0 WETLAND FUNCTIONAL ASSESSMENTS

7.1 WESP-AC MODEL RESULTS

WFAs were completed for 23 wetlands. The following five wetlands still require WFAs to be completed in spring 2020:
> BB-W-01 (i.e., 12);
> FC-Trib1-W-03 (i.e., 16);
> MC-W-02 (i.e., 36);
> PH-W-06 (i.e., 44); and
> PLW-W-06 (i.e., 54).
The full WESP-AC Model results for the wetlands assessed are included in Appendix II. A summary of the WFA scoring is provided in Table 11. The wetland functions are grouped as follows:
> hydrologic group:
o water storage and delay;
> water quality support group:
o sediment retention and stabilization;
o phosphorous retention;
o nitrate removal and retention; and
o carbon sequestration;
> aquatic support group:
o streamflow support;
o aquatic invertebrate habitat;
o organic nutrient export; and
o water cooling;
$>$ aquatic habitat group:
o anadromous fish habitat;

- resident fish habitat;
o amphibian and turtle habitat;
o waterbird feeding habitat; and
o waterbird nesting habitat;
> transition habitat:
o songbird, raptor, and mammal habitat;
o native plant habitat; and
o pollinator habitat;
> wetland condition (i.e., wetland ecological condition); and
$>$ wetland risk (i.e., average of sensitivity and stressors).
The WFA results were plotted on a condition risk matrix shown in Figure 24. All of the wetlands assessed, save for one, scored a moderate to higher condition rating. All of the
wetlands assessed, except for one, had a lower to higher risk rating. Six of the assessed wetlands have a higher risk rating and include:
$>$ BB-Trib5-W-02 (i.e., 5);
> BB-Trib7-W-01 (i.e., 11);
$>$ PH-W-01 (i.e., 39);
> PLE-W-01 (i.e., 45);
> PLW-W-01 (i.e., 49); and
> PLW-W-02 (i.e., 50).

Table 11. Summary of wetland functional assessments completed for large (i.e., $\geq 0.5 \mathrm{ha}$) and / or distinctive wetlands identified within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

Unique ID (Map ID)	Description	WESP-AC Summary Ratings for Crouped Functions					Wetland Condition	Wetland Risk
		Hydrologic	Water Quality Support	Aquatic Support	Aquatic Habitat	Transition Habitat		
BB-Trib1-W-02 (2)	Function Score (Normalized)	1.88	6.24	6.01	1.62	7.00	-	-
	Function Rating	Lower	Higher	Moderate	Lower	Moderate	-	-
	Benefits Score (Normalized)	0.37	4.91	2.45	1.30	4.05	7.83	0.98
	Benefits Rating	Lower	Moderate	Moderate	Lower	Moderate	HCHER	LOVER
BB-Trib5-W-02 (5)	Function Score (Normalized)	2.66	5.00	3.85	1.30	7.68	-	-
	Function Rating	Moderate	Moderate	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	1.58	4.77	2.08	2.87	9.75	3.49	4.56
	Benefits Rating	Lower	Moderate	Moderate	Lower	Higher	MODERATE	HCHER
BB-Trib6-W-01 (10)	Function Score (Normalized)	6.25	2.57	6.75	3.84	9.40	-	-
	Function Rating	Higher	Lower	Higher	Moderate	Higher	-	-
	Benefits Score (Normalized)	1.68	3.78	3.57	3.04	4.77	7.59	2.26
	Benefits Rating	Lower	Lower	Moderate	Lower	Moderate	HCHER	LOVER
BB-Trib7-W-01 (11)	Function Score (Normalized)	4.06	3.76	5.08	3.97	8.51	-	-
	Function Rating	Moderate	Moderate	Moderate	Moderate	Higher	-	-
	Benefits Score (Normalized)	4.15	7.27	5.24	3.39	4.20	3.49	7.89
	Benefits Rating	Moderate	Moderate	Higher	Moderate	Higher	MODERATE	HCHER
BB-W-02 (13)	Function Score (Normalized)	2.40	5.76	4.74	1.72	8.73	-	-
	Function Rating	Lower	Higher	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	0.52	10.00	2.66	0.73	3.83	7.11	0.44
	Benefits Rating	Lower	Higher	Moderate	Lower	Moderate	HCHER	LOVER
FC-Trib1-W-01 (14)	Function Score (Normalized)	6.15	3.30	8.66	6.49	9.42	-	-
	Function Rating	Higher	Moderate	Higher	Higher	Higher	-	-
	Benefits Score (Normalized)	0.29	8.79	6.95	4.80	4.02	6.39	5.49

Unique ID (Map ID)	Description	WESP-AC Summary Ratings for Grouped Functions					Wetland Condition MODERATE	Wetland Risk HCHER
		Hydrologic	Water Quality Support	Aquatic Support	Aquatic Habitat	Transition Habitat		
	Benefits Rating	Lower	Higher	Higher	Moderate	Moderate		
FC-Trib1-W-02 (15)	Function Score (Normalized)	4.69	6.32	4.30	0.54	8.42	-	-
	Function Rating	Moderate	Higher	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	0.37	1.23	2.17	0.61	8.75	8.55	118
	Benefits Rating	Lower	Lower	Moderate	Lower	Higher	HCHER	LOWER
FC-Trib1-W-04 (17)	Function Score (Normalized)	2.08	6.50	6.09	2.05	9.52	-	-
	Function Rating	Lower	Higher	Higher	Lower	Higher	-	-
	Benefits Score (Normalized)	0.42	1.10	2.67	1.04	8.75	8.55	123
	Benefits Rating	Lower	Lower	Moderate	Lower	Higher	HCHER	LOWER
FC-Trib2-W-01 (19)	Function Score (Normalized)	2.92	3.23	7.39	5.61	9.69	-	-
	Function Rating	Moderate	Moderate	Higher	Moderate	Higher	-	-
	Benefits Score (Normalized)	0.39	3.48	4.31	3.85	4.57	7.59	161
	Benefits Rating	Lower	Lower	Moderate	Moderate	Moderate	HCHER	LOWER
FC-Trib2-W-02 (20)	Function Score (Normalized)	2.40	4.75	4.10	1.59	7.88	-	-
	Function Rating	Lower	Moderate	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	0.42	3.46	2.34	0.65	3.44	4.22	177
	Benefits Rating	Lower	Lower	Moderate	Lower	Moderate	MODERATE	LOWER
MB-Trib2-W-01 (21)	Function Score (Normalized)	1.04	8.41	6.08	1.85	8.82	-	-
	Function Rating	Lower	Higher	Higher	Higher	Lower	-	-
	Benefits Score (Normalized)	1.30	0.73	0.66	0.65	3.94	8.55	108
	Benefits Rating	Lower	Lower	Lower	Lower	Moderate	HCHER	LOWER
MC-Trib1B-W-01 (26)	Function Score (Normalized)	6.67	2.34	7.92	4.46	9.59	-	-
	Function Rating	Higher	Lower	Higher	Moderate	Higher	-	-
	Benefits Score (Normalized)	1.43	8.62	6.35	3.35	4.51	7.11	2.11
	Benefits Rating	Lower	Higher	Higher	Moderate	Moderate	HCHER	LOWER

Unique ID (Map ID)	Description	WESP-AC Summary Ratings for Grouped Functions					Wetland Condition	Wetland Risk
		Hydrologic	Water Quality Support	Aquatic Support	Aquatic Habitat	Transition Habitat		
MC-Trib1C-W-03 (29)	Function Score (Normalized)	1.20	7.95	4.17	1.68	8.05	-	-
	Function Rating	Lower	Higher	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	4.45	2.99	0.61	1.43	4.17	3.25	4.29
	Benefits Rating	Moderate	Lower	Lower	Lower	Moderate	MODERATE	MODERATE
MC-Trib1C-W-04A (30)	Function Score (Normalized)	2.66	6.27	4.13	1.69	7.66	-	-
	Function Rating	Moderate	Higher	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	1.33	0.29	4.44	0.52	3.57	5.66	127
	Benefits Rating	Lower	Lower	Moderate	Lower	Moderate	MODERATE	LOVER
MC-Trib1D-W-01 (33)	Function Score (Normalized)	5.63	6.21	4.72	1.88	8.33	-	-
	Function Rating	Higher	Higher	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	1.63	1.49	5.07	0.47	3.73	4.70	0.96
	Benefits Rating	Lower	Lower	Higher	Lower	Moderate	MODERATE	LOVER
MC-W-01 (35)	Function Score (Normalized)	4.48	3.74	4.21	6.21	9.20	-	-
	Function Rating	Moderate	Moderate	Moderate	Moderate	Higher	-	-
	Benefits Score (Normalized)	0.22	10.00	5.52	5.53	9.17	4.94	2.28
	Benefits Rating	Lower	Higher	Higher	Moderate	Higher	MODERATE	LOVER
MCB-W-01 (38)	Function Score (Normalized)	7.19	2.73	6.15	6.68	9.09	-	-
	Function Rating	Higher	Lower	Higher	Higher	Higher	-	-
	Benefits Score (Normalized)	1.91	8.90	8.15	5.01	4.61	5.66	156
	Benefits Rating	Lower	Higher	Higher	Moderate	Moderate	MODERATE	LOWER
$\begin{gathered} \text { PH-W-01 } \\ (39) \end{gathered}$	Function Score (Normalized)	2.55	2.72	3.41	5.42	9.26	-	-
	Function Rating	Moderate	Lower	Higher	Higher	Higher	-	-
	Benefits Score (Normalized)	1.63	5.86	5.64	7.96	9.99	4.94	5.97
	Benefits Rating	Lower	Moderate	Higher	Higher	Higher	MODERATE	HCHER
PH-W-02	Function Score (Normalized)	4.79	3.38	8.06	4.18	9.51	-	-

Unique ID (Map ID)	Description	WESP-AC Summary Ratings for Crouped Functions					Wetland Condition	Wetland Risk
		Hydrologic	Water Quality Support	Aquatic Support	Aquatic Habitat	Transition Habitat		
(40)	Function Rating	Moderate	Moderate	Higher	Moderate	Higher	-	-
	Benefits Score (Normalized)	1.68	2.89	6.57	3.17	4.70	6.39	2.26
	Benefits Rating	Lower	Lower	Higher	Moderate	Moderate	MODERATE	LOVER
PLE-W-01 (45)	Function Score (Normalized)	0.00	10.00	1.55	4.03	8.74	-	-
	Function Rating	Lower	Higher	Lower	Moderate	Higher	-	-
	Benefits Score (Normalized)	0.37	3.95	2.77	4.46	4.76	3.98	5.22
	Benefits Rating	Lower	Lower	Moderate	Moderate	Moderate	MODERATE	HCHER
PLE-W-03 (47)	Function Score (Normalized)	1.88	6.89	3.78	1.60	7.16	-	-
	Function Rating	Lower	Higher	Lower	Lower	Moderate	-	-
	Benefits Score (Normalized)	0.87	3.79	3.39	1.43	4.12	4.94	2.07
	Benefits Rating	Lower	Lower	Moderate	Lower	Moderate	MODERATE	LOWER
PLW-W-01 (49)	Function Score (Normalized)	0.00	10.00	1.49	3.98	8.49	-	-
	Function Rating	Lower	Higher	Lower	Moderate	Higher	-	-
	Benefits Score (Normalized)	0.32	3.95	2.67	4.37	4.68	253	5.21
	Benefits Rating	Lower	Lower	Moderate	Moderate	Moderate	LOWER	HCHER
PLW-W-02 (50)	Function Score (Normalized)	2.66	5.68	4.89	1.93	8.28	-	-
	Function Rating	Moderate	Higher	Moderate	Lower	Higher	-	-
	Benefits Score (Normalized)	0.37	3.85	2.42	0.89	3.94	4.94	4.91
	Benefits Rating	Lower	Lower	Moderate	Lower	Moderate	MODERATE	HCHER

Figure 24. Condition risk assessment for large (i.e., $\geq 0.5 \mathrm{ha}$) and / or distinctive wetlands identified within the survey area on the lands in west Saint John, New Brunswick being considered for the Burchill Wind Project.

8.0 SUMMARY

Watercourse and wetland assessments were completed on portions of PID 00412189 in west Saint John, New Brunswick in support of the Burchill Wind Project being proposed by Natural Forces.

The following is a summary of the findings:
> in addition to wetlands, five general types of habitat were observed across the property;
$>$ all told, 294 plant species were identified on the property;
$>$ five rare species were identified, one of which (i.e., purple false foxglove) May Be At Risk while the other four are considered secure;
$>$ overall, 74 watercourses were identified and delineated within the survey area;
$>$ most of the watercourses are ephemeral and likely do not support fish and / or fish habitat;
$>$ a total of 27 small wetlands (i.e., <0.5 ha in size) with a total area of 3.45 ha were delineated within the survey area;
$>$ overall, 28 large (i.e., ≥ 0.5 ha in size) and / or distinctive wetlands with a combined area of 76.5 ha were delineated within the survey area;
> wetland functional assessments were completed for 23 wetlands and results showed eight ranked as having a higher wetland condition and six ranked as having a higher wetland risk; and
> five wetlands still require ground-truthing and WFAs to be completed in spring 2020.

8.1 Closing

We trust that you will find the contents of this report satisfactory for your purposes. This report was prepared by Dr. Matthew Alexander, P.Geo., EP and reviewed by Ms. Crystal Caines, P.Tech., PMP and Mr. Derrick Mitchell, B.Sc.F., R.P.F. Please feel free to contact the undersigned at 506.674.9422 or via email at matt.alexander@fundyeng.com if any clarification is required.

Respectfully Submitted,
FUNDY ENGINEERING \& CONSULTING LTD.

Dr. Matthew D. Alexander, P.Geo., EP

9.0 REFERENCES

Bond, W.K., K.W. Cox, T. Heberlein, E.W. Manning, D.R. Witty, and D.A. Young. 1992. Wetland evaluation guide. Final report of the wetlands are not wastelands project. Published in partnership with Ducks Unlimited Canada and Environment Canada. Issues Paper: 1992-1. Ottawa.
Cox, K.W. and A. Grose. 2000. Wetland mitigation in Canada: a framework for application. North American Wetlands Conservation Council (Canada), Issues Paper: 2000-1. Ottawa. ISBN: 0-662-28513-1.

Ecosystem Classification Working Group. 2007. Our landscape heritage: the story of ecological land classification in New Brunswick. Department of Natural Resources online resource.

Environment Canada. 1996. The Federal Policy on wetland conservation: implementation guide for federal land managers. Wildlife Conservation Branch of the Canadian Wildlife Service Department of Environment Canada.

Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Wetlands Research Program Technical Report Y-87-1. 92p + Appendices.

Gretag-Macbeth. 2000. Munsell ${ }^{\circledR}$ Color. New Windsor, NY.
Interagency Workshop on Wetland Restoration. Undated. An introduction and user's guide to wetland restoration, creation, and enhancement. National Oceanic and Atmospheric Administration, Environmental Protection Agency, Army Corps of Engineers, Fish and Wildlife Service, and Natural Resources Conservation Service document. 95p.
Milko, R. 1998. Wetlands environmental assessment guideline. Biodiversity Protection Branch, Canadian Wildlife Service, Environment Canada. Ottawa. ISBN: 0-662-63741-0.

New Brunswick Department of the Environment and Local Government. 2018. Manual for Wetland Ecosystem Services Protocol for Atlantic Canada (WESP-AC): Non-tidal Wetlands. 97p.

Tiner, R.W. 1999. Wetland Indicators, a guide to wetland identification, delineation, classification, and mapping. Lewis Publishers, Boca Raton. 392p.

United States Department of Agriculture - Natural Resources Conservation Service. 2003. Field book for describing and sampling soils. National Soil Survey Center, Lincoln, New England.
U.S Army Corps of Engineers. 2008. Draft Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region. Wetlands Regulatory Assistance Program, draft for peer review and field testing. 7-32008.

Wicklund, R.E. and K.K. Langmaid. 1953. Soil survey of southwestern New Brunswick. Fourth Report of the New Brunswick Soil Survey. Fredericton, NB. 47p.

10.0 REPORT DISCLAIMERS AND DISCLOSURES

The sole purpose of this report and the associated services performed by Fundy Engineering \& Consulting Ltd. was to complete watercourse and wetland assessments in support of an Environmental Impact Assessment for the proposed Burchill Wind Project in west Saint John, New Brunswick. The scope of services was defined at the Project outset between Fundy Engineering and Natural Forces personnel.

The observations made and the facts presented in this report are based on desktop assessments and field assessments conducted during spring, summer, and fall 2019. Site conditions at the time of visitation / sampling only are reflected in this document. Certain data presented are based on statements, recollections, and observations of various individuals and where this is the case, sources are indicated. No independent confirmation of that information was made.

This report was prepared on behalf of and for the exclusive use of Natural Forces. The report expresses the professional opinion of Fundy Engineering experts and is based on their technical / scientific knowledge. Fundy Engineering \& Consulting Ltd. accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report or data by any third-party. Fundy Engineering makes no guarantee that the Client will be successful in the regulatory approval process.

Appendix I:

Watercourse and Wetland Photographs

Watercourse \& Wetland Assessment

WATERCOURSES

BB
Washed out crossing on BB along the water pipeline that extends from Spruce Lake to Coleson Cove.

BB
Washed out crossing on BB along the water pipeline that extends from Spruce Lake to Coleson Cove.

BB
Washed out crossing on BB along the water pipeline that extends from Spruce Lake to Coleson Cove.

BB
~ 1800 mm corrugated steel culvert that conveys BB under Burchill Road.

BB
Upstream of confluence with BB-Trib4.

BB
Small waterfall on BB mid-way between BB Trib3 and BB-Trib4.

BB

Upstream of confluence with BB-Trib4.

BB
Small waterfall on BB near confluence with BBTrib2.

BB
Looking upstream on BB at confluence with BBTrib7.

BB-Trib1
BB-Trib1 as it flows across Cheeseman Beach Road from BB-Trib1-W-01.

BB
Looking downstream on BB at confluence with BB-Trib7.

BB-Trib1
BB-Trib1 as it flows across Cheeseman Beach Road from BB-Trib1-W-01.

BB-Trib1
600 mm ID concrete culvert that conveys BBTrib1 to BB under the water pipeline that extends from Spruce Lake to Coleson Cove.

BB-Trib1

BB-Trib1

BB-Trib1A

BB-Trib1C

BB-Trib1D

BB-Trib1D

BB-Trib1E

BB-Trib1F

BB-Trib3

BB-Trib2

BB-Trib3

BB-Trib3
Large hunting blind located atop a ridge near the source of BB-Trib3.

BB-Trib5

BB-Trib3

Large hunting blind located atop a ridge near the source of BB-Trib3.

BB-Trib5A-1

BB-Trib5C

BB-Trib5D
450 mm ID concrete culvert that conveys BBTrib5D under Burchill Road.

BB-Trib6A

BB-Trib6A

BB-Trib7
310 mm ID concrete culvert that conveys BBTrib7 from BB-Trib7-W-01 under Burchill Road.

BB-Trib6B

BB-Trib7

BB-Trib7
BB-Trib7 upstream of confluence with BB-Trib7B

BB-Trib7

BB-Trib7

BB-Trib7A
$B B-T r i b 7$ upstream of confluence with $B B$.

FC-Trib1
450 mm ID concrete culvert that conveys FC-
Trib1 under Burchill Road.

FC-Trib1

FC-Trib1

FC-Trib1C

MC-Trib1C
Access road that allows vehicles to ford the tributary.

MC-Trib1C

MC-Trib1C

MC-Trib1C

MC-Trib1F

MCB-Trib1B

MCB

MCBW-Trib1

MCBW-Trib1

MCBW-Trib1

MCBW-Trib1

MCBW-Trib1A

MCBW-Trib2

MCBW-Trib3

MCBW-Trib2

MCBW-Trib3

BB-Trib1-W-01
BB-Trib1-W-01 adjacent to Cheeseman Beach
Road. Under high runoff conditions, water flows from the wetland by flowing across the road.

BB-Trib1-W-03

BB-Trib1-W-01

BB-Trib5-W-02

BB-Trib5-W-02

BB-Trib6-W-01 (Upland)

BB-Trib5-W-02

BB-Trib6-W-01 (Upland)

BB-W-01

BB-W-01

BB-W-02

BB-W-01

BB-W-02

BB-W-02

BB-W-02 (Upland)

FC-Trib1-W-01

FC-Trib1-W-01

FC-Trib1-W-01

FC-Trib1-W-01

FC-Trib1-W-01

FC-Trib1-W-01

FC-Trib1-W-01 (Upland)

FC-Trib1-W-02 (Upland)

FC-Trib1-W-02 (Wetland)

FC-Trib1-W-01 (Upland)

FC-Trib1-W-02 (Upland)

FC-Trib1-W-02 (Wetland)

FC-Trib1-W-04 (Upland)

FC-Trib1-W-04 (Wetland)

FC-Trib2-W-01 (Upland)

FC-Trib1-W-04 (Upland)

FC-Trib1-W-04 (Wetland)

FC-Trib2-W-01 (Upland)

FC-Trib2-W-01 (Wetland)

FC-Trib2-W-02 (Upland)

FC-Trib2-W-02 (Wetland)

FC-Trib2-W-01 (Wetland)

FC-Trib2-W-02 (Upland)

FC-Trib2-W-02 (Wetland)

MB-Trib2-W-01 (Upland)

MB-Trib2-W-01 (Wetland)

MC-Trib1B-W-01 (Upland)

MB-Trib2-W-01 (Upland)

MB-Trib2-W-01 (Wetland)

MC-Trib1B-W-01 (Upland)

MC-Trib1C-W-03
Under high runoff conditions, water flows from the wetland across the pipeline right-of-way road to MC-Trib1C-2.

MC-Trib1C-W-03

MC-Trib1C-W-03

MC-Trib1C-W-03

MC-Trib1C-W-04A

MC-Trib1C-W-04B

MC-Trib1C-W-04A

MC-Trib1C-W-05

MC-Trib1D-W-01 (Upland)
MC-Trib1D-W-01 (Upland)

MC-Trib1D-W-01 (Wetland)

MC-Trib1D-W-01 (Wetland)

MC-W-01 (Upland)

MC-W-01 (Wetland)

MCB-W-01

MCB-W-01 (Upland)

Looking from the edge of the property towards the knob of rock being quarried with large deer stand in the middle of the clearcut.

MCB-Trib1A-W-01 (Wetland)

MCB-Trib1A-W-01 (Upland)

PH-W-01

PH-W-01

PH-W-01

PH-W-01

PH-W-02 (Wetland)

PH-W-02 (Wetland)

PLE-W-01

PLE-W-02

PH-W-05

PLE-W-02 (Upland)

PLE-W-03

WC-02-W-01

GENERAL INTEREST PHOTOS

Roadside Cross
Mark Bernatchez died by tragic accident 25 June 2005 on King William Road near intersection with Burchill Road.

RC airplane field atop former Spruce Lake Landfill.

Deer baiting between MC-Trib1C-W-04A and MC-Trib1C-W-04B.

Looking from atop former Spruce Lake Landfill towards leachate treatment wetland.

Temporary wind data collection tower atop former Spruce Lake Landfill.

Bedrock outcrop along BB downstream of confluence with BB-Trib4.

Appendix II:

WESP-AC Model Results

Watercourse \& Wetland Assessment

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - BB-Trib6-W-01
Investigator Name	Derrick Mitchell
Date of Field Assessment	14 October 2019
Nearest Town	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.181083
Longitude (decimal degrees)	-66.206548
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	7.6
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

	OF (Office) nd the Explanat sing these onlin E Earth Pro: http B: http://www.s wetlands, comp model, see App , NR= Nitrate R d Habitat, WBN	Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetl ans column of the data form. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for mut map viewers: ://www.google.com/earth/download/gep/agree.html .ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp ting this office data form will require 1-2 hours. For a list of functions to which each question pertains, see bra ndix B of the accompanying Manual. Codes for functions and values are: WS = Water Storage, SFS= Stream Flow moval, CS= Carbon Sequestration, OE= Organic Nutrient Export, INV=Invertebrate Habitat, FA= Anadromous Fis Nesting Waterbird Habitat, SBM= Songbird, Raptor, \& Mammal Habitat, POL= Pollinator Habitat, PH= Native Pla		DIRECTIONS: Conduct an assessment only after reading the accompanying where allowed and so indicated. Answering many of the questions below will iations in the Definitions/Explanations column. For detailed descriptions of each $=$ Water Cooling, SR= Sediment Retention \& Stabilisation, PR= Phosphorus Resident Fish Habitat, AM=Amphibian \& Reptile Habitat, WBF= Feeding = Public Use \& Recognition, EC= Ecological Condition, Sen= Wetland Sensitivity
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	etermines to which province's calibration wetlands the raw score of any wetland is normalised function and benefits models, it also triggers the automatic exclusion of indicators for which no data exists in a particular province.
OF2	km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Near Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: K0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. l >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes],	0 0 0 0 0 1 0	definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). clude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	Distance to Large Vegetated Tract	The minimum distance from theedge of the AA to the edge of the closestvegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the $375-$ ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. Non of the above .the cosest patches or coridors which are that large are >5 km away)	0	measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at ONB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so , enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	this question only, consider moss to be herbaceous vegetation. Determine the score by viewing rial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be awn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, Lv, SBMv, WBFv, WBNv]
0F7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter "2" and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " [* NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 55% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA, the distance to the nearestpopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	 0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	1	
		Mostly untrue.	0	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		100-1000 m.	1	
		1-2 km.	0	
		>2 2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Nark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/contentfish/contentStockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastlindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using an approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widdlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	0	
OF30	$\begin{aligned} & \text { Important Bird Area } \\ & \text { (IBA) } \end{aligned}$	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jpp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's viciinity: <10 (enter 0), $10-20$ (enter 1), $20-30$ (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no= 0 .	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no=0. If uncertain, consult NCC ar agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes=1, no $=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1, \mathrm{no}=0$. If no information, change tdlank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none= 0 . Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure $\mathrm{A}-6$ in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unalter conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

Form F (Field). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Walk for no less than 10 minutes from the wetland edge towards its core, in the part of the AA that is proposed for alteration. If no alteration is proposed, walk in a portion that appears to be most representative of the wetland overall. Walk only where it is safe and legal to do so. Conduct the assessment only after reading the accompanying Manual and the Explanations column of the data form. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for multiple choices where allowed and so indicated. Answer these questions primarily based on your onsite observations and interpretations. Do not write in shaded parts of this data form. Answering some questions accurately may require conferring with the landowner or other knowledgable persons, and/or reviewing aerial imagery. For most wetlands, completing this field data form will require 1-2 hours on a site. For a list of functions to which each question pertains, see the accompanying Interpretations form. For detaile descriptions of each WESP-AC model, see Appendix B of the accompanying Manual. Codes for functions and values are: WS= Water Storage \& Delay, SFS= Stream Flow Support, WC= Water Cooling, SR= Sediment Retention \& Stabilisation, PR=Phosphorus Retention, NR=Nitrate Removal, CS=Carbon Sequestration, OE= Organic Nutrient Export, INV=Invertebrate Habitat, FA=Anadromous Fish Habitat, FR= Resident Fish Habitat, AM=Amphibian \& Reptile Habitat, WBF = Feeding Waterbird Habitat, WBN= Nesting Waterbird Habitat, SBM= Songbird, Raptor, \& Mammal Habitat, POL= Pollinator Habitat, PH= Native Plant Habitat, PU= Public Use \& Recognition, EC= Ecological Condition, Sen= Wetland Sensitivity, STR= Stressors.

\#	Indicators	Condition Choices	Data	Definitions/Explanations
F1	Wetland Type	Follow the key below and mark the ONE row that best describes MOST of the vegetated part of the AA: A. Moss and/or lichen cover more than 25% of the ground. Often dominated by ericaceous shrubs (e.g., Labrador tea) or other acid-tolerant plants (e.g., bog cranberry, pitcher plant, sundew, orchids). Substrate is mostly undecomposed peat. Choose between A1 and A2 and mark the choice with a 1 in their adjoining column. Otherwise go to B below.		Ericaceous shrubs are ones in the heather family (Ericaceae). Most have leathery evergreen leaves. They include rhododendron, azalea, swamp laurel, leatherleaf, Labrador tea, and others. Most require acidic soil. Although not in the family Ericaceae, sweetgale (Myrica gale) should be counted also. [AM, CS, FA, FR, INV, NR, OE, PH, Sens, SFS, WBF, WBN]
		A1. Surface water is usually absent or, if present, pH is typically <4.5 and conductivity is usually $<100 \mu \mathrm{~S} / \mathrm{cm}$ ($<64 \mathrm{ppm}$ TDS). Trees are absent or nearly so. Sedge cover usually sparse or absent but cottongrass and/or lichen cover may be extensive, as well as cloudberry, lingonberry, sheep laurel, and a sedge (Carex rariflor a). Wetland surface and surrounding landscape are seldom sloping and wetland often is domed (convex). Inlet and outlet channels are usually absent. If known, pH of peat is <4.0.	0	
		A2. Not A1. Surface water, if present, has pH typically >4.5 and conductivity is usually $>100 \mu \mathrm{~S} / \mathrm{cm}(>64 \mathrm{ppm}$ TDS). Sedge cover is usually extensive, and/or tree and tall shrub cover is extensive. Sometimes at toe of slope or edge of water body. An exit channel is usually present. Wetter than A 1 and peat depth may be shallower ($<2 \mathrm{~m}$).	0	
		B. Moss and/or lichen cover less than 25% of the ground. Soil is mineral or decomposed organic (muck). Choose between B1 and B2 and mark the choice with a 1 in their adjoining column:		
		B1. Trees and shrubs taller than 1 m comprise more than 25% of the vegetated cover. Surface water is mostly absent or inundates the vegetation only seasonally (e.g., vernal pools or floodplain).	1	
		B2. Not B1. Tree \& tall shrubs comprise less than than 25\% of the vegetated cover. Vegetation is mostly herbaceous, e.g., cattail, bulush, burreed, pond lily, horsetail. Surface water may be extensive and fluctuates seasonally, being either persistent or drying up partly or entirely.	0	

Reminder: For all questions, the AA should include all persistent waters in ponds smaller than 8 hectares (-283 m on a side) that are adjacent to the $A A$. The AA should also include part of the water area of adjacent ponded water larger than 8 ha and adjacent rivers wider than 20 m . Specifically, the $A A$ should include the open water part adjacent to wetland vegetation and equal in width to the average width of that vegetated zone. Throughout this data form, "adjacent" is used synonymously with abutting, adjoining, bordering, contiguous -- and means no upland (manmade or natural) completely separates the described features along their directly shared edge. Features joined only by a channel are not necessarily considered to be adjacent -- a large portion of their edges must match. The features do not have to be hydrologically connected in order to be considered adjacent.

F2	Wetland Types Adjoining or Subordinate
F3	

If the AA is smaller than 1 ha, mark all other types that occupy more than 1% of the vegetated AA. If the AA is larger than 1 ha, mark all other types which are within or adjacent to the AA and occupy more than 1 ha , as visible from the AA or as interpreted from aerial imagery. Do not mark again the type marked in F 1

A1.	0
A2.	0
B1.	0.
B2.	1

Following EACH row below, indicate with a number code the percentage of the living vegetation in the AA which is occupied by that feature if $>95 \%, 5$ if $75-95 \%, 4$ if $50-75 \%, 3$ if $25-50 \%, 2$ if $5-25 \%, 1$ if $<5 \%, 0$ if none). If the vegetated part of the $A A$ is largely herbaceous (nonwoody) vegetation, these percentages should not sum to 100%. coniferous trees (may include tamarack) taller than 3 m . deciduous trees taller than 3 m .
coniferous or ericaceous shrubs or trees $1-3 \mathrm{~m}$ tall not directly below the canopy of trees. deciduous shrubs or trees $1-3 \mathrm{~m}$ tall not directly below the canopy of trees.
coniferous or ericaceous shrubs $<1 \mathrm{~m}$ tall not directly below the canopy of taller vegetation.
deciduous shrubs or trees $<1 \mathrm{~m}$ tall (e.g., deciduous seedlings) not directly below the canopy of taller vegetation.
Note: If none of top 4 rows in F3 was marked 2 or greater, SKIP to F9 (N fixers).
F4 \quad Dominance of Most

Determine which two woody plant species comprise the greatest portion of the low ($<3 \mathrm{~m}$) woody cover. Then choose those species together comprise $>50 \%$ of such cover.
those species together do not comprise $>50 \%$ of such cover
Mark ALL the types that comprise $>5 \%$ of the woody canopy cover in the AA or $>5 \%$ of the wooded areas (if any) along its upland edge
(perimeter). The edge should include only the trees whose canopies extend into the AA.
coniferous, $1-9 \mathrm{~cm}$ diameter and $>1 \mathrm{~m}$ tall.
broad-leaved deciduous $1-9 \mathrm{~cm}$ diameter and $>1 \mathrm{~m}$ tall.
Coniferous, $10-19 \mathrm{~cm}$ diameter.
broad-leaved deciduous $10-19 \mathrm{~cm}$ diameter.
coniferous, $20-40 \mathrm{~cm}$ diameter.
broad-leaved deciduous $20-40 \mathrm{~cm}$ diamete.
coniferous, $>40 \mathrm{~cm}$ diameter.
broad-leaved deciduous $>40 \mathrm{~cm}$ diameter.
Follow the key below and mark the ONE row that best describes MOST of the AA:
A. Neither the vegetation taller than 1 m nor the vegetation shorter than that comprise $>70 \%$ of the vegetated part of the AA . They each comprise $30-70 \%$. Choose between A 1 and A 2 and mark the choice with a 1 in the adjoining column. Otherwise go to B below.

\section*{| A1. The two height classes are mostly scattered and intermixed throughout the AA. |
| :--- |
| A2. Not A1. The two height classes are mostly in separate zones or bands, or in proportionately large clumps. |}

B. Either the vegetation shorter than 1 m comprises $>70 \%$ of the vegetated part of the AA , or the vegetation taller than that does. One size class might even be totally absent. Choose between B1 and B2 and mark the choice with a 1 in the adjoining column B1. The less prevalent height class is mostly scattered and intermixed within the prevalent one. B2. Not B1. The less prevalent height class is mostly located apart from the prevalent one, in separate zones or clumps, or is completely absent.
The number of large snags (diameter $\mathbf{2 0} \mathbf{~ c m}$) in the AA plus adjacent upland area within 10 m of the wetland edge is:
None, or fewer than $8 /$ hectare which exceed this diameter.

Several ($>8 /$ hectare) and a pond, lake, of
Several ($>8 /$ hectare) but above not true.
The number of downed wood pieces longer than 2 m and with diameter $>10 \mathrm{~cm}$, and not persistently submerged, is:
Few or none that meet these criteria.
Several (>5 if AA is >5 hectares, less for smaller AAs) meet these criteria.
hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{mby}$
0 m , or similar. [AM, INV, SBM, WBF]

Deciduous shrubs in this region usually include buttonbush, Labrador tea, bayberry (Morella), huckleberry, cranberry, cloudberry, sweetgale, alder, willow, birch, ash, dogwood, and a few others. ou assigned a code of 3 or higher to any of the first four choices and the ground cover beneath the rees/shrubs is <25\% moss, then question F1 might be "B1". [CS, INV, NR, PH, POL, SBM, Sens]
[PH, POL, SBM, Sens]

Estimate the diameters at chest height. If small-diameter trees are overtopped (shaded) by larger ones, visualise a "subcanopy" at the average height of the smaller-dbh trees, to serve as a basis for he minimum 5% canopy requirement in this question. The trees and shrubs need not be wetland pecies. [AM, CS, POL, SBM, Sens, WBN]
$\overline{A M,}$, INV, NR, PH, SBM, Sens]

Snags are dead standing trees that often (not always) lack bark and foliage. Include only ones that are tleast 2 m tall. [POL, SBM, WBN]

Exclude temporary "burn piles." [AM, INV, POL, SBM]

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRV, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		50.75% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		7 75% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		55\% of the vegetated part of the AA.	0	
		5-25\% of the vegetated part of the AA.	0	
		25-50\% of the vegegated part of the A .	0	
		$50-95 \%$ of the vegetated part of the AA.	1	
		295\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		Little or no ($<5 \%$) bare ground is visible between erect stems or under canopy anywhere in the vegetated AA. Ground is extensively blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	0	
		Slightly bare ground ($5-20 \%$ bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	1	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground IIregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, $\mathrm{INV}, \mathrm{NR}, \mathrm{PH}, \mathrm{POL}, \mathrm{PR}, \mathrm{SBM}, \mathrm{SR}, \mathrm{WS}]$
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA , inclusions of upland are:		[$\overline{A M, ~ N R, ~ S B M] ~}$
		Few or none.	0	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	1	
		Many (e.g, wetland-upland "mosaic", $>10 \%$ of the vegetated A).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Deep Peat, to 40 cm depth or greater.	1	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA .]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m .	1	
		100-1000 sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		-55\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (lnvasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		25-50\% of the vegetated part of the AA.	0	
		50-95\% of the vegetated part of the AA.	0	
		-295\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluding SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		55% of the herbaceous part of the AA .	0	
		$5-25 \%$ of the herbaceous part of the AA.	1	
		25-50\% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		395\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (Eriophorum spp.) occupy:		[CS]
		<5\% of the vegetated area, or none.	1	
		5-50\% of the vegetated area.	0	
		$50-95 \%$ of the vegetated area.	0	
		-95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplinfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the AA , or are present only in trace amount (a few individuals).	1	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 5-20\% of the herb cover (or woody cover, it the invasives are woody).	0	
		invasive species comprise $20-50 \%$ of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise $>50 \%$ of the herb cover (or woody cover, if the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparently absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[$\mathrm{FR}, \mathrm{PR}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN]}$

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the AA is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains sufface water.	0	
		25-50\% of the AA never contains sufface water.	0	
		50-75\% of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	1	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	$\%$ of AA withPersistent SurfaceWater	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	1	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		-295\% of the AA. True for many fringe wellands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		<5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		50-75\% of the water is shaded.	0	
		775\% of the water is shaded.	1	
F27	\% of AA that is Flooded Only Seasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA, or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	1	
F28	Annual Water Fluctuation Range	The annual fluctuation in surface water level within most of the parts of the AA that contain surface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		P2 m change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter "1" in column D and SKIP TO F42 (Connection).			0	
F29	$\begin{aligned} & \text { Predominant Depth } \\ & \text { Class } \end{aligned}$	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but >0).	1	
		$10-50 \mathrm{~cm}$ deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		22 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consists of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	1	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	\% of Water That IsPonded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		-5\%\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the surface water is flowing. SKIP to F34.	0	
		5-30\% of the water.	1	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		>95\% of the water.	0	
F32	Ponded Open Water Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter " 1 " and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Waterthat is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[AM, CS, FA, FR, INV, NR, OE, PR, SR, WBF, WBN, WC]
		None, or < 1% of the AA and largest pool occupies < 0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		5-30\% of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the AA that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PH}, \mathrm{PR}$, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		30-49 m.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		<1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		25-50\% of the water edge.	0	
		50-75\% of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		1-25\% of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		> 75%, of the emergent vegetation.	0	

F37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly:		
		Scattered. More than 30\% of such vegetation forms small islands or corridors surrounded by water.		
		Intermediate. Cumped. More than 70% of such vegetation is in bands along the wetland perimeter or i c clumped at one or a atew sides of the sufface water		
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths $>1 \mathrm{~m}$ on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, fivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS,
		Persistent (surface water flows out for >9 months/year).	1	SR,WCV,WS]
		Seasonal (surface water flows out for 14 days to 9 monthslyear, not necessarily consecutive).	0	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Outflow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		ial high water caused by storms and/or rapid snowmelt. [ICS
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	Sens, SR, STR,
		Leaves through natural exits (channels or diffuse outtiow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA 's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=n o$.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, mult-branched, or braided channels.	0	
		Bumps into tree trunks andlor shrub stems but mosty remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's sufface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	roads or in puddles formed only by reeent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "11".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct obseevation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of water-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	${ }^{0}$	
		Unlikely because site characterisitics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater infux is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		22\% or the AA has no sufface water outlet (not even seasonally).		outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smartphones. If the wetland is
		2-5\%.	1	large (longer than -1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA, then dividing by length and multiplying by 100 . [CS, NR, OE, PR,
		310\%.	0	SR, WBF, WBN, WS]
Note adjac	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 to 30\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	1	
		>90\%, or all the area within 30 m of the AA edge is other wetlands. SKIP to F55.	0	

F53	Type of Cover in Buffer	Within 30 m upslope of where the wetland transitions to upland, the upland land cover that is NOT perennial vegetation is mostly (mark ONE):		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	1	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat -- almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	1	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded 3-20 years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1% of the AA's previously vegetated area:		Look for charred soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		>50\%.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the $A A$, or the $A A$ can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA, there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[$A M, \mathrm{FAv}, \mathrm{FRv}, \mathrm{PH}, \mathrm{PU}, \mathrm{SBM}, \mathrm{STR}, \mathrm{WBF}, \mathrm{WBN}]$
		< 5% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		50-95\%, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[$\overline{A M, ~ P H, ~ P U, ~ S B M, ~ S T R, ~ W B F, ~ W B N] ~}$
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter " 1 " if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" if true.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		100-500 m. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplnfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				1
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				1
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Artificial drains or ditches in or near the wetland.				1
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	$5-95 \%$ of wetland.	<5\% of wetland.	2
	When most of the timing shift began:	<3 yrs ago.	$3-9$ yrs ago.	10-100 yrs ago.	1
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	0
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	0
	S Sum=				3
	Stressor subscore=				0.25
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.ca/inrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly higher levels of contaminants and/or salts, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of. way.	Low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential):	0-15m.	$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential):	0.15 m .	$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				1
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	0
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	0
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	0
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	0
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	\qquad				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
	Sum=				0
	Stressor subscore=				0.00

Wetland ID: BB-Trib6-W-01

Date: 14 October 2019						
Observer: Derrick Mitchell						
Latitude \& Longitude (decimal degrees): 45.181083, -66.206548						
Scores will appear below after data are entered in worksheets OF, F, and S. See Manual for definitions and descriptions of how scores were computed.						
Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	2.93	Moderate	1.68	Lower	3.99	1.75
Stream Flow Support (SFS)	6.25	Moderate	3.06	Moderate	3.33	1.78
Water Cooling (WC)	6.38	Higher	3.21	Moderate	4.25	1.93
Sediment Retention \& Stabilisation (SR)	2.18	Moderate	1.69	Lower	4.65	1.02
Phosphorus Retention (PR)	3.10	Moderate	1.24	Lower	5.10	1.46
Nitrate Removal \& Retention (NR)	0.84	Lower	4.94	Moderate	4.35	5.50
Carbon Sequestration (CS)	6.08	Higher			7.18	
Organic Nutrient Export (OE)	7.80	Higher			6.47	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	2.34	Lower	3.78	Moderate	4.70	3.28
Amphibian \& Turtle Habitat (AM)	5.19	Moderate	4.24	Moderate	6.04	4.66
Waterbird Feeding Habitat (WBF)	4.71	Moderate	2.50	Moderate	3.74	2.50
Waterbird Nesting Habitat (WBN)	2.54	Moderate	2.50	Moderate	2.17	2.50
Songbird, Raptor, \& Mammal Habitat (SBM)	9.34	Higher	2.50	Lower	7.75	2.50
Pollinator Habitat (POL)	10.00	Higher	0.00	Lower	9.25	0.00
Native Plant Habitat (PH)	7.07	Higher	6.53	Higher	5.94	5.67
Public Use \& Recognition (PU)			2.07	Lower		1.80
Wetland Sensitivity (Sens)			0.00	Loner		2.00
Wetland Ecological Condition (EC)			7.59	Higher		8.61
Wetland Stressors (STR) (higher score means more stress)			4.52	Moderate		3.92
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	6.25	Higher	1.68	Lower	3.99	1.75
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	2.57	Lower	3.78	Lower	6.25	4.08
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	6.75	Higher	3.57	Moderate	5.58	2.81
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	3.84	Moderate	3.04	Lower	4.22	3.30
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.40	Higher	4.77	Moderate	8.45	4.19
WETLAND CONDITION (EC)			7.59	Higher		8.61
WETLAND RISK (average of Sensitivity \& Stressors)			2.26	Lower		2.96

NOTE: A score of 0 does not mean the function or benefit is absent from the wetland. It
means only that this wetland has a capacity that is equal or less than the lowest-scoring means only that this wetland has a capacity that is equal or less than the lowest-scorin
one, for that function or benefit, from among the 98 NB calibration wetlands that were assessed previously.

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - FC-Trib2-W-02
Investigator Name	Derrick Mitchell
Date of Field Assessment.	14 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.192947
Longitude (decimal degrees)	-66.206379
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	0.5
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entir contiguous wetland	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	etermines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: $\mathbf{0 . 0 1}$ hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 0 1	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. 0.1 - 1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. TThis is nearly always the answer in relatively undeveloped landscapes].	0 0 0 0 0 1 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$	The minimum distance from theedge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the $375-$ ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are >5 km away). $\mathrm{l\|l\|}$.	1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Un	The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [^NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is >10\% woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [*NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: 5100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	0	
		25-50 m.	1	
		50-100 m.	0	
		$100 \cdot 500 \mathrm{~m}$.	0	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands ang roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as wel AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1-2 km.	0	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		$\begin{aligned} & \text { In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal river, whichever } \\ & \text { is closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this } \\ & \text { calculator for NB (NB Headtide). Points shown in those files are only an approximation, so local } \\ & \text { information if available may be preferable. [FA, WBF] } \end{aligned}$
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest ajoions other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{aligned} & \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ & \hline \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the mentunder it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.20	[FA, NR, Sens, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this A , it ilso may contain such information. [NRv]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisiting data, or monitor waters as part of this wetland assessment. [[NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topographic maps may be viewed online at the National Altas of Canada (Toporama): http:latas.gc.catioporamaleninindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
$0{ }^{\circ} 23$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRv, PRV, SRv, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, n o=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	1	
		$50-95 \%$ of the vegetated part of the AA.	0	
		295\% of the vegetated part of the A.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	0	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Irregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	1	
		Intermediate.	0	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	1	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	0	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic 440 cm deep.	1	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	0	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25.50% of the herbaceous part of the AA.	1	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	1	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 5 -20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	1	
		some (but < 5%) of the upland edge.	0	
		$5-50 \%$ of the upland edge.	0	
		most (-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	\|nterspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial patem of emergent vegetation within the water is mostly:		
		Scattered. More than 30% of such vegetation forms small islands or coridors surrounded by water.	0	
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths $>1 \mathrm{~m}$ on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover $>50 \%$ of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent sufface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA, consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR WCv, WS]
		Persistent (sufface water flows out for >9 months/year).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	0	
		Temporary (sufface water flows out for <14 days, not necessarily consecutive).	1	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Outlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		off events" would include biennial high
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	1	NR, OE, PR, Sens, SR, STR, WS]
		Leaves through natural exits (channels or diftuse outfiow), not mainly through artificial or temporary features.	0	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=n o$.	0	WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[$\mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WS}$]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks andlor shrub stems and follows a fairly indirect path from entrance to exit (meandering, mult-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded surface water within the A , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	${ }^{0}$	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH , or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
${ }^{\text {F51 }}$	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difiference between the AA's inlet and
		<2\% or the AA has no sufface water outtet (not even seasonally).	1	outtet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smartphones. If the wetland is
		2.5%.	0	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	SR, WBF, WBN, WS]
	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[$\mathrm{AM}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NRv}$, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5500%.	0	
		30 to 60\%.	0	
		60 to 90\%.	1	
		P90\%, or all the area withi 30 m of the AA edge is other wellands. SKIP to F55.	0	

Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Artificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	
				Sum=	0
				Stressor subscore=	0.00
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.calinrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly higher levels of contaminants and/or salts, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential):	0.15m.	15-100 m. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential): 0.15 m.		$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: FC-Trib2-W-02

Date: 14 October 2019
Observer: Derrick Mitchell
Latitude \& Longitude (decimal degrees): 45.192947, -66.206379

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{array}{\|c\|} \hline \text { Benefits Score } \\ \text { (raw) } \end{array}$
Water Storage \& Delay (WS)	5.71	Higher	0.42	Lower	6.12	0.50
Stream Flow Support (SFS)	2.40	Loner	3.27	Moderate	1.28	1.91
Water Cooling (WC)	0.00	Loner	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	5.13	Moderate	1.45	Lower	6.67	0.88
Phosphorus Retention (PR)	4.81	Higher	1.09	Lower	6.31	1.32
Nitrate Removal \& Retention (NR)	3.17	Moderate	4.56	Moderate	5.78	5.17
Carbon Sequestration (CS)	7.00	Higher			7.58	
Organic Nutrient Export (OE)	5.19	Moderate			5.09	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	4.47	Moderate	0.92	Moderate	5.45	1.74
Amphibian \& Turtle Habitat (AM)	2.65	Lower	1.08	Lower	4.70	2.75
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.93	Moderate	2.50	Lower	5.75	2.50
Pollinator Habitat (POL)	7.54	Moderate	0.00	Lower	6.07	0.00
Native Plant Habitat (PH)	8.20	Higher	4.54	Moderate	6.39	3.94
Public Use \& Recognition (PU)			2.23	Lower		1.92
Wetland Sensitivity (Sens)			0.40	Lower		2.32
Wetland Ecological Condition (EC)			4.22	Moderate		6.67
Wetland Stressors (STR) (higher score means more stress)			3.14	Moderate		3.41
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.40	Lower	0.42	Lower	6.12	0.50
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	4.75	Moderate	3.46	Lower	7.08	3.81
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.10	Moderate	2.34	Moderate	4.20	1.56
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.59	Lower	0.65	Lower	2.82	1.65
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	7.88	Higher	3.44	Moderate	6.23	3.04
WETLAND CONDITION (EC)			4.22	Moderate		6.67
WETLAND RISK (average of Sensitivity \& Stressors)			1.77	Lower		2.87

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - BE-Trib1-W-02
Investigator Name:	Matt Alexander
Date of Field Assessment:	11 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.178466
Longitude (decimal degrees):	66.210666
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.68
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	Old apple orchard adjacent to this wetland next to Burchill Road. Former homestead existed in this area. Twentieth century garbage piles (bottles, cans, car parts, etc.) strewn about the forest.

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no al data exists in a particular province.
OF2	Ponded Area Within km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 1 0 0	e definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Near Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 100 to 1000 hectares. >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniqu	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA . Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [$*$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5 -km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	, SBM]
$\overline{\text { OF }}$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Or use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		10.25 m.	0	
		25-50 m.	0	
		50-100 m.	1	
		100.500 m .	0	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	1	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1-2 km.	1	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever s closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{aligned} & \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ & \hline \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
$0{ }^{1818}$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.18	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	\|f an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1101.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 23$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifif__Rare workshee of the accompanying Suppinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
0F38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\| 37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/enlindex.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 monthslyear).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Ouftiow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		runoff events" would include biennial high water caused by storms
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	NR, OE, PR, Sens, SR, STR, WS]
		Leaves through natural exits (channels or diftuse outtiow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA, follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly stright channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "11".	1	
F48	TDS and/	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		a above for measurement guidance. [FR, INV, NRV, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
${ }^{\text {F51 }}$	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smarthones. If the wetland is
		2-5\%.	0	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	[SR, WBF, WBN, WS]
$\begin{array}{\|l\|} \hline \text { Note } \\ \hline \text { adjace } \\ \hline \end{array}$	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 500\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

	gator: Matt Alexander	Site Identifier: BB-Trib1-W-02		Date: 11 September 2019	
Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Arrificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	0
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	0
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	0
	Flashiness or muting:	Became very flashy or controlled.			0
					0
				Stressor subscore=	0.00
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.ca/inrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly higher levels of contaminants and/or salts, then leave the "O's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	0
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	0
	AA proximity to main sources (actual or potential):	0-15m.	15-100 m. or in groundwater.	In more distant part of contributing area.	0
				Sum=	0
				Stressor subscore=	0.00
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	0
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	0
	AA proximity to main sources (actual or potential):	0-15m.	$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	0
				Sum=	0
				Stressor subscore=	0.00

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				1
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				1
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				1
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2, or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	0
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	2
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	1
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	4
				Stressor subscore=	0.33
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	$>95 \%$ of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	0
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	$>1 \mathrm{yr} \mathrm{ago}$.	0
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	0
					0
					0
				Stressor subscore=	0.00

Wetland ID: BB-Trib1-W-02

Date: 11 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	4.67	Moderate	0.37	Lower	5.32	0.45
Stream Flow Support (SFS)	1.88	Loner	3.48	Moderate	1.00	2.03
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	7.56	Higher	0.73	Lower	8.33	0.44
Phosphorus Retention (PR)	4.37	Higher	0.00	Lower	6.00	0.33
Nitrate Removal \& Retention (NR)	2.84	Moderate	7.19	Moderate	5.58	7.50
Carbon Sequestration (CS)	8.22	Higher			8.11	
Organic Nutrient Export (OE)	5.14	Moderate			5.06	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	8.21	Higher	0.76	Lower	6.76	1.66
Amphibian \& Turtle Habitat (AM)	2.70	Lower	2.16	Lower	4.72	3.40
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.29	Moderate	5.00	Moderate	5.21	5.00
Pollinator Habitat (POL)	7.50	Moderate	0.00	Lower	6.04	0.00
Native Plant Habitat (PH)	5.71	Moderate	4.32	Moderate	5.39	3.75
Public Use \& Recognition (PU)			2.26	Lower		1.94
Wetland Sensitivity (Sens)			1.51	Lower		2.66
Wetland Ecological Condition (EC)			7.83	Higher		8.75
Wetland Stressors (STR) (higher score means more stress)			0.45	Lower		2.42
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	1.88	Lower	0.37	Lower	5.32	0.45
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	6.24	Higher	4.91	Moderate	7.67	5.13
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	6.01	Moderate	2.45	Moderate	4.98	1.63
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.62	Lower	1.30	Lower	2.83	2.04
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	7.00	Moderate	4.05	Moderate	5.79	3.96
WETLAND CONDITION (EC)			7.83	Higher		8.75
WETLAND RISK (average of Sensitivity \& Stressors)			0.98	Lower		2.54

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - BB-Trib5-W-02
Investigator Name:	Matt Alexander
Date of Field Assessment:	17 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.174268
Longitude (decimal degrees):	66.206582
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.71
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	75
What percent (approx.) of the wetland were you able to visit?	75
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	Catches runoff from Burchill Road.

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	This determines to which province's calibration wetlands the raw score of any wetland is normalised. In the function and benefits models, it also triggers the automatic exclusion of indicators for which no spatial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 1 0 0	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter "3" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [${ }^{\star}$ NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	3	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so , enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " ${ }^{\star}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m.$\left.\right]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
$\overline{0} 1$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Or use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	1	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	0	
		2500 m .	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		-50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	1	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and isarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever s closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{aligned} & \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ & \hline \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.16	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 2 \times 2$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	1	
		Mostly untrue.	0	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outtets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		50-100 m.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Merk just the first choice that is true.]: Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnn.ca/content/gnb/en/departments/erd/natural_resources/content/ish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havøther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using an approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widllife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying SuppInfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Widlifife_Rare workshee of the accompanying Supplinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	$\begin{aligned} & \text { Important Bird Area } \\ & \text { (IBA) } \\ & \hline \end{aligned}$	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes=1, no=0. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no=0. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change t由lank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term ($30+$ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	1	
		$50-95 \%$ of the vegetated part of the AA.	0	
		295\% of the vegetated part of the A.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, $\mathrm{EC}, ~ I N V, ~ N R, ~ \mathrm{OE}, \mathrm{POL}, \mathrm{PR}$, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA. Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
			0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
			0	
			1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	1	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	0	
		Many ((.g., welland-upland "mosaic", $>10 \%$ of the vegetated A).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
			0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep. Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.		
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000$ sq. m.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		$225-50 \%$ of the herbaceous part of the $A \mathcal{A}$.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, , INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5 -20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	0	cies cannot be identified, answer "none". [PH, STR]
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\| 37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/enlindex.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 monthslyear).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Ouftiow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		runoff events" would include biennial high water caused by storms
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	NR, OE, PR, Sens, SR, STR, WS]
		Leeaves through natural exits (channels or diffuse outfow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA, follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly stright channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, mult-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	1	(roads or in puddles formed only by recentr rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "11".	0	
F48	TDS and/	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
${ }^{\text {F51 }}$	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smarthones. If the wetland is
		2-5\%.	0	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	[SR, WBF, WBN, WS]
$\begin{array}{\|l\|} \hline \text { Note } \\ \hline \text { adjace } \\ \hline \end{array}$	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 500\%.	0	
		30 to 60\%.	1	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	0	

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				1
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	0
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	1
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	3
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	5
				Stressor subscore=	0.42
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	0
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	0
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	0
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	0
					0
				Stressor subscore=	0.00

Wetland ID: BB-Trib5-W-02

Date: 17 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{array}{\|c\|} \hline \text { Benefits Score } \\ \text { (raw) } \end{array}$
Water Storage \& Delay (WS)	4.13	Moderate	1.58	Lower	4.90	1.65
Stream Flow Support (SFS)	2.66	Loner	2.97	Moderate	1.42	1.73
Water Cooling (WC)	0.00	Loner	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	5.94	Higher	2.06	Lower	7.22	1.25
Phosphorus Retention (PR)	4.51	Higher	4.55	Moderate	6.10	4.44
Nitrate Removal \& Retention (NR)	1.74	Lower	5.50	Moderate	4.90	6.00
Carbon Sequestration (CS)	6.49	Higher			7.36	
Organic Nutrient Export (OE)	3.70	Moderate			4.30	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	4.90	Moderate	0.60	Lower	5.60	1.57
Amphibian \& Turtle Habitat (AM)	2.17	Lower	4.78	Moderate	4.44	4.99
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.00	Moderate	10.00	Higher	4.97	10.00
Pollinator Habitat (POL)	8.84	Higher	10.00	Higher	7.12	10.00
Native Plant Habitat (PH)	4.72	Moderate	8.49	Higher	4.99	7.36
Public Use \& Recognition (PU)			2.19	Lower		1.89
Wetland Sensitivity (Sens)			1.53	Lower		2.66
Wetland Ecological Condition (EC)			3.49	Moderate		6.25
Wetland Stressors (STR) (higher score means more stress)			7.58	Higher		5.05
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.66	Moderate	1.58	Lower	4.90	1.65
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	5.00	Moderate	4.77	Moderate	6.88	4.95
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	3.85	Moderate	2.08	Moderate	4.21	1.42
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.30	Lower	2.87	Lower	2.67	2.99
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	7.68	Higher	9.75	Higher	6.41	9.56
WETLAND CONDITION (EC)			3.49	Moderate		6.25
WETLAND RISK (average of Sensitivity \& Stressors)			4.56	Higher		3.85

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - BB-Trib7-W-01
Investigator Name:	Matt Alexander
Date of Field Assessment:	12 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.182871
Longitude (decimal degrees):	66.207452
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.31
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the $\mathbf{A A}$ were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	Catches runoff from pit/quarry. Flow to the wetland is flashy as observed during a precipitation event.

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no al data exists in a particular province.
OF2	Ponded Area Within km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 1 0	e definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Near Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 100 to 1000 hectares. >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniqu	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If $s 0$, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA . Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so , enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5 -km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	, SBM]
$\overline{\text { OF }}$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	1	
		25-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	0	
		2500 m .	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpenvious surface.	0	
		<50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		50.500 m , but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	1	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever is closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.18	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1101.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
OF23	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[$\mathrm{FA}, \mathrm{INV}, \mathrm{NRV}, \mathrm{PRV}$, SRV, STR, WCV, WSv]
		<10\%.	0	
		10 to 25\%.	0	
		25\%.	1	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	1	
		Mostly untrue.	0	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		50-100 m.	1	
		100-1000 m.	0	
		1.2 km .	0	
		>2 km, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Merk just the first choice that is true.]: Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnn.ca/content/gnb/en/departments/erd/natural_resources/content/ish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havøther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widllife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying SuppInfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Widlifife_Rare workshee of the accompanying Supplinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	$\begin{aligned} & \text { Important Bird Area } \\ & \text { (IBA) } \\ & \hline \end{aligned}$	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes=1, no=0. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no=0. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change t由lank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term ($30+$ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is 10,000 sq. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\% . In other words, all or nearly all of the AA is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	1	
		$25-50 \%$ of the AA never contains surface water.	0	
		50-75\% of the AA never contains surface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA withPersistent SurfaceWater	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has sufface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20-50\% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		>95\% of the AA. True for many fringe wetlands.	0	
F26	$\%$ of Summertime Water that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the AA at that time is:		[FA, WC]
		<5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	1	
		$25-50 \%$ of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that is Flooded Only Seasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA, or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	1	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficilt to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		$<10 \mathrm{~cm}$ change (stable or nearly s).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	1	
		$1-2 \mathrm{~m}$ change.	0	
		22 m change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(but}>0$).	0	
		$10-50 \mathrm{~cm}$ deep.	1	
		$0.5-1 \mathrm{~m}$ deep.	0	
		$1-2 \mathrm{~m}$ deep.	0	
		>2 m deep. True for many finge wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consisits of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the $A A^{\prime}$'s inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	1	
		Neither of above. There are 3 or more depth classes and none occupy 750%.	0	
F31	\% of Water That IsPonded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		S5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	1	
		$5-30 \%$ of the water.	0	
		$30-70 \%$ of the water.	0	
		$70-95 \%$ of the water.	0	
		295\% of the water.	0	
F32	Ponded Open Water Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[AM, CS, FA, FR, INV, NR, OE, PR, SR, WBF, WBN, WC]
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		$70-99 \%$ of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of VegetatedZone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the AA that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		$\leqslant 1 \mathrm{~m}$.	0	
		1.9 m.	1	
		$10-29 \mathrm{~m}$.	0	
		30-49 m.	0	
		$50-100 \mathrm{~m}$.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		$\leq 1 \%$ of the water edge.	1	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		50-75\% of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		$25-75 \%$ of the emergent vegetation.	1	
		775\%, of the emergent vegetation.	0	

\|F53	Type of Cover in Buffer\|	Within 30 m upslope of where the wetland transitions to upland, the upland land cover that is NOT perennial vegetation is mostly (mark ONE):		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	1	
		Bare or nearly bare pervious sufface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv, PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	1	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	1	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
			0	
		Yes, and created or expanded 20-100 years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1% of the AA's previously vegetated area:		Look for charred soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	0	
		25-50\%.	0	
		$>50 \%$.	1	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA , or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA, there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [N Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA.	0	
		55\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		50-95\%, with or without inhabited building nearby.	1	
		>95\% of the AA with or without inhabited building nearby.	0	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter " 1 " if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		100-500 m. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

	igator: Matt Alexander	Site Identifier: BB-Trib7-W-01		Date: 12 September 2019	
Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				1
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Artificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	3
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	1
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	2
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	3
				Sum=	9
				Stressor subscore=	0.75
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				1
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.ca/inrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	2
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to main sources (actual or potential):	0-15 m.	15-100 m. or in groundwater.	In more distant part of contributing area.	3
				Sum=	6
				Stressor subscore=	0.67
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				1
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	3
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to main sources (actual or potential):	0-15 m.	$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	3
				Sum=	7
				Stressor subscore=	0.78

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				1
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				1
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				1
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	3
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	1
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	2
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	3
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	9
				Stressor subscore=	0.75
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	$>95 \%$ of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: BB-Trib7-W-01

Date: 12 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	2.25	Lower	4.15	Moderate	3.46	4.20
Stream Flow Support (SFS)	4.06	Moderate	3.10	Moderate	2.17	1.80
Water Cooling (WC)	4.85	Moderate	6.11	Higher	3.23	3.67
Sediment Retention \& Stabilisation (SR)	4.03	Moderate	3.22	Lower	5.92	1.95
Phosphorus Retention (PR)	3.30	Moderate	8.23	Higher	5.24	7.78
Nitrate Removal \& Retention (NR)	3.13	Moderate	7.50	Higher	5.76	7.78
Carbon Sequestration (CS)	4.49	Moderate			6.50	
Organic Nutrient Export (OE)	5.45	Higher			5.23	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	4.42	Moderate	3.88	Moderate	5.43	3.34
Amphibian \& Turtle Habitat (AM)	5.29	Moderate	4.55	Moderate	6.09	4.85
Waterbird Feeding Habitat (WBF)	5.36	Moderate	4.17	Moderate	4.27	4.17
Waterbird Nesting Habitat (WBN)	2.20	Moderate	2.50	Moderate	1.88	2.50
Songbird, Raptor, \& Mammal Habitat (SBM)	9.39	Higher	2.50	Lower	7.78	2.50
Pollinator Habitat (POL)	8.70	Higher	0.00	Lower	7.01	0.00
Native Plant Habitat (PH)	4.82	Moderate	5.68	Moderate	5.03	4.93
Public Use \& Recognition (PU)			208	Lower		1.81
Wetland Sensitivity (Sens)			5.78	Higher		3.94
Wetland Ecological Condition (EC)			3.49	Moderate		6.25
Wetland Stressors (STR) (higher score means more stress)			10.00	Higher		6.56
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	4.06	Moderate	4.15	Moderate	3.46	4.20
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	3.76	Moderate	7.27	Moderate	6.18	6.81
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	5.08	Moderate	5.24	Higher	4.72	3.31
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	3.97	Moderate	3.39	Moderate	4.27	3.58
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.51	Higher	4.20	Moderate	7.20	3.70
WETLAND CONDITION (EC)			3.49	Moderate		6.25
WETLAND RISK (average of Sensitivity \& Stressors)			7.89	Higher		5.25

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - BB-W-02
Investigator Name	Derrick Mitchell
Date of Field Assessment.	14 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.193464
Longitude (decimal degrees)	-66.201101
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	1.2
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entir contiguous wetland	80
What percent (approx.) of the wetland were you able to visit?	80
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no al data exists in a particular province.
OF2	Ponded Area Within 1 km.		0 0 0 0 0 1	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: < 0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes.]	0 0 0 0 0 1 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$	The minimum distance from theedge of the AA to the edge of the closestvegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the 375 -ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscapes 50 m, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are >5 km away).	1 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquen	The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
0F7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so , enter " 1 " [${ }^{\star}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5-km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	FFom the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		$\begin{aligned} & \text { Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Of } \\ & \text { use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN] } \end{aligned}$
		<10 m.	0	
		$10 \cdot 25 \mathrm{~m}$.	0	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	1	
		5500 m.	0	
OF12	Widdifie Access	Draw a circle of radius of 5 km from the center of the AA. If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=$ no. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands an roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{\circ} \mathrm{OF} 13$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		< 50 m , and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, or impervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1-2 km.	0	
		2.5 km .	0	
		5-10 km.	0	
		310 km .	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closestitidal water body (regardless of its salinity) is:		
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
${ }^{\circ} \mathrm{OF16}$	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other wetlands or water.	0	
		1-25\% of the A's perimeter abuts upland (including filled areas). The rest adjoins other wetlands or water that is mostly wider than the AA	0	
		25-50\% of the A's's perimeter abuts upland. The rest adjoins other wettands or water that is mostly wider than the AA.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other wellands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{\text {OF17 }}$	$\begin{aligned} & \text { Flood Damage from Non- } \\ & \text { tidal Waters } \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastructure is absent or is not vulnerable to floods from a non-tidal I iver. In some cases levees, upiver dams, or other measures may partly linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastucture vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
0 OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.24	[$\mathrm{FA}, \mathrm{NR}, \mathrm{Sens}$, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA , it also may contain such information. [NRV]
0 F 20	$\begin{aligned} & \hline \begin{array}{l} \text { Degraded Water } \\ \text { Upstream } \end{array} \end{aligned}$	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present a t evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" shouldbe evaluated with regard to current federal or provincial water quality standards. [AM. FA. FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in waters within 1 km that flowinto the A A, but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
0 021	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wettand assessment. [NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	1	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Samping during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	0	
OF22	Wetland as a \% of lisContributing Area(Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland' area. The result is:		Topographic maps may be viewed online at the National Atlas of Canada (Toporama): http://atlas.gc.ca/toporama/en/index.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	-	
		0.01 to 0.1.	0	
		0.1 to 1.	-	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raiseq bog).	0	
0 O23	Unvegetated Surface in the Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[FA, INV, NRV, PRV, SRV, STR, WCV, WSV]
		<10\%.	1	
		10 to 25\%.	0	
		225\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/content/ish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, n o=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	,	
		$5-30 \%$ of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	1	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Artificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	
				Sum=	0
				Stressor subscore=	0.00
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.calinrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly higher levels of contaminants and/or salts, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential):	0.15m.	15-100 m. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential): 0.15 m.		$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: BB-W-02

Date: 14 October 2019
Observer: Derrick Mitchell

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (ram)
Water Storage \& Delay (WS)	6.11	Higher	0.52	Lower	6.43	0.60
Stream Flow Support (SFS)	2.40	Lower	3.74	Moderate	1.28	2.18
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	6.75	Higher	10.00	Higher	7.78	10.00
Phosphorus Retention (PR)	4.98	Higher	10.00	Higher	6.44	10.00
Nitrate Removal \& Retention (NR)	2.56	Moderate	10.00	Higher	5.41	10.00
Carbon Sequestration (CS)	8.20	Higher			8.10	
Organic Nutrient Export (OE)	5.97	Higher			5.50	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	5.69	Higher	1.03	Moderate	5.87	1.80
Amphibian \& Turtle Habitat (AM)	2.87	Lower	1.22	Lower	4.82	2.83
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	7.23	Moderate	2.50	Lower	6.00	2.50
Pollinator Habitat (POL)	9.09	Higher	0.00	Lower	7.32	0.00
Native Plant Habitat (PH)	8.82	Higher	5.12	Moderate	6.64	4.44
Public Use \& Recognition (PU)			2.07	Lower		1.80
Wetland Sensitivity (Sens)			0.67	Lower		2.40
Wetland Ecological Condition (EC)			7.11	Higher		8.33
Wetland Stressors (STR) (higher score means more stress)			0.22	Lower		2.34
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.40	Lower	0.52	Lower	6.43	0.60
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	5.76	Higher	10.00	Higher	7.51	10.00
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.74	Moderate	2.66	Moderate	4.52	1.75
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.72	Lower	0.73	Lower	2.89	1.70
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.73	Higher	3.83	Moderate	6.99	3.38
WETLAND CONDITION (EC)			7.11	Higher		8.33
WETLAND RISK (average of Sensitivity \& Stressors)			0.44	Lower		2.37

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - FC-Trib1-W-01
Investigator Name:	Matt Alexander
Date of Field Assessment:	12 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.186357
Longitude (decimal degrees):	66.207911
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	1.2
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no al data exists in a particular province.
OF2	Ponded Area Within km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 1 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km.	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 00.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	1 0 0 1 0 0 0	e definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Near Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 100 to 1000 hectares. >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniqu	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA . Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so , enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	M, SBM]
$\overline{\text { OF }}$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	1	
		$10-25 \mathrm{~m}$.	0	
		25.50 m .	0	
		50-100 m.	0	
		$100 \cdot 500 \mathrm{~m}$.	0	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		< 50 m , but completely separated by those features.	1	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km.	1	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever is closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.15	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	\|f an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 2 \times 2$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	1	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	0	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		100-1000 m.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	1	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	0	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widdlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Widdlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1$, no $=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term ($30+$ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	0	
		295\% of the vegetated part of the A.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	0	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	0	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	1	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	1	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25.50% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5 -20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	1	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	1	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that is Flooded Only Seasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or < 0.01 hectare and <1\% of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	1	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	1	
		$0.5-1 \mathrm{md}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	1	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, or it occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	1	
		5-30\% of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	1	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	1	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	1	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	1	[AM, FA, FR, INV, NR, OE, PH, PR, SBM, SR, WBF, WBN]
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter " 1 " and continue. If not, enter " 0 " and SKIP to F42.(Connection).	1	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	1	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover $>50 \%$ of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter " 1 " in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Oufflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atalas.nrcan.gc.ca/toporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persisitent (Surface water flows out for >9 months/year).	1	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	0	
		Temporary (sufface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement). No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
			0	
F43	Outfow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water: Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.		"Major runoff events" would include biennial high water caused by storms and/or rapid snowmelt. [CS, NR, OE, PR, Sens, SR, STR, WS]
			0	
		Leaves through natural exits (channels or diffuse outtiow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outtet, or within 10 m of the AA 's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA . Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. Ifit enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	1	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=n 0$.	1	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		$[$ [FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	1	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks andlor shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA, or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes or make depressions in peat in orde to provide water for this measurement. Avoid measuring near
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	1	
		Neither of above. Enter "11".	0	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, Iodges, or extensive stands of water-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	1	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	0	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH , or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		<2\% or the AA has no surface water outtet (not even seasonally).	1	outet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smarthones. It it wetland is
		2.5%.	0	large (longer than $\sim 1 \mathrm{~km})$, this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		10\%.	0	SR, WBF, WBN, WS]
Note adjac	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[$\mathrm{AM}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NRv}$, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 500\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		,90\%, or all the area within $30 \mathrm{mof} \mathrm{the} \mathrm{AA} \mathrm{edge} \mathrm{is} \mathrm{other} \mathrm{wellands} .\mathrm{SKIP} \mathrm{to} \mathrm{F55}$.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	0	
		25-50\%.	1	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	1	
		>95\% of the AA with or without inhabited building nearby.	0	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.		[PH, PR]

	igator: Matt Alexander	Site Identifier: FC-Trib1-W-01		Date: 12 September 2019	
Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				1
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Arrificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	2
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	1
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	2
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	2
				Sum=	7
				Stressor subscore=	0.58
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				1
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.ca/inrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	0
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to main sources (actual or potential):	0-15 m.	15-100 m. or in groundwater.	In more distant part of contributing area.	0
				Sum=	1
				Stressor subscore=	0.11
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				1
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	0
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to main sources (actual or potential):	0-15 m.	$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	3
				Sum=	4
				Stressor subscore=	0.44

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				1
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				1
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				1
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	2
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	1
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	1
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	5
				Stressor subscore=	0.42
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	$>95 \%$ of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	< 5% of wetland and < 5% of its upland edge (if any).	0
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	$>1 \mathrm{yr} \mathrm{ago}$.	0
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	0
					0
					0
				Stressor subscore=	0.00

Wetland ID: FC-Trib1-W-01
Date: 12 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were
computed.
computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (ram)
Water Storage \& Delay (WS)	1.28	Lower	0.29	Lower	2.72	0.38
Stream Flow Support (SFS)	6.15	Moderate	5.66	Moderate	3.28	3.30
Water Cooling (WC)	5.45	Higher	6.74	Higher	3.63	4.06
Sediment Retention \& Stabilisation (SR)	2.41	Moderate	6.85	Moderate	4.81	4.16
Phosphorus Retention (PR)	3.92	Moderate	5.90	Higher	5.69	5.67
Nitrate Removal \& Retention (NR)	1.72	Lower	10.00	Higher	4.89	10.00
Carbon Sequestration (CS)	3.77	Moderate			6.19	
Organic Nutrient Export (OE)	7.65	Higher			6.39	
Anadromous Fish Habitat (FA)	7.01	Higher	5.82	Higher	4.29	4.30
Resident Fish Habitat (FR)	5.87	Moderate	5.92	Higher	3.50	4.20
Aquatic Invertebrate Habitat (INV)	10.00	Higher	7.32	Higher	7.52	5.19
Amphibian \& Turtle Habitat (AM)	5.08	Moderate	4.11	Moderate	5.99	4.59
Waterbird Feeding Habitat (WBF)	7.12	Higher	2.50	Moderate	5.67	2.50
Waterbird Nesting Habitat (WBN)	4.22	Moderate	0.00	Lower	3.61	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	9.76	Higher	0.00	Lower	8.09	0.00
Pollinator Habitat (POL)	9.43	Higher	0.00	Lower	7.59	0.00
Native Plant Habitat (PH)	8.05	Higher	6.02	Moderate	6.33	5.23
Public Use \& Recognition (PU)			2.00	Lower		1.75
Wetland Sensitivity (Sens)			6.58	Higher		4.17
Wetland Ecological Condition (EC)			6.39	Moderate		7.92
Wetland Stressors (STR) (higher score means more stress)			4.40	Moderate		3.88
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	6.15	Higher	0.29	Lower	2.72	0.38
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	3.30	Moderate	8.79	Higher	5.79	8.30
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	8.66	Higher	6.95	Higher	6.36	4.69
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	6.49	Higher	4.80	Moderate	5.30	3.85
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.42	Higher	4.02	Moderate	7.72	3.49
WETLAND CONDITION (EC)			6.39	Moderate		7.92
WETLAND RISK (average of Sensitivity \& Stressors)			5.49	Higher		4.03

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - FC-Trib1-W-02
Investigator Name	Derrick Mitchell
Date of Field Assessment.	14 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.185552
Longitude (decimal degrees)	-66.204419
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	5.1
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entir contiguous wetland	80
What percent (approx.) of the wetland were you able to visit?	80
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	a	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	etermines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no data exists in a particular province.
OF2	Ponded Area Within km.		1 0 0 0 0 0	djacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads m wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water ends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are naerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up nu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries wn in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 00.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 0 1	definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearb Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: 00.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 100 to 1000 hectares. >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes]	0 0 0 0 0 1 0	definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). clude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OFS	Distance to Larg Vegetated Tract	The minimum distance from theedge of the AA to the edge of the closestvegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is:		sure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure to
		$<50 \mathrm{~m}$, and not separated from the 375 -ha vegetated area by any width opaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscape $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. 50-500 m , and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are $>5 \mathrm{~km}$ away).	1 0 0 0 0 0 0	
0F6	Herbaceous Uniqueness	The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	this question only, consider moss to be herbaceous vegetation. Determine the score by viewing rial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be rawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, Lv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so , enter " 3 " and continue to $\mathrm{OF8}$. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF 8 . If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " [* NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in ws. [AMv, PHv, POLv, SBMv]
$\overline{078}$	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 55% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>990 \%$ of the land. SKIP to OF10.	0 0 0 0 1	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	, SBM]
OF1	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA, the distance to the nearespopulation center is: $\angle 100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 1 0 0 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	FFom the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		$\begin{aligned} & \text { Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Of } \\ & \text { use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN] } \end{aligned}$
		<10 m.	0	
		$10 \cdot 25 \mathrm{~m}$.	0	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	1	
		5500 m .	0	
OF12	Widdifie Access	Draw a circle of radius of 5 km from the center of the AA. If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=$ no. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands an roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{\circ} \mathrm{OF} 13$	$\begin{aligned} & \text { Distance to Ponded } \\ & \text { Water } \end{aligned}$	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		< 50 m , and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, or impervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1-2 km.	1	
		2.5 km .	0	
		5-10 km.	0	
		310 km .	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closestitidal water body (regardless of its salinity) is:		
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km .	0	
		340 km .	0	
${ }^{\circ} \mathrm{OF16}$	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other wetlands or water.	0	
		1-25\% of the A's perimeter abuts upland (including filled areas). The rest adjoins other wetlands or water that is mostly wider than the AA	0	
		25-50\% of the A's's perimeter abuts upland. The rest adjoins other wettands or water that is mostly wider than the AA.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other wellands or water that is mostly wider than the AA.	1	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	0	
${ }^{\text {OF17 }}$	$\begin{aligned} & \text { Flood Damage from Non- } \\ & \text { tidal Waters } \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the men under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastructure is absent or is not vulnerable to floods from a non-tidal I iver. In some cases levees, upiver dams, or other measures may partly linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastucture vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
0 OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.18	[$\mathrm{FA}, \mathrm{NR}, \mathrm{Sens}$, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA , it also may contain such information. [NRV]
0 F 20	$\begin{aligned} & \hline \begin{array}{l} \text { Degraded Water } \\ \text { Upstream } \end{array} \end{aligned}$	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present a t evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" shouldbe evaluated with regard to current federal or provincial water quality standards. [AM. FA. FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in waters within 1 km that flowinto the A A, but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
0 021	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wettand assessment. [NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Samping during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of lisContributing Area(Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the $A A$) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland' area. The result is:		Topographic maps may be viewed online at the National Allas of Canada (Toporama): hitp:lalalas.gc.catioporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	-	
		0.01 to 0.1.	0	
		0.1 to 1.	-	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raiseq bog).	0	
0 O23	Unvegetated Surface in the Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[FA, INV, NRV, PRV, SRV, STR, WCV, WSV]
		<10\%.	1	
		10 to 25\%.	0	
		225\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	1	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying Suppinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	0	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, \mathrm{no}=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	,	
		$5-30 \%$ of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	\|nterspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.		[AM, FA, FR, INV, NR, OE, PH, PR, SBM, SR, WBF, WBN]
			0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Litile or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover $>50 \%$ of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter " 1 " in next column. If untrue or uncertain, enter " 0 ".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA, consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.caltoporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS,
		Persistent (sufface water flows out for >9 monthslyear).	0	[${ }^{\text {ct, WS] }}$
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (sufface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outtet. SKIP to F47 (pH Measurement).	0	
F43	Outlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		I high water caused by storms andlor rapid snowme
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	
		Leaves through natural exits (channels or diffuse outflow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA . Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[$\mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WS}$]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, mult-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks andlor shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		ns th
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA . Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of water-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly -- do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difierence between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a
		2.5%.	0	large (longer than $\sim 1 \mathrm{~km}$), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and mutiplying by 100 . [CS, NR, OE, PR,
		>10\%.	0	SR, WBF, WBN, WS]
	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5500%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: FC-Trib1-W-02

Date: 14 October 2019
Observer: Derrick Mitchell
Latitude \& Longitude (decimal degrees): 45.185552, -66.204419

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	5.54	Higher	0.37	Lower	5.99	0.45
Stream Flow Support (SFS)	4.69	Moderate	3.10	Moderate	2.50	1.81
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	7.56	Higher	0.37	Lower	8.33	0.22
Phosphorus Retention (PR)	5.71	Higher	0.00	Lower	6.95	0.33
Nitrate Removal \& Retention (NR)	194	Lower	1.75	Lower	5.03	2.67
Carbon Sequestration (CS)	8.92	Higher			8.41	
Organic Nutrient Export (OE)	5.06	Moderate			5.02	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	4.46	Moderate	0.59	Lower	5.44	1.56
Amphibian \& Turtle Habitat (AM)	0.90	Lower	1.01	Lower	3.78	2.70
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.77	Moderate	2.50	Lower	5.61	2.50
Pollinator Habitat (POL)	9.45	Higher	10.00	Higher	7.61	10.00
Native Plant Habitat (PH)	5.94	Moderate	10.00	Higher	5.48	10.00
Public Use \& Recognition (PU)			2.33	Lower		1.99
Wetland Sensitivity (Sens)			1.75	Lower		2.73
Wetland Ecological Condition (EC)			8.55	Higher		9.17
Wetland Stressors (STR) (higher score means more stress)			0.39	Lower		2.40
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	4.69	Moderate	0.37	Lower	5.99	0.45
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	6.32	Higher	1.23	Lower	7.80	1.87
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.30	Moderate	2.17	Moderate	4.34	1.47
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	0.54	Lower	0.61	Lower	2.27	1.62
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.42	Higher	8.75	Higher	6.92	8.75
WETLAND CONDITION (EC)			8.55	Higher		9.17
WETLAND RISK (average of Sensitivity \& Stressors)			1.07	Lower		2.57

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - FC-Trib1-W-04
Investigator Name:	Derrick Mitchell
Date of Field Assessment:	14 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.194758
Longitude (decimal degrees):	-66.20425
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	4.8
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	80
What percent (approx.) of the wetland were you able to visit?	80
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	etermines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about 10 m x 10 m). 0.01-0.1 hectare. 0.1 - 1 hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes.]	0 0 0 0 0 1 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	Distance to Large Vegetated Tract	The minimum distance from theedge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the $375-$ ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are >5 km away). $\mathrm{l\|l\|}$.	1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous U	The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [^NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is >10\% woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [*NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: 100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Of use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	0	
		25-50 m.	0	
		50-100 m.	0	
		100.500 m .	1	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands ang roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as wel AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		- 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
\bigcirc	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.2 km .	0	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		$\begin{aligned} & \text { In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal river, whichever } \\ & \text { is closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this } \\ & \text { calculator for NB (NB Headtide). Points shown in those files are only an approximation, so local } \\ & \text { information if available may be preferable. [FA, WBF] } \end{aligned}$
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest ajoions other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menuunder it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
$0{ }^{1818}$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.20	[FA, NR, Sens, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisiting data, or monitor waters as part of this wetland assessment. [[NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
0F22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topographic maps may be viewed online at the National Altas of Canada (Toporama): http:latas.gc.catioporamaleninindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1101.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 23$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[FA, INV, NRV, PRv, SRv, STR, WCV, WSV]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance (Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	1	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifif__Rare workshee of the accompanying Suppinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	0	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	,	
		$5-30 \%$ of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Artificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	
				Sum=	0
				Stressor subscore=	0.00
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.calinrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly higher levels of contaminants and/or salts, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential):	0.15m.	15-100 m. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to main sources (actual or potential): 0.15 m.		$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	
				Sum=	0
				Stressor subscore=	0.00

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: FC-Trib1-W-04

Date: 14 October 2019
Observer: Derrick Mitchell

Latitude \& Longitude (decimal degrees): 45.194758, -66.20425

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores wer

S. See Manual for definitions and descriptions of how scores were

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	6.76	Higher	0.42	Lower	6.93	0.50
Stream Flow Support (SFS)	2.08	Lower	3.65	Moderate	1.11	2.13
Water Cooling (WC)	0.00	Loner	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	7.56	Higher	0.37	Lower	8.33	0.22
Phosphorus Retention (PR)	5.71	Higher	0.00	Lower	6.95	0.33
Nitrate Removal \& Retention (NR)	3.01	Moderate	1.56	Lower	5.69	2.50
Carbon Sequestration (CS)	8.20	Higher			8.10	
Organic Nutrient Export (OE)	5.58	Higher			5.29	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	8.20	Higher	1.42	Moderate	6.76	2.01
Amphibian \& Turtle Habitat (AM)	3.42	Moderate	1.74	Lower	5.11	3.15
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	8.37	Higher	2.50	Lower	6.94	2.50
Pollinator Habitat (POL)	9.50	Higher	10.00	Higher	7.65	10.00
Native Plant Habitat (PH)	9.82	Higher	10.00	Higher	7.04	10.00
Public Use \& Recognition (PU)			2.07	Lower		1.80
Wetland Sensitivity (Sens)			2.24	Lower		2.87
Wetland Ecological Condition (EC)			8.55	Higher		9.17
Wetland Stressors (STR) (higher score means more stress)			0.22	Lower		2.34
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.08	Lower	0.42	Lower	6.93	0.50
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	6.50	Higher	1.10	Lower	7.80	1.76
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	6.09	Higher	2.67	Moderate	5.03	1.75
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	2.05	Lower	1.04	Lower	3.07	1.89
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.52	Higher	8.75	Higher	7.43	8.75
WETLAND CONDITION (EC)			8.55	Higher		9.17
WETLAND RISK (average of Sensitivity \& Stressors)			1.23	Lower		2.61

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - FC-Trib2-W-01
Investigator Name	Derrick Mitchell
Date of Field Assessment	14 October 2019
Nearest Town	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.193500
Longitude (decimal degrees)	-66.207134
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	1.0
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	etermines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about 10 m x 10 m). 0.01-0.1 hectare. 0.1 - 1 hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes.]	0 0 0 0 0 1 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	Distance to Large Vegetated Tract	The minimum distance from theedge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the $375-$ ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are >5 km away). $\mathrm{l\|l\|}$.	1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous U	The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [^NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is >10\% woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [*NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: 100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	0	
		25-50 m.	1	
		50-100 m.	0	
		$100 \cdot 500 \mathrm{~m}$.	0	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands ang roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as wel AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1-2 km.	0	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		$\begin{aligned} & \text { In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal river, whichever } \\ & \text { is closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this } \\ & \text { calculator for NB (NB Headtide). Points shown in those files are only an approximation, so local } \\ & \text { information if available may be preferable. [FA, WBF] } \end{aligned}$
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest ajoions other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the mentunder it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.19	[FA, NR, Sens, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA , it aso may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisiting data, or monitor waters as part of this wetland assessment. [[NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topographic maps may be viewed online at the National Altas of Canada (Toporama): http:latas.gc.catioporamaleninindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 2 \times 2$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRv, PRV, SRv, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	1	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	0	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/content/ish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, \mathrm{no}=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	1	
		>95\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	0	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	1	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[${ }^{\text {AM, }}$ NR, SBM]
		Few or none.	1	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	0	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		between thumb and forefinger.	0	
		Fines: includes silt, clay, sitt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Deep Peat, to 40 cm depth or greater.	0	
			1	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.		
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		1000-10,000 sq. m.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	1	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	0	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25.50% of the herbaceous part of the AA.	1	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, , INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	1	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 5 -20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	1	s cannot be identified, answer "none". [PH, STR]
		some (but < 5%) of the upland edge.	0	
		$5-50 \%$ of the upland edge.	0	
		most (-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	1	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		50.75% of the water is shaded.	0	
		775\% of the water is shaded.	1	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (sufface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and <1\% of the AA. SKIP to F29.	0	
		1-20\% of the AA, or $<1 \%$ but >0.01 ha.	1	
		20-50\% of the AA.	0	
		50.95% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	1	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	1	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	1	
		5-30\% of the water.	,	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30\% of such vegetation forms small islands or corridors surrounded by water.	0	[AM, FA, FR, INV, NR, OE, PH, PR, SBM, SR, WBF, WBN]
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover $>50 \%$ of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent sufface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA, consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 months/lyear).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporay (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Ouftiow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		noff events" would include biennial high water caused by storms andlor rapid snowmelt.
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	1	NR, OE, PR, Sens, SR, STR, W
		Leeaves through natural exits (channels or diffuse outfiow), not mainly through artificial or temporary features.	0	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	1	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks andlor shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks andlor shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-ranched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded surface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes or make depressions in peat in order to provide water for this measurement. Avoid measuring near
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	${ }^{0}$	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's surface water is: (select the first tue row with information):		e above for measurement guidance. [FR, INV, NRv, PH, PRV, Sens]
		TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FAA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of water-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength of Evidence	Select first applicable choice:		Adhere to these criteria strictly -- do not use personal judgment based on fen conditions, pH , or other evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits
		Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	${ }^{0}$	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
${ }^{\text {F51 }}$	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet an
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outtet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smartphones. If the wetland is
		2-5\%.	0	large (longer than $\sim 1 \mathrm{~km})$, this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	[SR, WBF, WBN, WS]
	for the next three questio ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 50 30\%.	0	
		33 to 60\%.	0	
		60 to 90\%.	1	
		P90\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	0	

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: FC-Trib2-W-01

Date: 14 October 2019
Observer: Derrick Mitchell

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{array}{\|c\|} \hline \text { Benefits Score } \\ \text { (raw) } \end{array}$
Water Storage \& Delay (WS)	2.64	Moderate	0.39	Lower	3.76	0.48
Stream Flow Support (SFS)	2.92	Loner	3.53	Moderate	1.56	2.06
Water Cooling (WC)	8.40	Higher	1.28	Lower	5.60	0.77
Sediment Retention \& Stabilisation (SR)	2.00	Moderate	1.56	Lower	4.53	0.94
Phosphorus Retention (PR)	3.76	Moderate	1.09	Lower	5.57	1.32
Nitrate Removal \& Retention (NR)	2.30	Moderate	4.56	Moderate	5.25	5.17
Carbon Sequestration (CS)	4.82	Moderate			6.64	
Organic Nutrient Export (OE)	6.31	Higher			5.68	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	7.93	Higher	5.26	Moderate	6.66	4.08
Amphibian \& Turtle Habitat (AM)	4.85	Moderate	5.58	Moderate	5.86	5.48
Waterbird Feeding Habitat (WBF)	7.62	Higher	2.50	Moderate	6.07	2.50
Waterbird Nesting Habitat (WBN)	5.49	Higher	2.50	Moderate	4.69	2.50
Songbird, Raptor, \& Mammal Habitat (SBM)	9.48	Higher	2.50	Lower	7.86	2.50
Pollinator Habitat (POL)	10.00	Higher	0.00	Lower	8.35	0.00
Native Plant Habitat (PH)	8.65	Higher	6.23	Moderate	6.57	5.40
Public Use \& Recognition (PU)			2.23	Lower		1.92
Wetland Sensitivity (Sens)			0.08	Lower		2.23
Wetland Ecological Condition (EC)			7.59	Higher		8.61
Wetland Stressors (STR) (higher score means more stress)			3.14	Moderate		3.41
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.92	Moderate	0.39	Lower	3.76	0.48
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	3.23	Moderate	3.48	Lower	6.07	3.82
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	7.39	Higher	4.31	Moderate	5.77	3.19
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	5.61	Moderate	3.85	Moderate	4.69	3.79
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.69	Higher	4.57	Moderate	7.97	4.02
WETLAND CONDITION (EC)			7.59	Higher		8.61
WETLAND RISK (average of Sensitivity \& Stressors)			1.61	Lower		2.82

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MB-Trib2-W-01
Investigator Name	Derrick Mitchell
Date of Field Assessment	11 October 2019
Nearest Town	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.172643
Longitude (decimal degrees)	-66.196268
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	9.8
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entir contiguous wetland	40
What percent (approx.) of the wetland were you able to visit?	40
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying Manual and the Explanations column of the data form. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for multiple choices where allowed and so indicated. Answering many of the questions below will require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp For most wetlands, completing this office data form will require 1-2 hours. For a list of functions to which each question pertains, see bracketed abbreviations in the Definitions/Explanations column. For detailed descriptions of each WESP-AC model, see Appendix B of the accompanying Manual. Codes for functions and values are: WS= Water Storage, SFS= Stream Flow Support, WC= Water Cooling, SR= Sediment Retention \& Stabilisation, PR= Phosphorus Retention, NR= Nitrate Removal, CS= Carbon Sequestration, OE= Organic Nutrient Export, INV= Invertebrate Habitat, FA= Anadromous Fish Habitat, FR= Resident Fish Habitat, AM=Amphibian \& Reptile Habitat, WBF= Feeding Waterbird Habitat, WBN= Nesting Waterbird Habitat, SBM= Songbird, Raptor, \& Mammal Habitat, POL= Pollinator Habitat, PH= Native Plant Habitat, PU= Public Use \& Recognition, EC= Ecological Condition, Sen= Wetland Sensitivity, STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	vince	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	which province's calibration wetlands the raw score of any wetland is normalised. benefits models, it also triggers the automatic exclusion of indicators for which no in a particular province.
OF2	km	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the area from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 k	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 0 0 1	of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
$\overline{\text { OF4 }}$	Size of Largest Nea Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus all adjacent upland vegetation that is not lawn, rawn heavily grazed lands, conifer plantation is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes.] >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes.]	0 0 0 0 0 1 0	definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). clude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	Distance to Large Vegetated Tract	The minimum distance from the edge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the 375 -ha vegetated area by any width of paved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscapes.] $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are $>5 \mathrm{~km}$ away).	1 0 0 0 0 0 0 0	measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at oNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	eus Unique	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	r this question only, consider moss to be herbaceous vegetation. Determine the score by viewing rial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be awn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, Lv, SBMv, WBFv, WBNv]
0F7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter "3" and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF 8 . If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [* NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in ws. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 55% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	, SBM]
$\overline{0} 10$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA, the distance to the nearest population center is: 6100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	 0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).		
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		100-1000 m.	1	
		$1-2 \mathrm{~km}$.	0	
		>2 km, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Mark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have been stocked. In NB, the list of stocked waters is at: http://www2.gnb.calcontent/gnb/en/departments/erd/natural_resources/content/fish/content/StockedW aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to have other fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documented [mark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using an approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildifif_ _Rare worksheet of the accompanying Suppliffo file.	0	
		Presence of one or more of the nesting songbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, called IBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
0F31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), $10-20$ (enter 1), $20-30$ (enter 2), >30 (enter 3). If outside of region shown in map, change to blank.	0	This was provided by Dr. David Leske. [WBNv]
0F32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no $=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes $=1$, no $=0$. If uncertain, consult NCC and agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes=1, no= 0 . If no information, change to blank (not 0).	0	[PU]
0F35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes $=1, \mathrm{no}=0$. If no information, change to blank.	0	[PU]
0F36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes=1, no= 0 . If no information, change to blank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change to blank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands. Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term ($30+$ year) legal agreements to maintain nearly-unaltered conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\| 37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	
		Intermediat.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/enlindex.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 monthslyear).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	0	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	1	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Outtlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		"Major runoff events" would include biennial high water caused by storms and/or rapid snowmelt. [CS,
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	
		Leeaves through natural exits (channels or diffuse outfow), not mainly through artificial or temporary features.	0	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA, follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly stright channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's surface water is: (select the first tue row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
		TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivit is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	0	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smartphones. If the wetland is
		2-5\%.	1	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	[SR, WBF, WBN, WS]
$\begin{array}{\|l\|} \hline \text { Note } \\ \text { adjac } \\ \hline \end{array}$	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		-5\%.	0	
		5 500\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: BOR WL 15

Date: 11 October 2019
Observer: Derrick Mitchell

Latitude \& Longitude (decimal degrees):
Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were
computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{gathered} \text { Benefits Score } \\ \text { (raw) } \end{gathered}$
Water Storage \& Delay (WS)	9.04	Higher	1.30	Lower	8.68	1.38
Stream Flow Support (SFS)	1.04	Lower	0.00	Lower	0.56	0.00
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	5.13	Moderate	0.37	Lower	6.67	0.22
Phosphorus Retention (PR)	5.32	Higher	0.00	Lower	6.68	0.33
Nitrate Removal \& Retention (NR)	10.00	Higher	1.00	Lower	10.00	2.00
Carbon Sequestration (CS)	6.98	Higher			7.57	
Organic Nutrient Export (OE)	6.11	Higher			5.57	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	8.29	Higher	0.99	Moderate	6.79	1.78
Amphibian \& Turtle Habitat (AM)	3.09	Lower	1.08	Lower	4.93	2.75
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.93	Moderate	2.50	Lower	5.75	2.50
Pollinator Habitat (POL)	9.96	Higher	0.00	Lower	8.02	0.00
Native Plant Habitat (PH)	6.16	Higher	5.29	Moderate	5.57	4.59
Public Use \& Recognition (PU)			2.26	Lower		1.94
Wetland Sensitivity (Sens)			1.94	Lower		2.78
Wetland Ecological Condition (EC)			8.55	Higher		9.17
Wetland Stressors (STR) (higher score means more stress)			0.22	Lower		2.34
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	1.04	Lower	1.30	Lower	8.68	1.38
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	8.41	Higher	0.73	Lower	8.86	1.43
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	6.08	Higher	0.66	Lower	5.01	1.19
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.85	Lower	0.65	Lower	2.96	1.65
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.82	Higher	3.94	Moderate	7.23	3.48
WETLAND CONDITION (EC)			8.55	Higher		9.17
WETLAND RISK (average of Sensitivity \& Stressors)			1.08	Lower		2.56

NOTE: A score of 0 does not mean the function or benefit is absent from the wetland. It means only that this wetland has a capacity that is equal or less than the lowest-scoring
one, for that function
assessed previously.

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MCB-W-01
Investigator Name:	Matt Alexander
Date of Field Assessment:	9 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.162984
Longitude (decimal degrees):	66.195641
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	3.90
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year. Yer	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	is determines to which province's calibration wetlands the raw score of any wetland is normalised. the function and benefits models, it also triggers the automatic exclusion of indicators for which no atial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 1 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. to 100 hectares. 100 hectares.	0 0 0 1 0 0	definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. l >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). clude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
$\overline{\text { OF5 }}$	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$	The minimum distance from theedge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the 375 -ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscapes. $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are $>5 \mathrm{~km}$ away).	1 0 0 0 0 0 0 0	measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at eoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
0F6	Herbaceous Uniqu	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [^ NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5-km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF1	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying require using these online map viewers:

GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp
For most wetlands, completing this office data form will require 1-2 hours. For a list of functions to which each question pertains, see bracketed abbreviations in the Definitions/Explanations column. For detailed descriptions of each Retention, NR= Nitrate Removal, CS= Carbon Sequestration, OE= Organic Nutrient Export, INV=Invertebrate Habitat, FA=Anadromous Fish Habitat, FR= Resident Fish Habitat, AM=Amphibian \& Reptile Habitat, WBF= Feeding STR= Stressors.

OF11	Maintianed Road	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. O use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		10.25 m.	0	
		25-50 m.	0	
		50-100 m.	0	
		100.500 m .	1	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		<50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	1	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
OF15	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever s closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{aligned} & \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ & \hline \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
$0{ }^{1818}$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.29	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	\|f an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1101.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
OF23	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	1	
		Mostly untrue.	0	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	0	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	1	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	0	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying Suppinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, \mathrm{no}=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	1	
		>95\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	0	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Irregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	0	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	1	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	1	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25.50% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5-20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparently absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most (-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	1	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completetly (no water in channels either) or never has surface water during mosty years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	1	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	1	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	1	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	1	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	1	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	1	
		70-95\% of the water.	0	
		295\% of the water.	0	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\| 37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/enlindex.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 monthslyear).	1	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	0	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Outlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		"Major runoff events" would include biennial high water caused by storms and/or rapid snowmelt. [CS, NR, OE, PR, Sens, SR, STR, WS]
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	
		Leeaves through natural exits (channels or diffuse outfow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	1	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA, follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly stright channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, mult-branched, or braided).	1	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "11".	1	
F48	TDS and/	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		a above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[$\mathrm{FA}, \mathrm{FR}, \mathrm{PH}, \mathrm{SBM}, \mathrm{Sens}$, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	1	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	0	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
${ }^{\text {F51 }}$	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smarthones. If the wetland is
		2-5\%.	0	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	SR, WBF, WBN, WS]
$\begin{array}{\|l\|} \hline \text { Note } \\ \text { adjac } \\ \hline \end{array}$	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 500\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				1
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2, or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the $A A$, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	3
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	3
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	2
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	1
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	9
				Stressor subscore=	0.75
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	$>95 \%$ of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	< 5% of wetland and $<5 \%$ of its upland edge (if any).	0
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	0
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	0
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	0
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: MCB-W-01

Date: 9 October 2019
Observer: Matt Alexander

de (decimal degrees): 45.162984 N 66.1956										

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{array}{\|c\|} \hline \text { Benefits Score } \\ \text { (raw) } \end{array}$
Water Storage \& Delay (WS)	2.36	Lower	1.91	Lower	3.54	1.98
Stream Flow Support (SFS)	7.19	Higher	6.47	Higher	3.83	3.77
Water Cooling (WC)	3.29	Moderate	8.76	Higher	2.19	5.27
Sediment Retention \& Stabilisation (SR)	2.09	Moderate	7.31	Moderate	4.59	4.44
Phosphorus Retention (PR)	3.02	Moderate	6.08	Higher	5.05	5.83
Nitrate Removal \& Retention (NR)	2.23	Lower	10.00	Higher	5.20	10.00
Carbon Sequestration (CS)	5.75	Higher			7.04	
Organic Nutrient Export (OE)	5.03	Moderate			5.00	
Anadromous Fish Habitat (FA)	6.97	Higher	2.65	Moderate	4.27	1.96
Resident Fish Habitat (FR)	6.81	Higher	2.62	Moderate	4.06	1.86
Aquatic Invertebrate Habitat (INV)	4.91	Moderate	7.36	Higher	5.60	5.21
Amphibian \& Turtle Habitat (AM)	6.20	Moderate	5.81	Moderate	6.58	5.61
Waterbird Feeding Habitat (WBF)	6.64	Moderate	5.00	Moderate	5.28	5.00
Waterbird Nesting Habitat (WBN)	5.30	Moderate	5.00	Moderate	4.53	5.00
Songbird, Raptor, \& Mammal Habitat (SBM)	7.91	Higher	5.00	Moderate	6.56	5.00
Pollinator Habitat (POL)	10.00	Higher	0.00	Lower	8.18	0.00
Native Plant Habitat (PH)	6.63	Higher	5.66	Moderate	5.76	4.91
Public Use \& Recognition (PU)			2.18	Lower		1.88
Wetland Sensitivity (Sens)			0.50	Lower		2.35
Wetland Ecological Condition (EC)			5.66	Moderate		7.50
Wetland Stressors (STR) (higher score means more stress)			2.62	Moderate		3.22
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	7.19	Higher	1.91	Lower	3.54	1.98
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	2.73	Lower	8.90	Higher	6.26	8.38
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	6.15	Higher	8.15	Higher	4.88	5.01
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	6.68	Higher	5.01	Moderate	5.76	4.75
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.09	Higher	4.61	Moderate	7.51	4.15
WETLAND CONDITION (EC)			5.66	Moderate		7.50
WETLAND RISK (average of Sensitivity \& Stressors)			1.56	Lower		2.79

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MC-Trib1B-W-01
Investigator Name:	Derrick Mitchell
Date of Field Assessment:	11 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.195228
Longitude (decimal degrees):	-66.187355
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.5
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	10
What percent (approx.) of the wetland were you able to visit?	10
What percent (approx.) of the $\mathbf{A A}$ were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	etermines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: $\mathbf{0 . 0 1}$ hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse ($>50 \mathrm{~m}$) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. 0.1 - 1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. TThis is nearly always the answer in relatively undeveloped landscapes].	0 0 0 0 0 1 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$	The minimum distance from theedge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the $375-$ ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are >5 km away). $\mathrm{l\|l\|}$.	1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Un	The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous** but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [^NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is >10\% woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [*NOTE: woody cover = trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: 100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Of use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	0	
		25-50 m.	0	
		50-100 m.	1	
		100.500 m .	0	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands ang roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as wel AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	1	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
\bigcirc	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	1	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	0	
${ }^{0 \times 17}$	$\begin{aligned} & \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ & \hline \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menuunder it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
$0{ }^{1818}$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.60	[$\mathrm{FA}, \mathrm{NR}, \mathrm{Sens}, \mathrm{SFSV}, \mathrm{WCV}, \mathrm{WSV}]$
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisiting data, or monitor waters as part of this wetland assessment. [[NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
0F22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topographic maps may be viewed online at the National Altas of Canada (Toporama): http:latas.gc.catioporamaleninindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1101.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 23$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[FA, INV, NRV, PRv, SRv, STR, WCV, WSV]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).		
OF26	Internal Flow Distance (Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifif__Rare workshee of the accompanying Suppinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
0F38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	1	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	1	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	1	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	1	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consists of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	1	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	1	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\| 37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/enlindex.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 monthslyear).	1	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	0	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Ouftiow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		runoff events" would include biennial high water caused by storms
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	NR, OE, PR, Sens, SR, STR, WS]
		Leeaves through natural exits (channels or diffuse outfow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	1	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA, follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	1	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly stright channels.	1	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, mult-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "11".	1	
F48	TDS and/	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		a above for measurement guidance. [FR, INV, NRV, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	1	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	0	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	0	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smartphones. If the wetland is
		2-5\%.	1	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	SR, WBF, WBN, WS]
$\begin{array}{\|l\|} \hline \text { Note } \\ \hline \text { adjace } \\ \hline \end{array}$	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 500\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

\|F53	Type of Cover in Buffer\|	Within 30 m upslope of where the wetland transitions to upland, the upland land cover that is NOT perennial vegetation is mostly (mark ONE):		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.		
		Bare or nearly bare pervious sufface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv, PRv, Sens, SRv]
		<1\% (flat -- almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	1	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	1	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
			1	
		Yes, and created or expanded 20-100 years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1% of the AA's previously vegetated area:		Look for charred soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
	Uses - Actual or Potential	For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA , or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA, there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA.	0	
		55\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		50-95\%, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter " 1 " if true.	0	[$\mathrm{PH}, \mathrm{PU}]$
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	${ }^{[\mathrm{PH}, \mathrm{PR}]}$

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Assessment Area (AA) Results:

Wetland ID: MC-Trib1B-W-01						
Date: 11 October 2019						
Observer: Derrick Mitchell						
Latitude \& Longitude (decimal degrees): 45.195228, -66.187355						
Scores will appear below after data are entered in worksheets OF, F, and S. See Manual for definitions and descriptions of how scores were computed.						
Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	$\begin{array}{\|l\|} \text { Function Score } \\ \text { (raw) } \end{array}$	Benefits Score (raw)
Water Storage \& Delay (WS)	1.29	Lower	1.43	Lower	2.72	1.50
Stream Flow Support (SFS)	6.67	Higher	6.94	Higher	3.56	4.04
Water Cooling (WC)	7.80	Higher	5.73	Higher	5.20	3.45
Sediment Retention \& Stabilisation (SR)	1.30	Lower	6.16	Moderate	4.05	3.74
Phosphorus Retention (PR)	2.94	Moderate	5.53	Higher	4.98	5.33
Nitrate Removal \& Retention (NR)	0.98	Lower	10.00	Higher	4.44	10.00
Carbon Sequestration (CS)	3.31	Moderate			5.99	
Organic Nutrient Export (OE)	8.43	Higher			6.81	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	6.77	Higher	4.63	Moderate	6.26	3.74
Amphibian \& Turtle Habitat (AM)	4.89	Moderate	4.74	Moderate	5.88	4.97
Waterbird Feeding Habitat (WBF)	5.81	Moderate	2.50	Moderate	4.62	2.50
Waterbird Nesting Habitat (WBN)	4.86	Moderate	2.50	Moderate	4.15	2.50
Songbird, Raptor, \& Mammal Habitat (SBM)	9.39	Higher	2.50	Lower	7.79	2.50
Pollinator Habitat (POL)	10.00	Higher	0.00	Lower	8.19	0.00
Native Plant Habitat (PH)	8.15	Higher	6.14	Moderate	6.37	5.33
Public Use \& Recognition (PU)			2.26	Lower		1.94
Wetland Sensitivity (Sens)			4.00	Moderate		3.40
Wetland Ecological Condition (EC)			7.11	Higher		8.33
Wetland Stressors (STR) (higher score means more stress)			0.22	Lower		2.34
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	6.67	Higher	1.43	Lower	2.72	1.50
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	2.34	Lower	8.62	Higher	5.43	8.18
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	7.92	Higher	6.35	Higher	6.13	3.89
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	4.46	Moderate	3.35	Moderate	4.41	3.48
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.59	Higher	4.51	Moderate	7.82	3.97
WETLAND CONDITION (EC)			7.11	Higher		8.33
WETLAND RISK (average of Sensitivity \& Stressors)			2.11	Lower		2.87

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MC-Trib1C-W-03
Investigator Name:	Derrick Mitchell
Date of Field Assessment:	9 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.1904
Longitude (decimal degrees):	-66.184379
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	5
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	5
What percent (approx.) of the wetland were you able to visit?	5
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying Manual and the Explanations column of the data form. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for multiple choices where allowed and so indicated. Answering many of the questions below will require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp For most wetlands, completing this office data form will require 1-2 hours. For a list of functions to which each question pertains, see bracketed abbreviations in the Definitions/Explanations column. For detailed descriptions of each WESP-AC model, see Appendix B of the accompanying Manual. Codes for functions and values are: WS= Water Storage, SFS= Stream Flow Support, WC= Water Cooling, SR= Sediment Retention \& Stabilisation, PR= Phosphorus Retention, NR= Nitrate Removal, CS= Carbon Sequestration, OE= Organic Nutrient Export, INV= Invertebrate Habitat, FA= Anadromous Fish Habitat, FR= Resident Fish Habitat, AM= Amphibian \& Reptile Habitat, WBF= Feeding Waterbird Habitat, WBN= Nesting Waterbird Habitat, SBM= Songbird, Raptor, \& Mammal Habitat, POL= Pollinator Habitat, PH= Native Plant Habitat, PU= Public Use \& Recognition, EC= Ecological Condition, Sen= Wetland Sensitivity, STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	ation wetlands the raw score of any wetland is normalised. triggers the automatic exclusion of indicators for which no
OF2	$\begin{aligned} & \text { Ponded Area W } \\ & \mathrm{km} . \end{aligned}$	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after speciifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2$)$ 1 km is: within <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 0 1	definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). 0.01-0.1 hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 1 0	definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). clude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OFS	$\begin{aligned} & \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$	The minimum distance from theedge of the AA to the edge of the closest vegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the $375-$ ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are $>5 \mathrm{~km}$ away).	1 0 0 0 0 0 0 0	measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at ooNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF	Herbaceous Uniqu	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so , enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is >10\% woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so , enter " 1 " [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m.]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: <5\% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5 -km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearespopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Or use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		$<10 \mathrm{~m}$.	0	
		$10-25 \mathrm{~m}$.	0	
		$25-50 \mathrm{~m}$.	0	
		50-100 m.	0	
		100-500 m.	1	
		2500 m .	0	
OF12	Widilife Access	Draw a circle of radius of 5 km from the center of the AA. If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=\mathrm{no}$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands ang roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{\circ} \mathrm{F} 13$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in Googleaarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, andwetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well. [AM, PH, SBM, Sens, WBF, WBN]
		<50 m , and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, or impervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		50.500 m , but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	1	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
\bigcirc	$\begin{aligned} & \text { Distance to Large } \\ & \text { Ponded Water } \end{aligned}$	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		$<100 \mathrm{~m}$.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1-2 km.	0	
		2.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		310 km .	0	
OF15	Tidal Proximity	The distance from the AA edge to the closestidal water body (regardless of its salinity) is:		
		$<100 \mathrm{~m}$.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
${ }^{\text {OF16 }}$	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The A h has no upland edge (or upland is $<1 \%$ of perimeter). The A is entirely surrounded by (\& contiguous with) other wetands or water.	0	
		$1-25 \%$ of the AA's perimeter abuts upland (including filled areas). The rest adjoins other weltands or water that is mostly wider than the A A	0	
		25.50% of the AA's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		$50-75 \%$ of the AA's perimeter abuts upland. The rest adjoins other wetlands or water that is mostly wider than the AA.	1	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	0	
${ }^{017}$	$\begin{aligned} & \begin{array}{l} \text { Frood Damage from Non } \\ \text { tidial Waters } \end{array} \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the ment under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastructure is absent or is not vulinerable to tloods from a non-tidal river. In some cases levees, upiver dams, or other measures may partly init damage or risk from smaler events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to iver flooding unreated to tidal storm surges.	1	
${ }^{\circ} \mathrm{F} 18$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.55	[FA, NR, Sens, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA , it aso may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at levels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in waters within 1 km that flowinto the A , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream))This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstrean	The problem described above isdownslope from the AA , and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the A b by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Samping during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tis Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland" area. The result is:		Topographic maps may be viewed online at the National Allas of Canada (Toporama): http:/latas.gc.caltoporamaleninindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.101.	1	
		P1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raiseq bog).	0	
$0{ }^{0} 23$	Unvegetated Surface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mosty-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSV]
		<10\%.	0	
		10 to 25\%.	1	
		>25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	1	
		Mostly untrue.	0	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).	1	
OF26	Internal Flow Distance (Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifif__Rare workshee of the accompanying Suppinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	,	
		$5-30 \%$ of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

Wetland ID: MC-Trib1C-W-03						
Date: 9 October 2019						
Observer: Derrick Mitchell						
Latitude \& Longitude (decimal degrees):						
Scores will appear below after data are entered in worksheets OF, F, and S. See Manual for definitions and descriptions of how scores were computed.						
Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (ram)
Water Storage \& Delay (WS)	8.39	Higher	4.45	Moderate	8.18	4.50
Stream Flow Support (SFS)	1.20	Lower	0.00	Lower	0.64	0.00
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	3.32	Moderate	1.83	Lower	5.43	1.11
Phosphorus Retention (PR)	4.41	Higher	1.63	Lower	6.03	1.81
Nitrate Removal \& Retention (NR)	10.00	Higher	3.63	Moderate	10.00	4.33
Carbon Sequestration (CS)	4.51	Moderate			6.51	
Organic Nutrient Export (OE)	5.80	Higher			5.41	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	3.16	Moderate	0.91	Moderate	4.99	1.73
Amphibian \& Turtle Habitat (AM)	2.81	Lower	2.39	Moderate	4.78	3.54
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.79	Moderate	5.00	Moderate	5.63	5.00
Pollinator Habitat (POL)	9.20	Higher	0.00	Lower	7.41	0.00
Native Plant Habitat (PH)	4.68	Moderate	5.01	Moderate	4.97	4.35
Public Use \& Recognition (PU)			218	Lower		1.88
Wetland Sensitivity (Sens)			1.83	Lower		2.75
Wetland Ecological Condition (EC)			3.25	Moderate		6.11
Wetland Stressors (STR) (higher score means more stress)			6.76	Higher		4.74
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	1.20	Lower	4.45	Moderate	8.18	4.50
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	7.95	Higher	2.99	Lower	8.50	3.38
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.17	Moderate	0.61	Lower	4.08	1.16
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.68	Lower	1.43	Lower	2.87	2.13
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.05	Higher	4.17	Moderate	6.71	4.06
WETLAND CONDITION (EC)			3.25	Moderate		6.11
WETLAND RISK (average of Sensitivity \& Stressors)			4.29	Moderate		3.75

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MC-Trib1C-W-04
Investigator Name:	Matt Alexander
Date of Field Assessment:	8 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.189587
Longitude (decimal degrees):	66.183085
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.94
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. he function and benefits models, it also triggers the automatic exclusion of indicators for which no tial data exists in a particular province.
OF2	Ponded Area With km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 1 0 0 0	djacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads m wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water ends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up nu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure after speciifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries wn in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 1 0	definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nea Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 100 to 1000 hectares. >1000 hectares. This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). clude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{array}{\|l} \hline \text { Distance to Large } \\ \text { Vegetated Tract } \end{array}$	The minimum distance from theedge of the AA to the edge of the closestvegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the 375-ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscaped $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are $>5 \mathrm{~km}$ away).	1 1 0 0 0 0 0 0	measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at oNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
0F6	Herbaceous Uniquene	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter " 2 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so , enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	this question only, consider moss to be herbaceous vegetation. Determine the score by viewing ial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be rawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, Lv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [$*$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in ws. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF1	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Ot use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		810 m .	0	
		$10-25 \mathrm{~m}$.	0	
		$25-50 \mathrm{~m}$.	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	1	
		2500 m .	0	
OF12	Widilife Access	Draw a circle of radius of 5 km from the center of the AA. If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=\mathrm{no}$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
OF13	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in Google arart imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, andwetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well. [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, or imperiius surface.	0	
		<50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	1	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	$\begin{aligned} & \text { Distance to Large } \\ & \text { Ponded Water } \end{aligned}$	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1-2 km.	0	
		2.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		P10 km.	0	
OF15	Tidal Proximity	The distance from the AA edge to the closestidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal fiver, whicheveris closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with thiscalculator for NB (NB Headtide). Points shown in those files are only an approximation, so localinformation if available may be preferable. FA, WBF]
		$<100 \mathrm{~m}$.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
${ }^{0 \times 16}$	Upland Edge Contact	Select one:		[NR , SBM, Sens]
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other wetlands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adjoins other wetlands or water that is mostly wider than the AA	0	
		25-50\% of the AA's perimeter abuts upland. The rest adjoins other wetlands or water that is mostly wider than the AA.	0	
		$50-75 \%$ of the AA's perimeter abuts upland. The rest adjoins other wetlands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC	1	
OF17	$\begin{aligned} & \begin{array}{l} \text { Flood Damage from Nonn } \\ \text { tidial Waters } \end{array} \end{aligned}$	Within 5 km downstream or downslope of the AA (select tirst true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menuunder it by clicking on the arrow to its left and the sider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastructure is absent or is not vulinerable to floods trom a non-tidal liver. In some cases levees, upiver dams, or other measures may partly linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.56	[FA, NR, Sens, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this A , it it aso may contain such information. [NRv]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at levels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, $F A, F R, N R v$, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstrean	The problem described above isdownslope from the AA , and:		May use existing data, or monitor waters as part of this wettand assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of ltsContributing Area(Cathment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland' area. The result is:		Topographic maps may be viewed online at the National Atlas of Canada (Toporama): http://atlas.gc.caltoporama/enlindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1 to 1.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
$0{ }^{0} 23$	Unvegetated Surface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mosty-bare surface is about:		[FA, INV, NRv, PRV, SRV, STR, WCV, WSV]
		<10\%.	1	
		10to 25%.	0	
		225\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, n o=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	1	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	1	
		>95\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:	${ }^{1}$	Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		Little or no (<5\%) bare ground is visible between erect stems or under canopy anywhere in the vegetated AA. Ground is extensively blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage. Slightly bare ground ($5-20 \%$ bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA. Much bare ground (20-50\% bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.		
			0	
			0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Irregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	1	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	0	
		Many ((.g., welland-upland "mosaic", $>10 \%$ of the vegetated A).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep. Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$\frac{1000-10,000 \text { sq. m. }}{10,000 ~ s q . ~ m . ~}$		
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegegtation (all non-Woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	1	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	0	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25.50% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	0	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5-20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	0	cies cannot be identified, answer "none.". [PH, STR]
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\| 37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	
		Intermediate.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA , consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.ca/toporama/enlindex.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persistent (sufface water flows out for >9 monthslyear).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (surface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Ouftiow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		runoff events" would include biennial high water caused by storms
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	NR, OE, PR, Sens, SR, STR, WS]
		Leaves through natural exits (channels or diftuse outtiow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA, follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[[FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly stright channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded sufface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	roads or in puddles formed only by recent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "11".	1	
F48	TDS and/	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		a above for measurement guidance. [FR, INV, NRV, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of wate-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient (<10\%) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
${ }^{\text {F51 }}$	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smarthones. If the wetland is
		2-5\%.	0	large (longer than 1 km), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and multiplying by 100 . [CS, $\mathrm{NR}, \mathrm{OE}, \mathrm{PR}$,
		>10\%.	0	[SR, WBF, WBN, WS]
$\begin{array}{\|l\|} \hline \text { Note } \\ \hline \text { adjace } \\ \hline \end{array}$	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5 500\%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	0	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	1	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	0	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

	gator: Matt Alexander	Site Identifier: MC_W-03A		Date: 8 October 2019	
Stressor (S) Data Form for Non-Tidal Wetlands. WESP-AC for New Brunswick. Version 2.					Data
S1	Aberrant Timing of Water Inputs				
	In the last column, place a check mark next to any item that is likely to have caused the timing of water inputs (but not necessarily their volume) to shift by hours, days, or weeks, becoming either more muted (smaller or less frequent peaks spread over longer times more temporal homogeneity of flow or water levels) or more flashy (larger or more frequent spikes but over shorter times). [FA, FR, INV, PH, STR]				
	Stormwater from impervious surfaces that drains directly to the wetland.				
	Water subsidies from wastewater effluent, septic system leakage, snow storage areas, or irrigation.				
	Regular removal of surface or groundwater for irrigation or other consumptive use.				
	Flow regulation in tributaries or water level regulation in adjoining water body, or other control structure at water entry points that regulates inflow to the wetland.				
	A dam, dike, levee, weir, berm, or fill -- within or downgradient from the wetland -- that interferes with surface or subsurface flow in/out of the AA (e.g., road fill, wellpads, pipelines).				
	Excavation within the wetland, e.g., dugout, artificial pond, dead-end ditch.				
	Artificial drains or ditches in or near the wetland.				
	Accelerated downcutting or channelization of an adjacent or internal channel (incised below the historical water table level).				
	Logging within the wetland.				1
	Subsidence or compaction of the wetland's substrate as a result of machinery, livestock, fire, drainage, or off road vehicles.				
	Straightening, ditching, dredging, and/or lining of tributary channels.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items had no measurable effect on the timing of water conditions in any part of the AA, then leave the "0's" for the scores in the following row To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of timing shift within the wetland:	>95\% of wetland.	5-95\% of wetland.	<5\% of wetland.	2
	When most of the timing shift began:	<3 yrs ago.	3-9 yrs ago.	10-100 yrs ago.	1
	Score the following 2 rows only if the altered inputs began within past 10 years, and only for the part of the wetland that experiences those.				
	Input timing now vs. previously:	Shift of weeks.	Shift of days.	Shift of hours or minutes.	0
	Flashiness or muting:	Became very flashy or controlled.	Intermediate.	Became mildly flashy or controlled.	0
				Sum=	3
				Stressor subscore=	0.25
S2	Accelerated Inputs of Contaminants and/or Salts				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of contaminants or salts to the AA. [AM, FA, PH, POL, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills, industrial facilities.				
	Metals \& chemical wastes from mining, shooting ranges, snow storage areas, oil/ gas extraction, other sources (download many locations from National Pollutant Release Inventory and view KMZ overlay in Google Earth. https://www.ec.gc.ca/inrp-npri/default.asp?lang=En\&n=B85A1846-1				
	Road salt.				
	Spraying of pesticides, as applied to lawns, croplands, roadsides, or other areas in the CA.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly higher levels of contaminants and/or salts, then leave the "O's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Usual toxicity of most toxic contaminants:	Industrial effluent, mining waste, unmanaged landfill.	Cropland, managed landfill, pipeline or transmission rights-of- way.	Low density residential.	0
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	0
	AA proximity to main sources (actual or potential):	0-15m.	15-100 m. or in groundwater.	In more distant part of contributing area.	0
				Sum=	0
				Stressor subscore=	0.00
S3	Accelerated Inputs of Nutrients				
	In the last column, place a check mark next to any item -- occurring in either the wetland or its CA -- that is likely to have accelerated the inputs of nutrients to the wetland. [NRv, PRv, STR]				
	Stormwater or wastewater effluent (including failing septic systems), landfills.				
	Fertilizers applied to lawns, ag lands, or other areas in the CA.				
	Livestock, dogs.				
	Artificial drainage of upslope lands.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not cumulatively expose the AA to significantly more nutrients, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Type of loading:	High density of unmaintained septic, some types of industrial sources.	Moderate density septic, cropland, secondary wastewater treatment plant.	Livestock, pets, low density residential.	0
	Frequency \& duration of input:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	0
	AA proximity to main sources (actual or potential):	0-15m.	$15-100 \mathrm{~m}$. or in groundwater.	In more distant part of contributing area.	0
				Sum=	0
				Stressor subscore=	0.00

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3, 2, or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	0
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	0
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	0
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	0
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	0
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	0
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	0
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	0
					0
				Stressor subscore=	0.00

Wetland ID: MC-Trib1C-W-04						
Date: 8 October 2019						
Observer: Matt Alexander						
Latitude \& Longitude (decimal degrees): 45.189587N 66.183085W						
Scores will appear below after data are entered in worksheets OF, F, and S. See Manual for definitions and descriptions of how scores were computed.						
Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (ram)
Water Storage \& Delay (WS)	4.57	Moderate	1.33	Lower	5.24	1.40
Stream Flow Support (SFS)	2.66	Lower	6.45	Higher	1.42	3.76
Water Cooling (WC)	0.00	Lover	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	7.56	Higher	0.37	Lower	8.33	0.22
Phosphorus Retention (PR)	4.77	Higher	0.00	Lower	6.29	0.33
Nitrate Removal \& Retention (NR)	2.61	Moderate	0.25	Lower	5.44	1.33
Carbon Sequestration (CS)	8.44	Higher			8.20	
Organic Nutrient Export (OE)	3.36	Moderate			4.11	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	5.40	Moderate	0.83	Lower	5.77	1.69
Amphibian \& Turtle Habitat (AM)	2.81	Lower	0.87	Lower	4.79	2.62
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.46	Moderate	2.50	Lower	5.36	2.50
Pollinator Habitat (POL)	8.64	Higher	0.00	Lower	6.96	0.00
Native Plant Habitat (PH)	4.95	Moderate	4.73	Moderate	5.08	4.11
Public Use \& Recognition (PU)			2.07	Lower		1.80
Wetland Sensitivity (Sens)			0.00	Lower		1.88
Wetland Ecological Condition (EC)			5.66	Moderate		7.50
Wetland Stressors (STR) (higher score means more stress)			2.54	Moderate		3.19
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.66	Moderate	1.33	Lower	5.24	1.40
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	6.27	Higher	0.29	Lower	7.70	0.98
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.13	Moderate	4.44	Moderate	4.30	2.79
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.69	Lower	0.52	Lower	2.87	1.57
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	7.66	Higher	3.57	Moderate	6.38	3.15
WETLAND CONDITION (EC)			5.66	Moderate		7.50
WETLAND RISK (average of Sensitivity \& Stressors)			1.27	Lower		2.54
	NOTE: A score of 0 does not mean the function or benefit is absent from the wetland. It means only that this wetland has a capacity that is equal or less than the lowest-scoring one, for that function or benefit, from among the 98 NB calibration wetlands that were assessed previously.					

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MC-Trib1D-W-01
Investigator Name:	Derrick Mitchell
Date of Field Assessment:	9 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.192384
Longitude (decimal degrees):	-66.186994
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	5
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	5
What percent (approx.) of the wetland were you able to visit?	5
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	1	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	1	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	1	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	1	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	1	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	0	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: MC-Trib1D-W-01						
Date: 9 October 2019						
Observer: Derrick Mitchell						
Latitude \& Longitude (decimal degrees): $45.163275,66.199397$						
Scores will appear below after data are entered in worksheets OF, F, and S. See Manual for definitions and descriptions of how scores were computed.						
Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{array}{\|c} \text { Benefits Score } \\ \text { (raw) } \end{array}$
Water Storage \& Delay (WS)	4.35	Moderate	1.63	Lower	5.08	1.70
Stream Flow Support (SFS)	5.63	Moderate	7.40	Higher	3.00	4.32
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	7.24	Higher	0.69	Lower	8.11	0.42
Phosphorus Retention (PR)	5.07	Higher	0.48	Lower	6.50	0.76
Nitrate Removal \& Retention (NR)	3.23	Moderate	1.94	Lower	5.82	2.83
Carbon Sequestration (CS)	7.54	Higher			7.82	
Organic Nutrient Export (OE)	5.01	Moderate			4.99	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	4.61	Moderate	0.83	Lower	5.49	1.69
Amphibian \& Turtle Habitat (AM)	3.14	Lower	0.78	Lower	4.96	2.57
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.27	Moderate	2.50	Lower	5.20	2.50
Pollinator Habitat (POL)	9.62	Higher	0.00	Lower	7.75	0.00
Native Plant Habitat (PH)	5.27	Moderate	4.97	Moderate	5.21	4.32
Public Use \& Recognition (PU)			2.26	Lower		1.94
Wetland Sensitivity (Sens)			0.00	Lower		2.12
Wetland Ecological Condition (EC)			4.70	Moderate		6.94
Wetland Stressors (STR) (higher score means more stress)			1.92	Lower		2.97
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	5.63	Higher	1.63	Lower	5.08	1.70
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	6.21	Higher	1.49	Lower	7.59	2.09
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.72	Moderate	5.07	Higher	4.43	3.16
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.88	Lower	0.47	Lower	2.97	1.54
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.33	Higher	3.73	Moderate	6.90	3.29
WETLAND CONDITION (EC)			4.70	Moderate		6.94
WETLAND RISK (average of Sensitivity \& Stressors)			0.96	Lower		2.54
	NOTE: A score of 0 does not mean the function or benefit is absent from the wetland. It means only that this wetland has a capacity that is equal or less than the lowest-scoring one, for that function or benefit, from among the 98 NB calibration wetlands that were assessed previously.					

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - MC-W-01
Investigator Name:	Derrick Mitchell
Date of Field Assessment:	October 9, 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.188198
Longitude (decimal degrees):	-66.187343
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	8.9 ha
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland	90
What percent (approx.) of the wetland were you able to visit?	90
What percent (approx.) of the $\mathbf{A A}$ were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, July 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying Manual and the Explanations column of the data form. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for multiple choices where allowed and so indicated. Answering many of the questions below will require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp For most wetlands, completing this office data form will require 1-2 hours. For a list of functions to which each question pertains, see bracketed abbreviations in the Definitions/Explanations column. For detailed descriptions of each WESP-AC model, see Appendix B of the accompanying Manual. Codes for functions and values are: WS= Water Storage, SFS= Stream Flow Support, WC= Water Cooling, SR= Sediment Retention \& Stabilisation, PR= Phosphorus Retention, NR= Nitrate Removal, CS= Carbon Sequestration, OE= Organic Nutrient Export, INV= Invertebrate Habitat, FA= Anadromous Fish Habitat, FR= Resident Fish Habitat, AM= Amphibian \& Reptile Habitat, WBF= Feeding Waterbird Habitat, WBN= Nesting Waterbird Habitat, SBM= Songbird, Raptor, \& Mammal Habitat, POL= Pollinator Habitat, PH= Native Plant Habitat, PU= Public Use \& Recognition, EC= Ecological Condition, Sen= Wetland Sensitivity, STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no al data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \mathrm{\times 10m)} \mathrm{}. \mathbf{0} 0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 1 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 00.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. 1000 hectares. This is nearly always the answer in relatively undeveloped landscapes	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
$\overline{\text { OF5 }}$	Distance to Large Vegetated Tract		1 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniqueness	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter "3" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is >10\% woody* but uplands within 5 km have <10\% woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m .]	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 990% of the land. SKIP to OF10.	1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: 5100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 55 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly-inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	FFom the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		$\begin{aligned} & \text { Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Of } \\ & \text { use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN] } \end{aligned}$
		<10 m.	0	
		$10 \cdot 25 \mathrm{~m}$.	0	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	1	
		5500 m .	0	
OF12	Widdifie Access	Draw a circle of radius of 5 km from the center of the AA. If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=$ no. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands an roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{\circ} \mathrm{OF} 13$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		< 50 m , and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, or impervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	1	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	$\begin{aligned} & \text { Distance to Large } \\ & \text { Ponded Water } \end{aligned}$	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1-2 km.	0	
		2.5 km .	1	
		5-10 km.	0	
		310 km .	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closestitidal water body (regardless of its salinity) is:		
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
${ }^{\circ} \mathrm{OF16}$	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other wetlands or water.	0	
		1-25\% of the A's perimeter abuts upland (including filled areas). The rest adjoins other wetlands or water that is mostly wider than the AA	0	
		25-50\% of the AA's perimeter abuts upland. The rest adjoins other wetlands or water that is mostly wider than the AA.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other wellands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{\text {OF17 }}$	$\begin{aligned} & \text { Flood Damage from Non- } \\ & \text { tidal Waters } \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk reas and there appears to be infrastucture vulnerable to ivive flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastructure is absent or is not vulnerable to floods from a non-tidal I iver. In some cases levees, upiver dams, or other measures may partly linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastucture vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
0 OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.12	[$\mathrm{FA}, \mathrm{NR}, \mathrm{Sens}$, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA , it also may contain such information. [NRV]
0 F 20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present a t evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" shouldbe evaluated with regard to current federal or provincial water quality standards. [AM. FA. FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in waters within 1 km that flowinto the AA , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoft (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
0 021	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wettand assessment. [NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	1	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Samping during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	0	
OF22	Wetland as a \% of lisContributing Area(Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland' area. The result is:		Topographic maps may be viewed online at the National Atlas of Canada (Toporama): http://atlas.gc.ca/toporama/en/index.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	-	
		0.01 to 0.1.	0	
		0.1 to 1.		
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raiseq bog).	0	
0 O23	Unvegetated Surface in the Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[FA, INV, NRV, PRV, SRV, STR, WCV, WSV]
		<10\%.	1	
		10 to 25\%.	0	
		225\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance (Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	1	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	0	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using an approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	1	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifife_Rare workshee of the accompanying Supplinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	0	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://mww.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://mww.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	1	
		>95\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	0	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	0	
		Several (extensive micro-topography).	1	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[${ }^{\text {AM, }}$ NR, SBM]
		Few or none.	0	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	1	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic 440 cm deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	0	
		$100-1000$ sq.m.	1	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	0	
		$5-25 \%$ of the herbaceous part of the AA.	1	
		25.50% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5-20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	1	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	1	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that is Flooded Only Seasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or < 0.01 hectare and <1\% of the AA. SKIP to F29.	0	
		1-20\% of the AA, or $<1 \%$ but >0.01 ha.	1	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, $\mathrm{NR}, \mathrm{OE}, \mathrm{PH}$, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but >0).	0	
		10.50 cm deep.	1	
		$0.5-1 \mathrm{md}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises > 90% of the AA 's inundated area (use the classes in the question above).	1	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	\% of Water That IsPonded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, or it occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	,	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	1	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	1	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	1	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	1	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	1	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	1	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	0	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	1	
		25-50\%.	0	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA, or the AA can be accessed part of the year by boats arriving via contiguous waters.	0	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	0	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplnfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				1
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				1
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				1
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration: Frequent and year-round.		Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
	Stressor subscore=				0.00

Wetland ID: MC-W-01
Date: 9 October 2019
Observer: Derrick Mitchell

Latitude \& Longitude (decimal degrees): 45.188198, -66.187343	

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{gathered} \text { Benefits Score } \\ \text { (raw) } \end{gathered}$
Water Storage \& Delay (WS)	2.06	Lower	0.22	Lower	3.32	0.30
Stream Flow Support (SFS)	4.48	Moderate	3.28	Moderate	2.39	1.91
Water Cooling (WC)	2.92	Moderate	4.08	Moderate	1.94	2.46
Sediment Retention \& Stabilisation (SR)	3.78	Moderate	10.00	Higher	5.74	10.00
Phosphorus Retention (PR)	4.09	Moderate	10.00	Higher	5.81	10.00
Nitrate Removal \& Retention (NR)	2.28	Moderate	10.00	Higher	5.24	10.00
Carbon Sequestration (CS)	5.36	Moderate			6.87	
Organic Nutrient Export (OE)	4.43	Moderate			4.68	
Anadromous Fish Habitat (FA)	0.00	Lover	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	4.40	Moderate	2.84	Moderate	2.62	2.01
Aquatic Invertebrate Habitat (INV)	3.95	Moderate	6.43	Higher	5.26	4.71
Amphibian \& Turtle Habitat (AM)	5.89	Moderate	7.08	Higher	6.41	6.39
Waterbird Feeding Habitat (WBF)	7.63	Higher	5.00	Moderate	6.07	5.00
Waterbird Nesting Habitat (WBN)	5.95	Higher	5.00	Moderate	5.08	5.00
Songbird, Raptor, \& Mammal Habitat (SBM)	9.75	Higher	5.00	Moderate	8.08	5.00
Pollinator Habitat (POL)	9.16	Higher	10.00	Higher	7.38	10.00
Native Plant Habitat (PH)	7.05	Higher	10.00	Higher	5.93	10.00
Public Use \& Recognition (PU)			2.07	Lower		1.80
Wetland Sensitivity (Sens)			0.00	Lower		2.20
Wetland Ecological Condition (EC)			4.94	Moderate		7.08
Wetland Stressors (STR) (higher score means more stress)			4.57	Moderate		3.94
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	4.48	Moderate	0.22	Lower	3.32	0.30
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	3.74	Moderate	10.00	Higher	6.39	10.00
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.21	Moderate	5.52	Higher	4.42	3.87
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	6.21	Moderate	5.53	Moderate	5.23	5.03
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.20	Higher	9.17	Higher	7.61	9.17
WETLAND CONDITION (EC)			4.94	Moderate		7.08
WETLAND RISK (average of Sensitivity \& Stressors)			2.28	Lower		3.07

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - PH-W-01
Investigator Name:	Matt Alexander
Date of Field Assessment:	20 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.202795
Longitude (decimal degrees):	66.187736
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	1.93
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	Catches runoff from Paddy's Hill and Paddy's Hill Road.

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	This determines to which province's calibration wetlands the raw score of any wetland is normalised. In the function and benefits models, it also triggers the automatic exclusion of indicators for which no spatial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 1 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 1 0	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter "3" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [${ }^{\star}$ NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	3	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so , enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " ${ }^{\star}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m.$\left.\right]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
$\overline{0} 1$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	1	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	0	
		2500 m .	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	$\begin{aligned} & \text { Distance to Ponded } \\ & \text { Water } \end{aligned}$	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpenvious surface.	0	
		<50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		50.500 m , but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	1	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and isarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.2 km .	0	
		2.5 km .	0	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever is closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[NR , SBM, Sens]
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
$0{ }^{1818}$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.68	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this A, it itso may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
0 O23	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/content/ish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, n o=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

Form F (Field). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Walk for no less than 10 minutes from the wetland edge towards its core, in the part of the AA that is proposed for alteration. If no alteration is proposed, walk in a portion that appears to be most representative of the wetland overall. Walk only where it is safe and legal to do so. Conduct the assessment only after reading the accompanying Manual and the Explanations column of the data form. In the Data column, change the 0 (false) to a 1 (true) for the best choice, or for multiple choices where allowed and so indicated. Answer these questions primarily based on your onsite observations and interpretations. Do not write in shaded parts of this data form. Answering some questions accurately may require conferring with the landowner or other knowledgable persons, and/or reviewing aerial imagery. For most wetlands, completing this field data form will require 1-2 hours on a site. For a list of functions to which each question pertains, see the accompanying interpretations form. For detailed descriptions of each WESP-AC model, see Appendix B of the accompanying Manual. Codes for functions and values are: WS= Water Storage \& Delay, SFS= Stream Flow Support, WC= Water Cooling, SR= Sediment Retention \& Stabilisation, PR= Phosphorus Retention, NR=Nitrate Removal, CS= Carbon Sequestration, OE= Organic Nutrient Export, INV=Invertebrate Habitat, FA=Anadromous Fish Habitat, FR=Resident Fish Habitat, AM= Amphibian \& Reptile Habitat, WBF= Feeding Waterbird Habitat, WBN= Nesting Waterbird Habitat, SBM= Songbird, Raptor, \& Mammal Habitat, POL= Pollinator Habitat, PH= Native Plant Habitat, PU= Public Use \& Recognition, EC= Ecological Condition, Sen= Wetland Sensitivity, STR= Stressors.

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	1	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	1	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that is Flooded Only Seasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	1	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, $\mathrm{NR}, \mathrm{OE}, \mathrm{PH}$, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	1	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	1	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		5-30\% of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	1	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	Interspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.	0	[AM, FA, FR, INV, NR, OE, PH, PR, SBM, SR, WBF, WBN]
		Intermediat.	0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Little or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover >50\% of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter "1" in next column. If untrue or uncertain, enter "0".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA, consult topographic maps perhaps by viewing these online with Toporama (http://atas.nrcan.gc.ca/toporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS, SR, WCv, WS]
		Persisitent (sufface water flows out for >9 monthslyear).	0	
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (sufface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outlet. SKIP to F47 (pH Measurement).	0	
F43	Outlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		noff events" would include biennial high water caused by
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	NR, OE, PR, Sens, SR, STR,
		Leaves through natural exits (channels or diffuse outfow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA. Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	[WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		$[$ [FA, FR, INV, NR, OE, PR, SR, WS]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, multi-branched, or braided channels.	0	
		Bumps into tree trunks andlor shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks and/or shrub stems and follows a fairly indirect path from entrance to exit (meandering, mult-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		Preferably, measure this in larger areas of ponded surface water within the AA , or in streams that have
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes or make depressions in peat in order to provide water for this measurement. Avoid measuring near
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	1	roads or in puddles formed only by reeent rain. [AM, FA, FR, NR, WBF, PH, PR, Sens, WBF, WBN]
		Neither of above. Enter "1".	0	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's surface water is: (select the first true row with information):		e above for measurement guidance. [FR, INV, NRv, PH, PRV, Sens]
		TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA. Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of water-killed trees (snags).	1	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characteristics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	0	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly - - do not use personal judgment based on fen conditions, pH, or other
		Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA , AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, athough some groundwater may discharge to of flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difference between the AA's inlet and
		<2\% or the AA has no sufface water outlet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a clinometer to measure this. Free clinometer apps can be downloaded to smartphones. If the wetland is
		2-5\%.	0	large (longer than $\sim 1 \mathrm{~km}$), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA, then dividing by length and multiplying by 100 . [CS, NR, OE, PR,
		10\%.	0	SR, WBF, WBN, WS]
	for the next three questio ent. In many situations, thes	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are hese questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		55030%.	0	
		30 to 60\%.	0	
		60 to 90\%.	1	
		P90\%, or all the area within 30 m of the AA edge is other wetlands. SKIP to F55.	0	

Wetland ID: PH-W-01

Date: 20 September 2019
Observer: Matt Alexander

Latitude \& Longitude (decimal degrees): 45.202795, 66.187736
Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were
S. See Manual for definitions and descriptions of how scores were

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{aligned} & \text { Benefits Score } \\ & \text { (raw) } \end{aligned}$
Water Storage \& Delay (WS)	3.06	Moderate	1.63	Lower	4.09	1.70
Stream Flow Support (SFS)	2.55	Lower	7.19	Higher	1.36	4.19
Water Cooling (WC)	1.42	Lower	0.00	Lower	0.94	0.00
Sediment Retention \& Stabilisation (SR)	2.03	Moderate	1.88	Lower	4.55	1.14
Phosphorus Retention (PR)	3.02	Moderate	4.55	Moderate	5.05	4.44
Nitrate Removal \& Retention (NR)	2.21	Lower	7.19	Moderate	5.19	7.50
Carbon Sequestration (CS)	2.73	Lower			5.74	
Organic Nutrient Export (OE)	4.16	Moderate			4.54	
Anadromous Fish Habitat (FA)	0.00	Loner	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Loner	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	2.53	Lower	5.04	Moderate	4.76	3.96
Amphibian \& Turtle Habitat (AM)	5.80	Moderate	9.62	Higher	6.36	7.93
Waterbird Feeding Habitat (WBF)	7.36	Higher	10.00	Higher	5.86	10.00
Waterbird Nesting Habitat (WBN)	4.25	Moderate	10.00	Higher	3.63	10.00
Songbird, Raptor, \& Mammal Habitat (SBM)	9.57	Higher	10.00	Higher	7.93	10.00
Pollinator Habitat (POL)	9.95	Higher	10.00	Higher	8.01	10.00
Native Plant Habitat (PH)	6.23	Higher	9.97	Higher	5.60	8.65
Public Use \& Recognition (PU)			4.55	Moderate		3.57
Wetland Sensitivity (Sens)			5.56	Higher		3.87
Wetland Ecological Condition (EC)			4.94	Moderate		7.08
Wetland Stressors (STR) (higher score means more stress)			6.38	Higher		4.60
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.55	Moderate	1.63	Lower	4.09	1.70
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	2.72	Lower	5.86	Moderate	5.44	5.93
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	3.41	Lower	5.64	Higher	3.83	3.46
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	5.42	Moderate	7.96	Higher	4.77	7.79
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.26	Higher	9.99	Higher	7.59	9.77
WETLAND CONDITION (EC)			4.94	Moderate		7.08
WETLAND RISK (average of Sensitivity \& Stressors)			5.97	Higher		4.24

NOTE: A score of 0 does not mean the function or benefit is absent from the wetland. It
means only that this wetland has a capacity that is equal or less than the lowest-scoring means only that this wetland has a capacity that is equal or less than the lowest-scoring
assessed previously.

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - PH-W-02
Investigator Name:	Derrick Mitchell
Date of Field Assessment:	14 October 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.202084
Longitude (decimal degrees):	-66.186590
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	8.7
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	75
What percent (approx.) of the wetland were you able to visit?	50
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	100+
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONs: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR=Stressors.				
\#	Indicators	Condition Choices	Data	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	determines to which province's calibration wetlands the raw score of any wetland is normalised. function and benefits models, it also triggers the automatic exclusion of indicators for which no al data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearb Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus aladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). 0.01-0.1 hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. TThis is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 1 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only if it is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$	The minimum distance from theedge of the AA to the edge of the closestvegetated land (but excluding row crops, lawn, conifer plantation) larger than 375 hectares (about 2 km on a side), is: $<50 \mathrm{~m}$, and not separated from the 375 -ha vegetated area by any width ofpaved roads, stretches of open water, row crops, bare ground, lawn, or impervious surface. Or the AA itself contains >375 ha of vegetation. [This is often the answer in relatively undeveloped landscapes $<50 \mathrm{~m}$, but completely separated from the 375 -ha vegetated area by those features, and AA does not contain >375 ha of vegetation. $50-500 \mathrm{~m}$, and not separated. $50-500 \mathrm{~m}$, but separated by those features. $0.5-5 \mathrm{~km}$, and not separated. $0.5-5 \mathrm{~km}$, but separated by those features. None of the above (the closest patches or corridors which are that large are >5 km away).	1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Un	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA . Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m.$\left.\right]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF	Local Vegetated Cover Percentage	Draw a 5-km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 990% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	1	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA, the distance to the nearestpopulation center is:	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Or use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		$<10 \mathrm{~m}$.	0	
		$10-25 \mathrm{~m}$.	0	
		$25-50 \mathrm{~m}$.	0	
		50-100 m.	0	
		100-500 m.	1	
		2500 m .	0	
OF12	Widilife Access	Draw a circle of radius of 5 km from the center of the AA. If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=\mathrm{no}$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands ang roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{\circ} \mathrm{F} 13$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in Googleaarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, andwetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well. [AM, PH, SBM, Sens, WBF, WBN]
		<50 m , and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, or impervious surface.	0	
		< 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		50.500 m , but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
\bigcirc	$\begin{aligned} & \text { Distance to Large } \\ & \text { Ponded Water } \end{aligned}$	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		$<100 \mathrm{~m}$.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1-2 km.	0	
		2.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		310 km .	0	
OF15	Tidal Proximity	The distance from the AA edge to the closestidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal river, whicheveris closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with thiscalculator for NB ((iB Headtide). Points shown in those files are only an approximation, so localinformation if available may be preferable. [FA, WBF]
		$<100 \mathrm{~m}$.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.5 km .	1	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
${ }^{\text {OF16 }}$	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The A h has no upland edge (or upland is $<1 \%$ of perimeter). The A is entirely surrounded by (\& contiguous with) other wetands or water.	0	
		$1-25 \%$ of the AA's perimeter abuts upland (including filled areas). The rest adjoins other weltands or water that is mostly wider than the A A	0	
		25.50% of the AA's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		$50-75 \%$ of the AA's perimeter abuts upland. The rest adjoins other wetlands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
OF17	$\begin{aligned} & \begin{array}{l} \text { Flood Damage from Nonn } \\ \text { tidial Waters } \end{array} \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastructure is absent or is not vulinerable to tloods from a non-tidal river. In some cases levees, upiver dams, or other measures may partly init damage or risk from smaler events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to iver flooding unreated to tidal storm surges.	1	
${ }^{\circ} \mathrm{F} 18$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.70	[FA, NR, Sens, SFSV, WCV, WSV]
OF19	Water Quality Sensitive Watershed or or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA , it aso may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at levels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in waters within 1 km that flowinto the A , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream))This is the situation for nearly all wetlands in this region.	1	
${ }^{0 \times 21}$	Degraded Water Downstream	The problem described above isdownslope from the AA , and:		May use exisining data, or monitor waters as part of this wettand assessment. [NRv, PRv, SRv]
		The condition is present within 1 km downslope and connected to the A b by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Samping during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tis Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland" area. The result is:		Topographic maps may be viewed online at the National Allas of Canada (Toporama): http:/latas.gc.caltoporamaleninindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.101.	1	
		P1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raiseq bog).	0	
$0{ }^{0} 23$	Unvegetated Surface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mosty-bare surface is about:		[FA, INV, NRv, PRV, SRV, STR, WCV, WSV]
		<10\%.	1	
		10 to 25\%.	0	
		>25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifif__Rare workshee of the accompanying Suppinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	0	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
0F38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	1	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completetly (no water in channels either) or never has surface water during mosty years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		50-75\% of the water is shaded.	1	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20.50% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	1	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	1	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2 m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	1	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	1	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	0	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	1	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	1	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	0
				Stressor subscore=	0.00
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
				Stressor subscore=	0.00

Wetland ID: PH-W-02

Date: 14 October 2019
Observer: Derrick Mitchell
Laitude \& Longitude (deecimal degrees): 45.20284, 66.186590

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	$\begin{array}{\|c\|} \hline \text { Benefits Score } \\ \text { (raw) } \end{array}$
Water Storage \& Delay (WS)	2.90	Moderate	1.68	Lower	3.96	1.75
Stream Flow Support (SFS)	4.79	Moderate	7.50	Higher	2.56	4.37
Water Cooling (WC)	8.25	Higher	5.29	Higher	5.50	3.18
Sediment Retention \& Stabilisation (SR)	3.74	Moderate	1.29	Lower	5.71	0.79
Phosphorus Retention (PR)	3.04	Moderate	0.78	Lower	5.06	1.04
Nitrate Removal \& Retention (NR)	2.31	Moderate	3.81	Moderate	5.26	4.50
Carbon Sequestration (CS)	6.54	Higher			7.38	
Organic Nutrient Export (OE)	9.52	Higher			7.38	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	3.84	Moderate	4.16	Moderate	5.22	3.48
Amphibian \& Turtle Habitat (AM)	5.60	Moderate	4.45	Moderate	6.26	4.79
Waterbird Feeding Habitat (WBF)	4.99	Moderate	2.50	Moderate	3.97	2.50
Waterbird Nesting Habitat (WBN)	3.25	Moderate	2.50	Moderate	2.77	2.50
Songbird, Raptor, \& Mammal Habitat (SBM)	9.53	Higher	2.50	Lower	7.90	2.50
Pollinator Habitat (POL)	10.00	Higher	0.00	Lower	8.83	0.00
Native Plant Habitat (PH)	7.50	Higher	6.43	Higher	6.11	5.58
Public Use \& Recognition (PU)			2.07	Lower		1.80
Wetland Sensitivity (Sens)			0.00	Lower		2.11
Wetland Ecological Condition (EC)			6.39	Moderate		7.92
Wetland Stressors (STR) (higher score means more stress)			4.52	Moderate		3.92
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	4.79	Moderate	1.68	Lower	3.96	1.75
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	3.38	Moderate	2.89	Lower	6.62	3.30
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	8.06	Higher	6.57	Higher	6.27	4.02
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	4.18	Moderate	3.17	Moderate	4.43	3.38
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	9.51	Higher	4.70	Moderate	8.22	4.14
WETLAND CONDITION (EC)			6.39	Moderate		7.92
WETLAND RISK (average of Sensitivity \& Stressors)			2.26	Lower		3.02

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - PLE-W-01
Investigator Name:	Matt Alexander
Date of Field Assessment	19 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees)	45.172159
Longitude (decimal degrees):	66.20506
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	0.61
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entir contiguous wetland	75
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	15
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	This determines to which province's calibration wetlands the raw score of any wetland is normalised. In the function and benefits models, it also triggers the automatic exclusion of indicators for which no spatial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 1 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 1 0 0	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [*NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [* NOTE: woody cover = trees \& shrubs taller than 1 m.$]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5 -km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
$\overline{0} 1$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: 100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 5 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to Nearest	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Or use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	1	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	0	
		2500 m .	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		-50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	1	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and isarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever s closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{aligned} & \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ & \hline \end{aligned}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.18	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 2 \times 2$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	1	
		100-1000 m.	0	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, \mathrm{no}=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	1	
		$50-95 \%$ of the vegetated part of the AA.	0	
		295\% of the vegetated part of the A.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, $\mathrm{EC}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{POL}, \mathrm{PR}$, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	0	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	1	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	0	
		Several (extensive micro-topography).	1	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	0	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	1	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25.50% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5 -20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	1	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	1	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	1	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		<10 cm deep (but $\mathbf{~ O}$).	1	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	1	
F31	\% of Water That IsPonded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	0	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	1	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m.	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	0	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	0	
		25-50\%.	0	
		$>50 \%$.	1	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA , or the AA can be accessed part of the year by boats arriving via contiguous waters.	1	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	1	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	0	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	0	
		5-50\%.	1	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				1
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				1
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3, 2, or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	1
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	3
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	3
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	3
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	10
				Stressor subscore=	0.83
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				1
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	$>95 \%$ of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	< 5% of wetland and $<5 \%$ of its upland edge (if any).	1
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	3
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	3
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	3
				Sum=	10
				Stressor subscore=	0.83

Wetland ID: PLE-W-01

Date: 19 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were
computed
computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	8.29	Higher	0.37	Lower	8.10	0.45
Stream Flow Support (SFS)	0.00	Loner	0.00	Lower	0.00	0.00
Water Cooling (WC)	2.00	Moderate	0.00	Lower	1.33	0.00
Sediment Retention \& Stabilisation (SR)	10.00	Higher	1.74	Lower	10.00	1.06
Phosphorus Retention (PR)	10.00	Higher	4.55	Moderate	10.00	4.44
Nitrate Removal \& Retention (NR)	10.00	Higher	3.75	Moderate	10.00	4.44
Carbon Sequestration (CS)	3.57	Moderate			6.10	
Organic Nutrient Export (OE)	1.20	Lower			2.97	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	1.16	Lower	4.16	Moderate	4.28	3.49
Amphibian \& Turtle Habitat (AM)	5.24	Moderate	5.77	Moderate	6.07	5.59
Waterbird Feeding Habitat (WBF)	5.23	Moderate	5.00	Moderate	4.16	5.00
Waterbird Nesting Habitat (WBN)	3.61	Moderate	5.00	Moderate	3.09	5.00
Songbird, Raptor, \& Mammal Habitat (SBM)	9.19	Higher	5.00	Moderate	7.62	5.00
Pollinator Habitat (POL)	9.58	Higher	0.00	Lower	7.71	0.00
Native Plant Habitat (PH)	4.97	Moderate	5.89	Moderate	5.09	5.11
Public Use \& Recognition (PU)			3.07	Moderate		2.51
Wetland Sensitivity (Sens)			2.21	Lower		2.87
Wetland Ecological Condition (EC)			3.98	Moderate		6.53
Wetland Stressors (STR) (higher score means more stress)			8.23	Higher		5.28
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	0.00	Lower	0.37	Lower	8.10	0.45
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	10.00	Higher	3.95	Lower	9.51	3.88
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	1.55	Lower	2.77	Moderate	3.21	2.33
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	4.03	Moderate	4.46	Moderate	4.37	4.36
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.74	Higher	4.76	Moderate	7.26	4.24
WETLAND CONDITION (EC)			3.98	Moderate		6.53
WETLAND RISK (average of Sensitivity \& Stressors)			5.22	Higher		4.07

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - PLE-W-03
Investigator Name:	Matt Alexander
Date of Field Assessment:	19 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.163275
Longitude (decimal degrees):	66.199397
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.54
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	90
What percent (approx.) of the wetland were you able to visit?	90
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	This determines to which province's calibration wetlands the raw score of any wetland is normalised. In the function and benefits models, it also triggers the automatic exclusion of indicators for which no spatial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 1 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 0 0 1	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	1 0 0 0 0 0 0	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter "3" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter "3" and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m.$\left.\right]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
OF10	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	1	
		25-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	0	
		2500 m .	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	using the Circle tool and compare). Evaluate hidden under forest canopy. [AM, SBM, STP]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpenvious surface.	0	
		<50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		50.500 m , but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	1	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and isarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km.	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
$0{ }^{1818}$	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.38	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA itself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	0	
		0.1 to 1.	1	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
0 O23	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other (E, SE, W, NW), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance (Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		<10 m.	0	
		10-50 m.	0	
		$50-100 \mathrm{~m}$.	0	
		100-1000 m.	1	
		1.2 km .	0	
		>2 km , or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2428	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [nerk just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-eastindex.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildifif__Rare workshee of the accompanying Suppinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per 25 sq . km) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes $=1, n 0=0$. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no $=0$. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change tolank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
0F38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	1	
		>95\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	0	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	0	
		Several (extensive micro-topography).	1	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[${ }^{\text {AM, }}$ NR, SBM]
		Few or none.	0	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	1	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		$225-50 \%$ of the herbaceous part of the $A \mathcal{A}$.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5-20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparently absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	,	
		$5-30 \%$ of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	\|nterspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.		[AM, FA, FR, INV, NR, OE, PH, PR, SBM, SR, WBF, WBN]
			0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Litile or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover $>50 \%$ of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter " 1 " in next column. If untrue or uncertain, enter " 0 ".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA, consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.caltoporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS,
		Persistent (sufface water flows out for >9 monthslyear).	0	[${ }^{\text {ct, WS] }}$
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (sufface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outtet. SKIP to F47 (pH Measurement).	0	
F43	Outlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		I high water caused by storms andlor rapid snowme
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	
		Leaves through natural exits (channels or diffuse outflow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA . Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[$\mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WS}$]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, mult-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks andlor shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		ns th
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA . Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of water-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly -- do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difierence between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a
		2.5%.	0	large (longer than $\sim 1 \mathrm{~km}$), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and mutiplying by 100 . [CS, NR, OE, PR,
		>10\%.	0	SR, WBF, WBN, WS]
	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5500%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	0	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	0	
		25-50\%.	1	
		$>50 \%$.	0	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA , or the AA can be accessed part of the year by boats arriving via contiguous waters.	1	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplinfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				1
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	0
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	1
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	3
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	5
				Stressor subscore=	0.42
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration: Frequent and year-round.		Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
	Stressor subscore=				0.00

Wetland ID: PLE-W-03

Date: 19 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were

S. See Manual for definitions and descriptions of how scores were computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (ram)
Water Storage \& Delay (WS)	4.97	Moderate	0.87	Lower	5.56	0.95
Stream Flow Support (SFS)	1.88	Loner	4.86	Moderate	1.00	2.84
Water Cooling (WC)	0.00	Loner	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	8.38	Higher	0.82	Lower	8.89	0.50
Phosphorus Retention (PR)	5.03	Higher	4.55	Moderate	6.47	4.44
Nitrate Removal \& Retention (NR)	2.77	Moderate	3.75	Moderate	5.54	4.44
Carbon Sequestration (CS)	7.78	Higher			7.92	
Organic Nutrient Export (OE)	3.62	Moderate			4.25	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	4.95	Moderate	0.88	Moderate	5.62	1.72
Amphibian \& Turtle Habitat (AM)	2.67	Lower	2.38	Moderate	4.71	3.54
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	6.77	Moderate	5.00	Moderate	5.61	5.00
Pollinator Habitat (POL)	8.22	Higher	0.00	Lower	6.62	0.00
Native Plant Habitat (PH)	3.32	Lower	4.70	Moderate	4.42	4.08
Public Use \& Recognition (PU)			4.33	Moderate		3.41
Wetland Sensitivity (Sens)			0.00	Lower		1.94
Wetland Ecological Condition (EC)			4.94	Moderate		7.08
Wetland Stressors (STR) (higher score means more stress)			4.14	Moderate		3.78
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	1.88	Lower	0.87	Lower	5.56	0.95
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	6.89	Higher	3.79	Lower	8.05	3.79
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	3.78	Lower	3.39	Moderate	4.17	2.18
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.60	Lower	1.43	Lower	2.83	2.12
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	7.16	Moderate	4.12	Moderate	6.09	4.01
WETLAND CONDITION (EC)			4.94	Moderate		7.08
WETLAND RISK (average of Sensitivity \& Stressors)			2.07	Lower		2.86

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - PLW-W-01
Investigator Name:	Matt Alexander
Date of Field Assessment	19 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees)	45.171674
Longitude (decimal degrees):	66.20564
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares)	0.37
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entir contiguous wetland	40
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.	15
Comments about the site or this WESP-AC assessment (attach extra page if desired)	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicators	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	This determines to which province's calibration wetlands the raw score of any wetland is normalised. In the function and benefits models, it also triggers the automatic exclusion of indicators for which no spatial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 1 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	0 0 0 1 0 0	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter " 3 " and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [*NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter " 3 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter "1" [* NOTE: woody cover = trees \& shrubs taller than 1 m.$]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
0F8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining are that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: $<5 \%$ of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. 90% of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5 -km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
$\overline{0} 1$	Distance by Road to Nearest Population Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: 100 m. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. 5 km.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirit or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. Or use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	1	
		25.50 m .	0	
		$50-100 \mathrm{~m}$.	0	
		100.500 m .	0	
		2500 m .	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanenty flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		-50 m, but completely separated by those features.	0	
		50.500 m , and not separated.	0	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	1	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to Large Ponded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and isarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever s closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there ino infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.16	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	If an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0} 2 \times 2$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	1	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	0	
OF26	Internal Flow Distance(Path Length)	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outlets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	1	
		100-1000 m.	0	
		1.2 km .	0	
		>2 km, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCv, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Merk just the first choice that is true.]: Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnn.ca/content/gnb/en/departments/erd/natural_resources/content/ish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to hav@ther fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of Conservation Concern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using ar approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplinfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widllife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of thewaterbird species (WBF, WBN) of conservation concern as listed in the Wildifife_Rare worksheet of the accompanying SuppInfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Widlifife_Rare workshee of the accompanying Supplinfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	$\begin{aligned} & \text { Important Bird Area } \\ & \text { (IBA) } \\ & \hline \end{aligned}$	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated IBA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes=1, no=0.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes=1, no=0. If no information, change tblank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes=1, no=0. If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tolank.	0	[PU]
OF37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change t由lank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term ($30+$ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		$<1 \%$ or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along is water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		775% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		-5\% of the vegetated part of the A A.	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	0	
		>95\% of the vegetated part of the AA.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, EC, INV, NR, OE, POL, PR, SBM, Sens]
		Little or no ($<5 \%$) bare ground is visible between erect stems or under canopy anywhere in the vegetated AA. Ground is extensively blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	0	
		Slightly bare ground (5-20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	1	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
			0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	1	
		Several (extensive micro-topography).	0	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[AM, NR, SBM]
		Few or none.	0	
		Intermediate (1-10\% of vegetated part of the AA).	1	
		Many (e.g, welland-upland "mosaic", $>10 \%$ of the vegetated A$)$).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $\langle 40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		100-1000 sq. m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,00 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		5-25\% of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA.	0	
		>95\% of the vegetated part of the AA .	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluding SAV), the areal cover of forbs reaches an annual maximum of.		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		25\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		25-50\% of the herbaceous part of the AA.	0	
		50-95\% of the herbaceous part of the AA.	0	
		295\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (Eriophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50% of the vegetated area.	1	
		$50-95 \%$ of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herraceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the AA , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5-20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, it the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparently absent), or A A has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most (-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[RR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or > 99% AND there is at least one persistent water body larger than 1 ha in the AA.	1	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	0	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		1-20\% of the AA.	1	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	1	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		50.75% of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (sufface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the banktul height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and <1\% of the AA. SKIP to F29.	0	
		1-20\% of the AA, or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50.95% of the AA.	0	
		295\% of the AA.	1	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	1	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	1	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	1	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	0	
		$5-30 \%$ of the water.	,	
		30-70\% of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	1	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		$1-25 \%$ of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	0	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	0	
		25-50\%.	0	
		$>50 \%$.	1	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA , or the AA can be accessed part of the year by boats arriving via contiguous waters.	1	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	1	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	0	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	0	
		5-50\%.	1	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[AM, PU, WBF, WBN]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplnfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				1
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				1
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	1
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	3
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	3
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	3
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	10
				Stressor subscore=	0.83
S5	Soil or Sediment Alteration Within the Assessment Area				
	In the last column, place a check mark next to any item present in the wetland that is likely to have compacted, eroded, or otherwise altered the wetland's soil. Consider only items occurring within past 100 years or since wetland was created or restored (whichever is less). [CS, INV, NR, PH, SR, STR]				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				1
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	$>95 \%$ of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	< 5% of wetland and $<5 \%$ of its upland edge (if any).	1
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	3
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	3
	Timing of soil alteration:	Frequent and year-round.	Frequent but mostly seasonal.	Mainly during one-time or scattered events.	3
				Sum=	10
				Stressor subscore=	0.83

Wetland ID: PLW-W-01

Date: 19 September 2019
Observer: Matt Alexander

Scores will appear below after data are entered in worksheets OF, F, and
S. See Manual for definitions and descriptions of how scores were
computed.
computed.

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	8.33	Higher	0.32	Lower	8.13	0.40
Stream Flow Support (SFS)	0.00	Lower	0.00	Lower	0.00	0.00
Water Cooling (WC)	2.00	Moderate	0.00	Lower	1.33	0.00
Sediment Retention \& Stabilisation (SR)	10.00	Higher	1.74	Lower	10.00	1.06
Phosphorus Retention (PR)	10.00	Higher	4.55	Moderate	10.00	4.44
Nitrate Removal \& Retention (NR)	10.00	Higher	3.75	Moderate	10.00	4.44
Carbon Sequestration (CS)	3.15	Moderate			5.92	
Organic Nutrient Export (OE)	1.20	Lower			2.97	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	0.69	Lower	4.00	Moderate	4.12	3.40
Amphibian \& Turtle Habitat (AM)	5.24	Moderate	5.62	Moderate	6.07	5.50
Waterbird Feeding Habitat (WBF)	5.05	Moderate	5.00	Moderate	4.02	5.00
Waterbird Nesting Habitat (WBN)	3.32	Moderate	5.00	Moderate	2.84	5.00
Songbird, Raptor, \& Mammal Habitat (SBM)	9.03	Higher	5.00	Moderate	7.49	5.00
Pollinator Habitat (POL)	9.37	Higher	0.00	Lower	7.55	0.00
Native Plant Habitat (PH)	4.41	Moderate	5.77	Moderate	4.86	5.01
Public Use \& Recognition (PU)			3.07	Moderate		2.51
Wetland Sensitivity (Sens)			2.20	Lower		2.86
Wetland Ecological Condition (EC)			2.53	Lower		5.69
Wetland Stressors (STR) (higher score means more stress)			8.23	Higher		5.28
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	0.00	Lower	0.32	Lower	8.13	0.40
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	10.00	Higher	3.95	Lower	9.49	3.88
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	1.49	Lower	2.67	Moderate	3.11	2.27
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	3.98	Moderate	4.37	Moderate	4.33	4.30
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.49	Higher	4.68	Moderate	7.09	4.17
WETLAND CONDITION (EC)			2.53	Lower		5.69
WETLAND RISK (average of Sensitivity \& Stressors)			5.21	Higher		4.07

Cover Page: Basic Description of Assessment	WESP-AC version 2
Site Name:	Burchill Wind Energy Project - PLW-W-02
Investigator Name:	Matt Alexander
Date of Field Assessment:	19 September 2019
Nearest Town:	Lorneville (west Saint John), New Brunswick
Latitude (decimal degrees):	45.165598
Longitude (decimal degrees):	66.202174
Is a map based on a formal on-site wetland delineation available?	Yes
Approximate size of the Assessment Area (AA, in hectares):	0.51
AA as percent of entire wetland (approx.). Attach sketch map if AA is smaller than the entire contiguous wetland.	100
What percent (approx.) of the wetland were you able to visit?	100
What percent (approx.) of the AA were you able to visit?	100
Were you able to ask the site owner/manager about any of the questions?	No
Indicate here if you intentionally surveyed for rare plants, calciphile plants, or rare animals:	Yes
Have you attended a WESP-AC training session? If so, indicate approximate month \& year.	Yes, September 2016
How many wetlands have you assessed previously using WESP-AC? (approx.)	15
Comments about the site or this WESP-AC assessment (attach extra page if desired):	

Form OF (Office). Non-tidal Wetland Data Form. WESP-AC version 2 for New Brunswick wetlands only. DIRECTIONS: Conduct an assessment only after reading the accompanying require using these online map viewers: Google Earth Pro: https://www.google.com/earth/download/gep/agree.html GeoNB: http://www.snb.ca/geonb1/ and http://www.snb.ca/geonb1/e/apps/apps-E.asp STR= Stressors.				
\#	Indicat	Condition Choices	ta	Definitions/Explanations
OF1	Province	Mark the province in which the AA is located by changing the 0 in the column next to it to a "1". Mark only one. New Brunswick Nova Scotia Prince Edward Island Newfoundland-Labrador	1 0 0 0	This determines to which province's calibration wetlands the raw score of any wetland is normalised. In the function and benefits models, it also triggers the automatic exclusion of indicators for which no spatial data exists in a particular province.
OF2	Ponded Area Within 1 km.	The area of surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$). $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. >100 hectares.	1 0 0 0 0 0	"Adjacent" means not separated from the AA by a wide expanse (>50 m) of upland (including roads $>50 \mathrm{~m}$ wide). Include ponded areas likely to be hidden by wetland vegetation. If surface water extends beyond 1 km , include only the part within 1 km . Do not include tidal areas. Measure the are from aerial imagery using Google Earth Pro (click on Ruler icon in toolbar, then Polygon in pop-up menu). With the GeoNB viewer, enable the Wetlands layer, then measure with the Draw \& Measure tool after specifying Aerial as the Basemap. However, do not rely entirely on wetland boundaries shown in online wetlands layers. [PH, SBM, WBN]
OF3	Ponded Water \& Wetland Within 1 km .	The area of wetlands and surface water ponded during most of the growing season that is both (1) in or adjacent to the AA and (2) within 1 km is: <0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m})$. $0.01-0.1$ hectare. $0.1-1$ hectare. 1 to 10 hectares. 10 to 100 hectares. 100 hectares.	0 0 0 1 0 0	See definition of adjacent in OF2. If the AA's wetland vegetation extends beyond 1 km , include only the part within 1 km . "Ponded" means not flowing in rivers or streams. [Sens, WBF]
OF4	Size of Largest Nearby Vegetated Tract or Corridor	The largest vegetated patch or corridor that includes the AA's vegetation plus alladjacent upland vegetation that is not lawn, row crops, heavily grazed lands, conifer plantation is: <0.01 hectare (about 10 m x 10 m). $0.01-0.1$ hectare. 0.1-1 hectare. 1 to 10 hectares. 10 to 100 hectares. 100 to 1000 hectares. >1000 hectares. [This is nearly always the answer in relatively undeveloped landscapes,	0 0 0 0 0 0 1	See definition of adjacent in OF2. Use Google Earth Pro's polygon ruler (as described above). Exclude conifer plantations only ifit is obvious that trees were planted in rows. [AM, PH, SBM, Sens]
OF5	$\begin{aligned} & \hline \text { Distance to Large } \\ & \text { Vegetated Tract } \end{aligned}$		1 0 0 0 0 0 0 0	To measure distance, use Google Earth Pro (Ruler > Line tool). Or use Draw \& Measure tool at GeoNB. The 375 -ha criterion is from the Fundy Model Forest Project. [AM, PH, POL, SBM, Sens]
OF6	Herbaceous Uniquenes	The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 5 km have $<10 \%$ herbaceous cover. If so, enter "3" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 1 km have $<10 \%$ herbaceous cover. If so enter "2" and continue to OF7. If not, consider: The AA's vegetation cover is $>10 \%$ herbaceous* but uplands within 100 m of the wetland edge have $<10 \%$ herbaceous cover. If so, enter "1". [* NOTE: Exclude lawns, row crops, heavily grazed lands, forest, shrublands. Include moss as well as grasslike plants in this use of "herbaceous vegetation"]	0	For this question only, consider moss to be herbaceous vegetation. Determine the score by viewing aerial imagery in Google Earth after successively drawing or estimating the boundaries of the buffers of $5 \mathrm{~km}, 1 \mathrm{~km}$, and 100 m radius focused on the center of the AA. Circles of specified radius can be drawn in Google Earth Pro by clicking on the Ruler icon, then Circle in the pop-up menu. [AMv, PHv, POLv, SBMv, WBFv, WBNv]
OF7	Woody Uniqueness	The AA's vegetation cover is $>10 \%$ woody* but uplands within 5 km have $<10 \%$ woody cover. If so, enter "3" and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 1 km have $<10 \%$ woody cover. If so enter " 2 " and continue to OF8. If not, consider: The AA's vegetation is $>10 \%$ woody* but uplands within 100 m of the wetland edge have $<10 \%$ woody cover. If so, enter " 1 " [${ }^{*}$ NOTE: woody cover $=$ trees \& shrubs taller than 1 m.$\left.\right]$	0	See above. Do not consider conifer plantations to be forest if it is obvious that trees were planted in rows. [AMv, PHv, POLv, SBMv]
OF8	Local Vegetated Cover Percentage	Draw a 5 -km radius circle measured from the center of the AA. Ignoring all permanent water in the circle, the percent of the remaining area that is wooded or unmanaged herbaceous vegetation (NOT lawn, row crops, bare or heavily grazed land, clearcuts, or conifer plantations) is: 5% of the land. 5 to 20% of the land. 20 to 60% of the land. 60 to 90% of the land. $>90 \%$ of the land. SKIP to OF10.	0 0 0 0 1	In Google Earth, draw the 5 km buffer and then estimate land cover percentages, or do GIS analysis of an appropriate land cover layer. [AM, PH, POL, SBM, Sens]
OF9	Type of Land Cover Alteration	Within the 5-km radius circle, and ignoring all permanent water, the land area that is bare or non-perennial cover is mostly: Impervious surface, e.g., paved road, parking lot, building, exposed rock. Bare pervious surface, e.g., lawn, recent (<5 yrs ago) clearcut, dirt or gravel road, cropland, landslide, conifer plantation.	0	[AM, SBM]
$\overline{0} 1$	$\begin{aligned} & \hline \text { Distance by Road to } \\ & \text { Nearest Population } \end{aligned}$ Center	Measured along the maintained road nearest the AA , the distance to the nearestpopulation center is: $<100 \mathrm{~m}$. $100-500 \mathrm{~m}$. $0.5-1 \mathrm{~km}$. $1-5 \mathrm{~km}$. $>5 \mathrm{~km}$.	0 0 0 1 0	"Population center" means a settled area with more than about 5 regularly- inhabited structures per square kilometer. In Google Earth, click on the Ruler icon, then Path, and draw and measure the route. Or use the GeoNB's Draw \& Measure tool> Freehand Line to draw and measure the route to Settlements (click on Place Names in menu) or other areas not close to mapped settlements but which meet the criteria.[FAv, FRv, NRv, PH, PU, SBM, WBFv]

OF11	Distance to NearestMaintained Road	From the center of the AA, the distance to the nearest maintained public road (dirt or paved) is:		Determine this by viewing aerial imagery in Google Earth and measuring with the Ruler>Line tool. On use the GeoNB's Draw Line tool. [AM, FAv, FRv, NRv, PH, PU, SBM, STR, WBN]
		<10 m.	0	
		$10-25 \mathrm{~m}$.	0	
		25-50 m.	1	
		50-100 m.	0	
		$100 \cdot 500 \mathrm{~m}$.	0	
		-500 m.	0	
OF12	Widlifi Access	Draw a circle of radius of 5 km from the center of the AA . If mammals and amphibians can move from the center of the AA to ALL other separate wetlands and ponds located within the circle without being forced to cross pavement (any width), lawns, bare ground, and/or marine waters, mark $1=$ yes can move to all, $0=n$. Change toblank if there are no other wetlands within 5 km .	0	In NB, enable the Wetlands layer in GeoNB (despite its omissions) to show surrounding wetlands anc roads, while estimating the location of the 5 km circle (or draw the 5 km circle in Google Earth Pro using the Circle tool and compare). Evaluate using Google Earth, being cautious to search for roads hidden under forest canopy. [AM, SBM, STR]
${ }^{0 \times 13}$	Distance to PondedWater	The distance from the AA center to the closest (but separate) ponded water body visible in GoogleEarth imagery is:		In Google Earth, zoom in closely to examine the surrounding landscape for ponds, lakes, and wetlands that appear to be permanently flooded. Enable the GeoNB viewer's Wetlands layer as well [AM, PH, SBM, Sens, WBF, WBN]
		<50 m, and not separated by any width of paved roads, stretches of open water, row crops, lawn, bare ground, orimpervious surface.	0	
		- 50 m , but completely separated by those features.	0	
		50.500 m , and not separated.	1	
		$50-500 \mathrm{~m}$, but separated by those features.	0	
		$0.5-1 \mathrm{~km}$, and not separated.	0	
		$0.5-1 \mathrm{~km}$, but separated by those features.	0	
		None of the above (the closest patches or coridors that large are $>1 \mathrm{~km}$ away).	0	
OF14	Distance to LargePonded Water	The distance from the AA center to the closest (but separate)non-tidal body of water that is ponded during most of the year and istarger than 8 hectares during most of a normal year is:		Determine this by viewing aerial imagery in Google Earth. [Sens, WBF, WBN]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	0	
		1.2 km .	0	
		2.5 km .	1	
		5-10 km.	0	
		P10 km.	0	
\bigcirc	Tidal Proximity	The distance from the AA edge to the closesttidal water body (regardless of its salinity) is:		In Google Earth, measure the distance to the ocean (including Bay of Fundy) or tidal iver, whichever s closer. If you need to see how far upriver a river is tidal, see the KMZ file provided with this calculator for NB (NB Headidide). Points shown in those files are only an approximation, so local information if available may be preferable. [FA, WBF]
		<100 m.	0	
		$100 \mathrm{~m}-1 \mathrm{~km}$.	1	
		1.5 km .	0	
		$5-10 \mathrm{~km}$.	0	
		10.40 km.	0	
		340 km .	0	
0 O 16	Upland Edge Contact	Select one:		[${ }^{\text {NR, SBM, Sens] }}$
		The AA has no upland edge (or upland is $<1 \%$ of perimeter). The AA is entirely surrounded by (\& contiguous with) other welands or water.	0	
		1-25\% of the AA's perimeter abuts upland (including filled areas). The rest adioins other wetlands or water that is mostly wider than the AA	0	
		25.50% of the AA's perimeter abuts upland. The rest ajjions other wetands or water that is mostly wider than the $A A$.	0	
		$50-75 \%$ of the A's perimeter abuts upland. The rest adjoins other weltands or water that is mostly wider than the AA.	0	
		More than 75% of the AA's perimeter abuts upland. Any remainder adjoins other wetlands or water that is mostly wider than the AA.This will be true for most assessments done with WESP-AC.	1	
${ }^{0 \times 17}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Food Damage from Non } \\ \text { tidial Waters } \end{array} \\ \hline \end{array}$	Within 5 km downstream or downslope of the AA (select first true choice):		In the GeoNB map viewer: click on "More" in upper right, then "Flood Information". Expand the menu under it by clicking on the arrow to its left and the slider to its right. Uncheck the first (Limits of Data) box. Where available, LiDAR imagery can provide finer elevational resolution useful for flood modeling. [WSv]
		Maps show Flood Zone or Flood Risk areas and there appears to be infrastructure vulnerable to river flooding not caused by tidal storm surges.	0	
		Maps show Flood Zone or Flood Risk areas, but infrastucture is absent or i is not vulnerable to floods from a non-tidal ivier. In some cases levees, upiver dams, or other measures may party linit damage or risk from smaller events.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there appears to be infrastructure vulnerable to river flooding unrelated to tidal storm surges.	0	
		Maps do not show Flood Zone or Flood Risk areas (or no such mapping has been done locally) and there iso infrastructure vulnerable to river flooding unrelated to tidal storm surges.	1	
OF18	Relative Elevation in Watershed	In Google Earth, enable the Terrain layer (lower left menu) and open the NB_Watersheds KMZ file that accompanies this calculator. Then determine the AA's approximate elevation (bottom right, NOT the "eye alt"). Then move cursor around to determine the watershed's maximum and minimum elevation. Divide the AA's elevation by the (max-min).	0.18	[FA, NR, Sens, SFSV, WCV, WSv]
OF19	Water Quality Sensitive Watershed or Area	In Google Earth, open the KMZ file NB_Watershed Protected Area which accompanies this calculator. The AA is within such an area. Enter $1=$ yes, $0=$ no.	0	\|f an ACCDC report is available for this AA, it also may contain such information. [NRV]
OF20	Degraded Water Upstream	Sampling indicates a problem with concentrations ofmetals, hydrocarbons, nutrients, or other substances (excluding bacteria, acidic water, high temperatures) being present at evels harmful to aquatic life or humans, and:		May use existing data, or sample those waters as part of this wetland assessment. "Harmful" should be evaluated with regard to current federal or provincial water quality standards. [AM, FA, FR, NRv, PRv, SRv, STR, WBF, WBN]
		The condition is present within the AA.	0	
		The condition is present in water w within 1 km that flowinto the AA , but has not been documented in the AA iself.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmelt) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream) This is the situation for nearly all wetlands in this region.	1	
OF21	Degraded Water Downstream	The problem described above isdownslope from the AA, and:		May use exisining data, or monitor waters as part of this wetland assessment. [NRv, PRV, SRv]
		The condition is present within 1 km downslope and connected to the AA by a channel.	0	
		The condition is present within 5 km downslope and connected to the AA by a channel, or within 1 km but not connected to the AA by a channel.	0	
		Sampling during both low water periods and times with high runoff (storms, snowmett) indicates no problems in either the AA or inflowing waters.	0	
		Data are insufficient (no or inadequate sampling within 1 km , or condition exists only at $>1 \mathrm{~km}$ upstream)This is the situation for nearly all wetlands in this region.	1	
OF22	Wetland as a \% of tts Contributing Area (Catchment) (Catchment)	From a topographic map and field observations, estimate the approximate boundaries of the catchment (CA) of the entire wetland of which the AA may be only a part. Then adjust those boundaries if necessary based on your field observations of the surrounding terrain, and/or b using procedures described in the Manual. Divide the area of the wetland (not just the AA) by the approximate area of its catchment excluding the area of the wetland itself. When doing the calculation, if ponded water is adjacent to the wetland, include that in the wetland area. The result is:		Topoographic maps may be viewed online at the National Altas of Canada (Toporama): hitp:lalalas.gc.cattoporamalenindex.html [NR, PR, Sens, SR, WS]
		<0.01, or catchment size unknown due to stormwater pipes that collect water from an indeterminate area.	0	
		0.01 to 0.1.	1	
		0.1 to 1.	0	
		>1 (wetland is larger than its catchment (e.g., wetland with flat surrounding terrain and no inlet, or is entirely isolated by dikes, or is a raised bog).	0	
${ }^{0 \times 23}$	Unvegetated Sufface inthe Contributing Area	The proportion of the AA's contributing area (measured to no more than 1000 m upslope) that is comprised of buildings, roads, parking lots other pavement, exposed bedrock, landslides, and other mostly-bare surface is about:		[[FA, INV, NRV, PRV, SRV, STR, WCV, WSv]
		<10\%.	1	
		10 to 25\%.	0	
		P25\%.	0	

OF24	Transport From Upslope	A relatively large proportion of the precipitation that falls farther upslope in the CA reaches this wetland quickly as runoff (surface water), as indicated by the following: (a) input channel is present, (b) input channels have been straightened, (c) upslope wetlands have been ditched extensively, (d) land cover is mostly non-forest, (e) CA slopes are steep, and/or (f) most CA soils are shallow (bedrock near surface) and/or have high runoff coefficients. This statement is:		[NRv , PRv, SRv, WSv]
		Mostly true.	0	
		Somewhat true.	0	
		Mostly untrue.	1	
OF25	Aspect	The overland flow direction of most surface water (in streams, rivers, or runoff) that enters the AA is:		[AM, NR, SFS, WC, WS]
		Northward (N, NE). north-facing contributing area.	0	
		Southward (S, SW). south-facing contributing area.	0	
		Other ($\mathrm{E}, \mathrm{SE}, \mathrm{W}, \mathrm{NW}$), or no detectable uphill slope or input channel (flat).	1	
OF26	$\begin{aligned} & \hline \text { Internal Flow Distance } \\ & \text { (Path Length) } \end{aligned}$	The horizontal flow distance from the wetland's inlet to outlet is:		Identify inlets and outlets, if any, from topographic maps (use elevations to determine which are inlets and which are outtets) and augment by field inspection. [NR, OE, PR, SR, WS]
		$<10 \mathrm{~m}$.	0	
		10-50 m.	0	
		50-100 m.	0	
		$100-1000 \mathrm{~m}$.	1	
		$1-2 \mathrm{~km}$.	0	
		$>2 \mathrm{~km}$, or wetland lacks an inlet and outlet.	0	
OF27	Growing Degree Days	In Google Earth, open the KMZ file that accompanies this calculator, called NB-PEI_GrowingDegreeDays. Place your cursor over the AA and left-click. From the pop-up, enter the GRIDCODE in the next column.	2314	This layer was provided by Dr. Dan McKenney of the Canadian Forest Service [AM, CS, FR, INV, NR, OE, PH, PR, Sens, SR, WBF, WCV, WS]
OF28	Fish Access or Use	According to agency biologists and/or your own observations, the AA. [Tark just the first choice that is true.]:		Regarding the last choice, if uncertain if an AA is fishless, consider the possibility its waters have bee stocked. In NB, the list of stocked waters is at: http://www2.gnb.ca/content/gnb/en/departments/erd/natural_ resources/content/fish/content/StockedV aters.html [AM, FA, FR, INV, WBF, WBN]
		Is known to support rearing and/or spawning by Atlantic salmon or other anadromous species or eels. In NB, consult Figure A-2 in Appendix A of the Manual. Contact local fishery biologists, review the ACCDC report, and visit these websites: http://www.salmonatlas.com/atlanticsalmon/canada-east/index.1.html http://atlanticsalmonfederation.org/rivers/introduction.html	0	
		Has not been documented to support Atlantic salmon rearing and/or spawning, but is connected to nearby waters likely to contain Atlantic salmon or other anadromous species or eels and is probably accessed by those during some conditions.	0	
		Is probably is not accessed by any anadromous fish species but is known or likely to havether fish at least seasonally.	0	
		Is known or likely to be fishless (e.g., too small, dry, and/or not accessible even temporarily, and not stocked).	1	
OF29	Species of ConservationConcern	Within the past 10 years, in the AA (or in its adjoining waters or wetland), qualified observers have documentedmark all applicable]:		Request information from ACCDC and/or conduct your own survey at an appropriate season using a approved protocol. For birds, also check eBird.org. [AMv, EC, PHv, POLv, SBMv, Sens, WBFv, WBNv]
		Presence of one or more of the plant species listed in the Plants_Rare worksheet of the accompanying Supplnfo file, or the AA is within a mapped Atlantic Coastal Plain Flora Buffer	0	
		Presence of one or more of the amphibian or reptile species (AM) of conservation concern as listed in the Widlife_Rare worksheet of the accompanying Supplinfo file.	0	
		Presence of one or more of the waterbird species (WBF, WBN) of conservation concern as listed in the Wildlife_Rare worksheet of the accompanying Supplnfo file.	0	
		Presence of one or more of the nestingsongbird or raptor species (SBM) of conservation concern as listed in the Wildlife_Rare workshee of the accompanying Supplnfo file, during their nesting season (May-July for most species).	0	
		None of the above, or no data.	1	
OF30	Important Bird Area (IBA)	In Google Earth, open the KMZ file that accompanies this calculator, calledBAs_Canada. The AA is all or part of an officially designated \|BA. Enter $1=$ yes, $0=$ no.	0	The source of this layer, which should be checked periodically for updates, is: http://www.ibacanada.com/mapviewer.jsp?lang=EN [SBMv, WBFv, WBNv]
OF31	Black Duck Nesting Area	In Google Earth, open the KMZ file that accompanies this calculator, called BlackDuck. Adjust its alignment and opacity. Determine the predicted density (pairs per $25 \mathrm{sq} . \mathrm{km}$) of nesting American Black Duck in the AA's vicinity: <10 (enter 0), 10-20 (enter 1), 20-30 (enter 2), >30 (enter 3). If outside of region shown in map, change toblank.	0	This was provided by Dr. David Leske. [WBNv]
OF32	Wintering Deer or Moose Concentration Areas	If AA is on private land with no information, change to blank (not 0). If on public/crown land, in Google Earth open the KMZ file that accompanies this report called NB_DeerWinteringAreas.Otherwise: Enter: yes $=1, n o=0$.	0	[SBM]
OF33	Other Conservation Designation	With GeoNB, click on Candidate PNA Map Viewer to identify Provincially Significant Wetland, Environmentally Significant Area, Protected Natural Area -- but also include if the AA is all or part of an area designated by government, Flrst Nations, or the Nature Conservancy of Canada (NCC) for its exceptional ecological features or highly intact natural conditions. Enter: yes=1, no= 0 . If uncertain, consult NCC an agencies for more recent information.	0	[PU]
OF34	Conservation Investment	The AA is part of or contiguous to a wetland on which public or private organizational funds were spent to preserve, create, restore, or enhance the wetland (excluding mitigation wetlands). Ask the property owner. Enter: yes= $1, \mathrm{no}=0$. If no information, change thlank (not 0).	0	[PU]
OF35	Mitigation Investment	The AA is all or part of a mitigation site used explicitly to offset impacts elsewhere. Ask the property owner. Enter: yes= 1, no= 0 . If no information, change to blank.	0	[PU]
OF36	Sustained Scientific Use	Plants, animals, or water in the AA have been monitored for >2 years, unrelated to any regulatory requirements, and data are available to the public. Or the AA is part of an area that has been designated by an agency or institution as a benchmark, reference, or status-trends monitoring area. Ask the property owner. Enter: yes $=1$, no $=0$. If no information, change tdblank.	0	[PU]
0F37	Calcareous Region	The AA is in an area that is at least partly underlain by soil, sediment, or bedrock that is highly calcareous (enter 3 in next column), moderately calcareous (enter 2), or slightly calcareous (enter 1), none $=0$. Limestone is typically a major component (karst geology) and water is not acidic (pH is usually >8). See Figure A-6 in Appendix A of the Manual. If no map coverage, change thlank.	0	If GIS is available, you may use the Bedrock Geology shapefile obtainable at http://www.snb.ca/geonb1/e/DC/catalogue-E.asp [AM, FA, FR, INV, PH]
OF38	Ownership	Select the ONE ownership that covers the most of the AA. In Google Earth, open KMZ file called NB Crown lands.Use more recent information if available.		"Private lands" may include those owned or leased by non-governmental organizations, e.g., charitable conservation land trusts, DUC, TNC. [PU, STR]
		New timber harvest, roads, mineral extraction, and intensive summer recreation (e.g., off-road vehicles) are permanently prohibited. Includes many publicly-owned Protected Lands, and private lands under long-term (30+ year) legal agreements to maintain nearly-unaltere conditions.	0	
		Ownership is public (e.g., municipal, Crown Reservations/Notations) but some or all of the above activities are allowed.	1	
		Ownership is private but public access is allowed, and/or a shorter-term conservation easement (whether renewable or not) is in place.	0	
		Ownership is private and owner does not allow access, or access permission unknown, and not a conservation easement.	0	

F9	N Fixers	The percentage of the AA's vegetated cover that contains nitrogen-fixing plants (e.g., alder, sweetgale, clover, lupine, alfalfa, other legumes) is:		Do not include N -fixing algae or lichens. [FA, FR, INV, NRv, OE, PH, SBM, Sens]
		<1\% or none.	0	
		1-25\% of the vegetated cover, in the AA or along its water edge (whichever has more).	1	
		25-50\% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		$50-75 \%$ of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
		755% of the vegetated cover, in the AA or along its water edge (whichever has more).	0	
F10	Sphagnum Moss Extent	The cover of Sphagnum moss (or any moss that forms a dense cushion many centimeters thick), including the moss obscured by taller sedges and other plants rooted in it, is:		Exclude moss growing on trees and rocks. [CS, PH]
		<5\% of the vegetated part of the AA.	0	
		$5-25 \%$ of the vegetated part of the AA.	0	
		$25-50 \%$ of the vegetated part of the AA.	1	
		$50-95 \%$ of the vegetated part of the AA.	0	
		295\% of the vegetated part of the A.	0	
F11	\% Bare Ground \& Thatch	Consider the parts of the AA that lack surface water at the driest time of the growing season. Viewed from directly above the ground layer, the predominant condition in those areas at that time is:		Thatch is dead plant material (stems, leaves) resting on the ground surface. Bare ground that is present under a tree or shrub canopy should be counted. Boulders count as bare ground. Wetlands with mineral soils and that are heavily shaded or are dominated by annual plant species tend to have more extensive areas that are bare during the early growing season. [AM, $\mathrm{EC}, ~ I N V, ~ N R, ~ \mathrm{OE}, \mathrm{POL}, \mathrm{PR}$, SBM, Sens]
		blanketed by dense thatch, moss, lichens, graminoids with great stem densities, or plants with ground-hugging foliage.	1	
		Slightly bare ground (5 -20\% bare between plants) is visible in places, but those areas comprise less than 5% of the unflooded parts of the AA.	0	
		Much bare ground ($20-50 \%$ bare between plants) is visible in places, and those areas comprise more than 5% of the unflooded parts of the AA.	0	
		Other conditions.	0	
		Not applicable. Surface water (either open or obscured by emergent plants) covers all of the AA all the time.	0	
F12	Ground Ifregularity	Imagine the AA without any living vegetation. Excluding the portion of the AA that is always under water, the number of hummocks, small pits, raised mounds, animal burrows, ruts, gullies, natural levees, microdepressions, and other areas of peat or mineral soil that are raised or depressed $>10 \mathrm{~cm}$ compared to most of the area within a few meters surrounding them is:		The depressions may be of human or natural origin. [AM, EC, INV, NR, PH, POL, PR, SBM, SR, WS]
		Few or none (minimal microtopography; <1\% of the land has such features, or entire AA is always water-covered).	0	
		Intermediate.	0	
		Several (extensive micro-topography).	1	
F13	Upland Inclusions	Within the AA, inclusions of upland are:		[${ }^{\text {AM, }}$ NR, SBM]
		Few or none.	1	
		Intermediate ($1-10 \%$ of vegetated part of the AA).	0	
		Many (e.g., weiland-upland "mosaic", $>10 \%$ of the vegetated AA).	0	
F14	Soil Texture	In parts of the AA that lack persistent water, the texture of soil in the uppermost layer is mostly: [To determine this, use a trowel to check in at least 3 widely spaced locations, and use the soil texture key (in Appendix A of the Manual).]		[CS, NR, OE, PH, PR, Sens, SFS, WS]
		Loamy: soils that may contain a little fine grit and do not make a "ribbon" longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
		Fines: includes silt, clay, silt, soils that make a ribbon longer than 2 cm when moistened, rolled, squeezed, and extended between thumb and forefinger.	1	
		Deep Peat, to 40 cm depth or greater.	0	
		Shallow Peat or organic $<40 \mathrm{~cm}$ deep.	0	
		Coarse: includes sand, loamy sand, gravel, cobble, soils that do not make a ribbon when moistened, rolled, squeezed, and extended between thumb and forefinger.	0	
F15	Shorebird Feeding Habitats	During any 2 consecutive weeks of the growing season, the extent of mudflats, bare unshaded saturated areas not covered by thatch, and unshaded waters shallower than 6 cm is: [Include also any area that is adjacent to the AA.]		This addresses needs of many but not all migratory sandpipers, plovers, and related species. [WBF]
		None, or <100 sq. m.	1	
		$100-1000$ sq.m.	0	
		$1000-10,000 \mathrm{sq} . \mathrm{m}$.	0	
		>10,000 sq. m.	0	
F16	Herbaceous \% of Vegetated Wetland	In aerial ("ducks eye") view, the maximum annual cover of herbaceous vegetation (all non-woody plants except moss) is:		[AM, WBF, WBN]
		<5\% of the vegetated part of the AA or <0.01 hectare (whichever is less). Mark "1" here and SKIP to F20 (Invasive Plant Cover).	0	
		$5-25 \%$ of the vegetated part of the AA.	1	
		$25-50 \%$ of the vegetated part of the AA.	0	
		$50-95 \%$ of the vegetated part of the AA .	0	
		P95\% of the vegetated part of the AA.	0	
F17	Forb Cover	Within parts of the AA having herbaceous cover (excluduing SAV), the areal cover of forbs reaches an annual maximum of:		Forbs are flowering plants. Do not include grasses, sedges, cattail, other graminoids, ferns, horsetails, or others that lack showy flowers. [POL]
		<5\% of the herbaceous part of the AA.	1	
		$5-25 \%$ of the herbaceous part of the AA.	0	
		$225-50 \%$ of the herbaceous part of the $A \mathcal{A}$.	0	
		50-95\% of the herbaceous part of the AA.	0	
		P95\% of the herbaceous part of the AA.	0	
F18	Sedge Cover	Sedges (Carex spp.) and cottongrass (EFiophorum spp.) occupy:		[CS]
		-5\% of the vegetated area, or none.	0	
		5.50\% of the vegetated area.	1	
		50.95% of the vegetated area.	0	
		>95\% of the vegetated area.	0	
F19	Dominance of Most Abundant Herbaceous Species	Determine which two herbaceous species comprise the greatest portion of the herbaceous cover (excluding mosses and floating-leaved aquatic plants). Then choose one of the following:		For this question, include ferns as well as graminoids and forbs. [EC, INV, PH, POL, Sens]
		those species together comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	1	
		those species together do not comprise $>50 \%$ of the areal cover of herbaceous plants at any time during the year.	0	
F20	Invasive Plant Cover	How extensive is the cover of invasive plant species in the AA? For species, see Plants_invasive worksheet in the accompanying Supplnfo file.		[EC, PH, POL, Sens]
		invasive species appear to be absent in the A , or are present only in trace amount (a few individuals).	0	
		invasive species are present in more than trace amounts, but comprise $<5 \%$ of herbaceous cover (or woody cover, if the invasives are woody).	1	
		invasive species comprise 5-20\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species comprise 20-50\% of the herb cover (or woody cover, if the invasives are woody).	0	
		invasive species compise $>50 \%$ of the herb cover (or woody cover, it the invasives are woody).	0	
F21	Invasive Cover Along Upland Edge	Along the wetland-upland boundary, the percent of the upland edge (within 3 m upslope from the wetland) that is occupied by invasive plant species is:		If a plant cannot be identified to species (e.g., winter conditions) but its genus contains an exotic species, assume the unidentified plant to also be exotic. If vegetation is so senesced that exotic species cannot be identified, answer "none". [PH, STR]
		none of the upland edge (invasives apparenty absent), or AA has no upland edge.	0	
		some (but < 5%) of the upland edge.	1	
		$5-50 \%$ of the upland edge.	0	
		most(-50\%) of the upland edge.	0	
F22	Fringe Wetland	During most of the year, open water within or adjacent to the vegetated part of the wetland is much wider than the maximum width of the vegetated zone within the wetland. Enter " 1 " if true, "0" if false.	0	[WBF, WBN, WCV]
F23	Lacustrine Wetland	The vegetated part of the AA is within or adjacent to a body of non-tidal standing open water whose size exceeds 8 hectares during most of a normal year.	0	[[FR, PR, PU, WBF, WBN]

F24	\% of AA Without Surface Water	The percentage of the AA that never contains surface water during an average year (that is, except perhaps for a few hours after snowmelt or rainstorms), but which is still a wetland, is:		1 hectare is $10,000 \mathrm{sq}$. m or about 2.5 acres. It could have dimensions of 100 m by $100 \mathrm{~m}, 1000 \mathrm{~m}$ by 10 m , or similar. [AM, FA, FR, INV, NR, PH, PR, SBM, Sens, SRv, WBF, WBN, WC]
		<1\%. In other words, all or nearly all of the $A A$ is covered by water permanently or at least seasonally.	0	
		$1-25 \%$ of the AA , or $<1 \%$ but >0.01 ha never contains surface water.	0	
		$25-50 \%$ of the AA never contains surface water.	0	
		$50-75 \%$ of the AA never contains sufface water.	0	
		$75-99 \%$ of the AA never contains surface water, or >99\% AND there is at least one persistent water body larger than 1 ha in the AA.	0	
		99-100\%. AND there is no persistent ponded water body larger than 1 ha within the AA. Enter "1" and SKIP to F42 (Channel Connection).	1	
F25	\% of AA with Persistent Surface Water	Identify the parts of the AA that still contain surface water (flowing or ponded, open or hidden beneath vegetation) even during the driest times of a normal year, i.e., when the AA's surface water is at its lowest annual level. At that time, the percentage of the AA that still contains surface water is:		If you are unable to determine the condition at the driest time of year, ask the land owner or neighbors about it if possible. Indicators of persistence may include fish, some dragonflies, beaver, and muskrat. [AM, CS, FA, FR, INV, NR, POL, PR, SBM, WBF, WBN]
		None. The AA dries up completely (no water in channels either) or never has surface water during most years. SKIP to F27.	0	
		$1-20 \%$ of the AA.	0	
		20.50% of the AA.	0	
		$50-95 \%$ of the AA.	0	
		-95\% of the AA. True for many finge wetlands.	0	
F26	\% of SummertimeWater that Is Shaded	At mid-day during the warmest time of year, the area of surface water within the AA that is shaded by vegetation and other features that are within the $A A$ at that time is:		[FA, WC]
		-5\% of the water is shaded, or no surface water is present then.	0	
		$5-25 \%$ of the water is shaded.	0	
		25-50\% of the water is shaded.	0	
		$50-75 \%$ of the water is shaded.	0	
		775\% of the water is shaded.	0	
F27	\% of AA that isFlooded OnlySeasonally	The percentage of the AA's area that is between the annual high water and the annual low water (surface water) is:		Flood marks (algal mats, adventitious roots, debris lines, ice scour, etc.) are often evident when not fully inundated. Also, such areas often have a larger proportion of upland and annual (vs. perennial) plant species. In riverine systems, the extent of this zone can be estimated by multiplying by 2 the bankful height and visualising where that would intercept the land along the river. [CS, FA, INV, NR, OE, PH, SR, WBF, WBN, WS]
		None, or <0.01 hectare and $<1 \%$ of the AA. SKIP to F29.	0	
		1-20\% of the AA , or $<1 \%$ but >0.01 ha.	0	
		20-50\% of the AA.	0	
		50-95\% of the AA.	0	
		295\% of the AA.	0	
F28	Annual Water Fluctuation Range	The annual fluctuation in sufface water level within most of the parts of the AA that contain sufface water at least temporarily is:		Look for flood marks (see above). Because the annual range of water levels is difficult to estimate without multiple visits, consider asking the land owner or neighbors about it. [AM, CS, INV, NR, OE, PH, PR, SR, WBN, WS]
		<10 cm change (stable or nearly so).	0	
		$10 \mathrm{~cm}-50 \mathrm{~cm}$ change.	0	
		$0.5-1 \mathrm{~m}$ change.	0	
		1-2 m change.	0	
		$\bigcirc 2 \mathrm{~m}$ change.	0	
Is the AA plus adjacent ponded water smaller than 0.01 hectare (about $10 \mathrm{~m} \times 10 \mathrm{~m}$, or $1 \mathrm{~m} \times 100 \mathrm{~m}$)? If so, enter " 1 " in column D and SKIP TO F42 (Connection).			0	
F29	Predominant Depth Class	During most of the time when surface water is present during the growing season, its depth, averaged over the entire inundated part of the AA, is:		If a boat is unavailable, estimate this by considering wetland size and local topography. Or if timing and safety allow, depths may be measured by drilling through winter ice.This question is asking about the spatial median depth that occurs during most of that time, even if inundation is only seasonal or temporary. If inundation in most but not all of the wetland is brief, the answer will be based on the depth of the most persistently inundated part of the wetland. Include surface water in channels and ditches as well as ponded areas. [CS, FA, FR, INV, OE, PH, PR, Sens, SFS, SR, WBF, WBN, WC]
		< $10 \mathrm{~cm} \mathrm{deep} \mathrm{(}$ but >0).	0	
		10.50 cm deep.	0	
		$0.5-1 \mathrm{~m}$ deep.	0	
		1-2m deep.	0	
		>2 deep. True for many tringe wetlands.	0	
F30	Depth Classes Evenness of Proportions	When present, surface water in most of the AA usually consitsts of (select one):		Estimate these proportions by considering the gradient and microtopography of the site. [FR, INV, WBF, WBN]
		One depth class that comprises $>90 \%$ of the AA's inundated area (use the classes in the question above).	0	
		One depth class that comprises $50-90 \%$ of the AA's inundated area.	0	
		Neither of above. There are 3 or more depth classes and none occupy $>50 \%$.	0	
F31	$\%$ of Water That Is Ponded (not Flowing)	During most times when surface water is present, the percentage that is (1) ponded (stagnant, or flows so slowly that fine sediment is not held in suspension) AND (2) is likely to be deeper than 0.5 m in some places, is:		Nearly all wetlands with surface water have some ponded water. [AM, CS, INV, NR, OE, PR, Sens, SR, WBF, WBN, WC, WS]
		<5\% of the water, orit occupies <100 sq.m cumulatively. Nearly all the sufface water is flowing. SKIP to F34.	,	
		$5-30 \%$ of the water.	,	
		$30-70 \%$ of the water.	0	
		70-95\% of the water.	0	
		295\% of the water.	,	
F32	Ponded Open Water - Minimum Size	During most of the growing season, the largest patch of open water that is ponded and is in or bordering the AA is >0.01 hectare (about 10 m by 10 m) and mostly deeper than 0.5 m . If true enter "1" and continue, If false, enter "0" and SKIP to F41 (Floating Algae \& Duckweed).	0	Open water is not obscured by vegetation in aerial ("duck's eye") view. It includes vegetation floating on the water surface or entirely submersed beneath it.
F33	\% of Ponded Water that is Open	In ducks-eye aerial view, the percentage of the ponded water that is open (lacking emergent vegetation during most of the growing season, and unhidden by a forest or shrub canopy) is:		[$\mathrm{AM}, \mathrm{CS}, \mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WBF}, \mathrm{WBN}, \mathrm{WC]}$
		None, or <1\% of the AA and largest pool occupies <0.01 hectares. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		1-4\% of the ponded water. Enter "1" and SKIP to F41 (Floating Algae \& Duckweed).	0	
		$5-30 \%$ of the ponded water.	0	
		30-70\% of the ponded water.	0	
		70-99\% of the ponded water.	0	
		100% of the ponded water.	0	
F34	Width of Vegetated Zone within Wetland	At the time during the growing season when the AA's water level is lowest, the average width of vegetated area in the $A A$ that separates adjoining uplands from open water within the AA is:		"Vegetated area" does not include underwater or floating-leaved plants, i.e., aquatic bed. Width may include wooded riparian areas if they have wetland soil or plant indicators. [AM, CS, NR, OE, PH, PR, SBM, Sens, SR, WBN]
		<1 m.	0	
		1.9 m .	0	
		10-29 m.	0	
		$30-49 \mathrm{~m}$.	0	
		50-100 m.	0	
		$>100 \mathrm{~m}$, or open water is absent at that time.	0	
F35	Flat Shoreline Extent	During most of the part of the growing season when water is present, the percentage of the AA's water edge length that is nearly flat (a slope less than about 5% measured within 5 m landward of the water) is:		If several isolated pools are present in early summer, estimate the percent of their collective shorelines that has such a gentle slope. [SR, WBN]
		K1\% of the water edge.	0	
		1-25\% of the water edge.	0	
		$25-50 \%$ of the water edge.	0	
		$50-75 \%$ of the water edge.	0	
		775\% of the water edge.	0	
F36	Robust Emergents	The percentage of the emergent vegetation cover in the AA that is cattail (Typha spp.), common reed (Phragmites), or tall (>1m) bulrush is:		Emergent vegetation is herbaceous plants whose stems are partly above and partly below the water surface during most of the time water is present. [WBN]
		<1\% of the emergent vegetation, or emergent vegetation is absent. SKIP to F38.	0	
		$1-25 \%$ of the emergent vegetation.	0	
		25-75\% of the emergent vegetation.	0	
		>75\%, of the emergent vegetation.	0	

\|F37	\|nterspersion of Emergents \& Open Water	During most of the part of the growing season when water is present, the spatial pattern of emergent vegetation within the water is mostly: Scattered. More than 30% of such vegetation forms small islands or corridors surrounded by water.		[AM, FA, FR, INV, NR, OE, PH, PR, SBM, SR, WBF, WBN]
			0	
		Clumped. More than 70% of such vegetation is in bands along the wetland perimeter or is clumped at one or a few sides of the surface water area.	0	
F38	Persistent Deepwater Area	If the deepest patch of surface water (flowing or ponded) in or directly adjacent to the AA is mostly deeper than 0.5 m for >2 weeks during the growing season, enter "1" and continue. If not, enter "0" and SKIP to F42.(Connection).	0	
F39	Non-vegetated Aquatic Cover	During most of the growing season and in waters deeper than 0.5 m , the cover for fish, aquatic invertebrates, and/or amphibians that is provided NOT by living vegetation, but by accumulations of dead wood and undercut banks is:		For this question, consider only the wood that is at or above the water surface. Estimates of underwater wood based only on observations from terrestrial viewpoints are unreliable so should not be attempted. [AM, FA, FR, INV]
		Litile or none.	0	
		Intermediate.	0	
		Extensive.	0	
F40	Isolated Island	The AA contains (or is part of) an island or beaver lodge within a lake, pond, or river, and is isolated from the shore by water depths >1 m on all sides during an average June. The island may be solid, or it may be a floating vegetation mat that is sufficiently large and dense to support a waterbird nest.	0	[WBN]
F41	Floating Algae \& Duckweed	At some time of the year, mats of algae and/or duckweed are likely to cover $>50 \%$ of the AA's otherwise-unshaded water surface, or blanket $>50 \%$ of the underwater substrate. If true, enter " 1 " in next column. If untrue or uncertain, enter " 0 ".	0	[EC, PR, WBF]
F42	Channel Connection \& Outflow Duration	The most persistent surface water connection (outlet channel or pipe, ditch, or overbank water exchange) between the AA and a downslope stream network is: [Note: If the AA represents only part of a wetland, answer this according to whichever is the least permanent surface connection: the one between the AA and the rest of the wetland, or the surface connection between the wetland and the downslope stream network.]		Consider the connection regardless of whether the surface water is frozen. The "downslope stream network" could consist of ditches, rivers, ponds, or lakes which eventually connect to the ocean. If this cannot be determined while visiting the AA, consult topographic maps perhaps by viewing these online with Toporama (http://atlas.nrcan.gc.caltoporama/en/index.html) [CS, FA, FR, NR, OE, PR, Sens, SFS,
		Persistent (sufface water flows out for >9 monthslyear).	0	[${ }^{\text {ct, WS] }}$
		Seasonal (surface water flows out for 14 days to 9 months/year, not necessarily consecutive).	1	
		Temporary (sufface water flows out for <14 days, not necessarily consecutive).	0	
		None -- but maps show a stream network downslope from the AA and within a distance that is less than the AA's length. SKIP to F47 (pH Measurement).	0	
		No surface water flows out of the wetland except possibly during extreme events (<once per 10 years). Or, water flows only into a wetland, ditch, or lake that lacks an outtet. SKIP to F47 (pH Measurement).	0	
F43	Outlow Confinement	During major runoff events, in the places where surface water exits the AA or connected waters nearby, the water:		I high water caused by storms andlor rapid snowme
		Mostly passes through a pipe, culvert, narrowly breached dike, berm, beaver dam, or other partial obstruction (other than natural topography) that does not appear to drain the wetland artificially during most of the growing season.	0	
		Leaves through natural exits (channels or diffuse outflow), not mainly through artificial or temporary features.	1	
		Is exported more quickly than usual due to ditches or pipes within the AA or connected to its outlet, or within 10 m of the AA's edge, which drain the wetland artificially, or water is pumped out of the AA.	0	
F44	Tributary Channel	At least once annually, surface water from a tributary channel that is $>100 \mathrm{~m}$ long moves into the AA . Or, surface water from a larger permanent water body adjacent to the AA spills into the AA. If it enters only via a pipe, that pipe must be fed by a mapped stream or lake further upslope. If no, SKIP to F47 (pH Measurement).	0	If inlet tributaries cannot be searched for due to inaccessibility of part of the AA , follow suggestions in F42 above. [NRv, PH, PRv, SRv]
F45	Input Water Temperature	Based on lack of shade, water source characteristics, or actual temperature measurements, the inflow is likely to be warmer than surface water in the AA during part of most years. Enter $1=$ yes, $0=$ no.	0	WCV]
F46	Throughflow Resistance	During its travel through the AA at the time of peak annual flow, water arriving in channels: [select only the ONE encountered by most of the incoming water].		[$\mathrm{FA}, \mathrm{FR}, \mathrm{INV}, \mathrm{NR}, \mathrm{OE}, \mathrm{PR}, \mathrm{SR}, \mathrm{WS}$]
		Does not bump into many plant stems as it travels through the AA. Nearly all the water continues to travel in unvegetated (often incised) channels that have minimal contact with wetland vegetation, or through a zone of open water such as an instream pond or lake.	0	
		Bumps into herbaceous vegetation but mostly remains in fairly straight channels.	0	
		Bumps into herbaceous vegetation and mostly spreads throughout, or is in widely meandering, mult-branched, or braided channels.	0	
		Bumps into tree trunks and/or shrub stems but mostly remains in fairly straight channels.	0	
		Bumps into tree trunks andlor shrub stems and follows a fairly indirect path from entrance to exit (meandering, multi-branched, or braided).	0	
F47	pH Measurement	The pH in most of the AA's surface water:		ns th
		Was measured, and is: [enter the reading in the column to the right.]		passed through (not along) most of the AA. Unless surface water is completely absent, do not dig holes
		Was not measured but surface water is present and is darkly tea-coloured. Or if no surface water, then mosses and plants that indicate peatland (e.g., Labrador tea) are prevalent. Enter "1".	0	
		Neither of above. Enter "1".	1	
F48	TDS and/or	The TDS (total dissolved solids) or conductivity off the AA's sufface water is: (select the first true row with information):		See above for measurement guidance. [FR, INV, NRv, PH, PRv, Sens]
	Conductivity	TDS is: [Enter the reading in ppm or mg/L in the column to the right, if measured, or answer next row.]		
		Conductivity is [Enter the reading in $\mu \mathrm{S} / \mathrm{cm}$ in the column to the right.]		
		Was not measured, but plants that indicate saline conditions cover much of the vegetated AA . Enter "1".	0	
		Neither of above	1	
F49	Beaver Probability	Use of the AA by beaver during the past 5 years is (select most applicable ONE):		[FA, FR, PH, SBM, Sens, WBF, WBN]
		Evident from direct observation or presence of gnawed limbs, dams, tracks, dens, lodges, or extensive stands of water-killed trees (snags).	0	
		Likely based on known occurrence in the region and proximity to suitable habitat, which may include: (a) a persistent freshwater wetland, pond, or lake, or a perennial low or mid-gradient ($<10 \%$) channel, and (b) a corridor or multiple stands of hardwood trees and shrubs in vegetated areas near surface water.	0	
		Unlikely because site characterisicics above are deficient, and/or this is a settled area or other area where beaver are routinely removed.	1	
F50	Groundwater Strength	Select first applicable choice:		Adhere to these criteria strictly -- do not use personal judgment based on fen conditions, pH, or other
	of Evidence	Springs are known to be present within the AA, or if groundwater levels have been monitored, that has demonstrated that groundwater primarily discharges to the wetland for longer periods during the year than periods when the wetland recharges the groundwater.	0	evidence. Consult topographic maps to detect breaks in slope described here. Rust deposits associated with groundwater seeps may be most noticeable as orange discoloration in ice formations along streams during early winter. [AM, CS, FA, FR, INV, NR, OE, PH, PRv, SFS, WC, WS]
		Most of the AA has a slope of $>5 \%$, or is very close to the base of a natural slope longer than 100 and much steeper than the slope of the AA, AND the pH of surface water, if known, is >5.5.	0	
		Neither of above is true, although some groundwater may discharge to or flow through the AA. Or groundwater influx is unknown.	1	
F51	Internal Gradient	The gradient along most of the flow path within the AA is:		This is not the same as the shoreline slope. It is the elevational difierence between the AA's inlet and
		2\%\% or the AA has no surface water outtet (not even seasonally).	1	outlet, divided by the flow-distance between them and converted to percent. If available, use a
		2.5%.	0	large (longer than $\sim 1 \mathrm{~km}$), this may be estimated using Google Earth to determine the minimum and
		6-10\%.	0	maximum elevation within the AA , then dividing by length and mutiplying by 100 . [CS, NR, OE, PR,
		>10\%.	0	SR, WBF, WBN, WS]
	for the next three quest ent. In many situations, th	tions: If the AA lacks an upland edge, evaluate based on the AA's entire perimeter, and moving outward into whatever areas are these questions are best answered by measuring from aerial images.		
F52	Vegetated Buffer as \% of Perimeter	Within a zone extending 30 m laterally from the AA's edge with upland and/or other wetlands, the percentage that contains perennial vegetation cover (except lawns, row crops, heavily grazed land, conifer plantations) is:		[AM, FA, FR, INV, NRv, PH, POL, PRv, SBM, Sens, SRv, STR, WBN]
		<5\%.	0	
		5500%.	0	
		30 to 60\%.	0	
		60 to 90\%.	0	
		990\%, or all the area within 30 m of the AA edge is other wellands. SKIP to F55.	1	

F53	Type of Cover in Buffer\|	,		[AM, FA, INV, NRv, PH, POL, SBM, STR, WBN]
		Impervious surface, e.g., paved road, parking lot, building, exposed rock.	0	
		Bare or nearly bare pervious surface or managed vegetation, e.g., lawn, row crops, unpaved road, dike, landslide.	0	
F54	Buffer Slope	The steepest and/or most disturbed part of the upland area that is within 30 m of the wetland and occupies $>10 \%$ of that upland area has a percent slope of:		[NRv , PRv, Sens, SRv]
		<1\% (flat - - almost no noticeable slope) or all the area within 30 m of the AA edge is other wetlands.	0	
		2-5\%.	0	
		5-30\%.	0	
		>30\%.	0	
F55	Cliffs or Steep Banks	In the AA or within 100 m , there are elevated terrestrial features such as cliffs, talus slopes, stream banks, or excavated pits (but not riprap) that extend at least 2 m nearly vertically, are unvegetated, and potentially contain crevices or other substrate suitable for nesting or den areas. Enter 1 (yes) or 0 (no).	0	Do not include upturned trees as potential den sites. [POL, SBM]
F56	New or Expanded Wetland	Human actions within or adjacent to the AA have persistently expanded a naturally occurring wetland or created a wetland where there previously was none (e.g., by excavation, impoundment):		Determine this using historical aerial photography, old maps, soil maps, or permit files as available [CS, NR, OE, PH, Sens]
		No.	0	
		Yes, and created or expanded $20-100$ years ago.	0	
		Yes, and created or expanded $3-20$ years ago.	0	
		Yes, and created or expanded within last 3 years.	0	
		Yes, but time of origin or expansion unknown.	0	
		Unknown if new or expanded within 20 years or not.	1	
F57	Burn History	More than 1\% of the AA's previously vegetated area:		Look for chared soil or stumps (in multiple widely-spaced locations) or ask landowner. [CS, PH, STR]
		Burned within past 5 years.	0	
		Burned 6-10 years ago.	0	
		Burned 11-30 years ago.	0	
		Burned >30 years ago, or no evidence of a burn and no data.	1	
F58	Visibility	The maximum percentage of the wetland that is visible from the best vantage point on public roads, public parking lots, public buildings, or public maintained trails that intersect, adjoin, or are within 100 m of the AA (select one) is:		[PU, STR, WBFv]
		<25\%.	0	
		25-50\%.	0	
		$>50 \%$.	1	
F59	Non-consumptive Uses - Actual or Potential	Assuming access permission was granted, select ALL statements that are true of the AA as it currently exists:		[PU, STR]
		For an average person, walking is physically possible in (not just near) $>5 \%$ of the AA during most of the growing season, e.g., free of deep water and dense shrub thickets.	1	
		Maintained roads, parking areas, or foot-trails are within 10 m of the AA , or the AA can be accessed part of the year by boats arriving via contiguous waters.	1	
		Within or near the AA , there is an interpretive center, trails with interpretive signs or brochures, and/or regular guided interpretive tours.	0	
F60	Unvisited Core Area	The percentage of the AA almost never visited by humans during an average growing season probably comprises: [Note: Only include the part actually walked or driven (not simply viewed from) with a vehicle or boat. Do not include visitors on trails outside of the AA unless more than half the wetland is visible from the trails and they are within 30 m of the wetland edge. In that case include only the area occupied by the trail.]		[AM, FAv, FRv, PH, PU, SBM, STR, WBF, WBN]
		<5\% and no inhabited building is within 100 m of the AA .	0	
		<5\% and inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and no inhabited building is within 100 m of the AA.	0	
		$5-50 \%$ and inhabited building is within 100 m of the AA.	0	
		$50-95 \%$, with or without inhabited building nearby.	0	
		>95\% of the AA with or without inhabited building nearby.	1	
F61	Frequently Visited Area	The part of the AA visited by humans almost daily for several weeks during an average growing season probably comprises: [See note above.]		[AM, PH, PU, SBM, STR, WBF, WBN]
		<5\%. If F60 was answered ">95\%" (mostly never visited), SKIP to F64.	1	
		5-50\%.	0	
		50-95\%.	0	
		>95\% of the AA.	0	
F62	BMP - Soils	Boardwalks, paved trails, fences or other infrastructure and/or well-enforced regulations appear to effectively prevent visitors from walking on soil within nearly all of the AA when the soil is unfrozen. Enter "1" if true.	0	[PH, PU]
F63	BMP - Wildlife Protection	Fences, observation blinds, platforms, paved trails, exclusion periods, and/or well-enforced prohibitions on motorised boats, off-leash pets, and off road vehicles appear to effectively exclude or divert visitors and their pets from the AA at critical times in order to minimize disturbance of wildlife (except during hunting seasons). Enter "1" iftrue.	0	[$\mathrm{AM}, \mathrm{PU}, \mathrm{WBF}, \mathrm{WBN}$]
F64	Consumptive Uses (Provisioning Services)	Recent evidence was found within the AA of the following potentially-sustainable consumptive uses. Select ALL that apply.		[FAv, FRv, WBFv]
		Low-impact commercial timber harvest (e.g., selective thinning).	0	
		Commercial or traditional-use harvesting of native plants, their fruits, or mushrooms.	0	
		Waterfowl hunting.	0	
		Fishing.	0	
		Trapping of furbearers.	0	
		None of the above.	1	
F65	Domestic Wells	The closest wells or water bodies that currently provide drinking water are:		[NRv]
		Within 0-100 m. of the AA.	0	
		$100-500 \mathrm{~m}$. away.	0	
		>500 m. away, or no information.	1	
F66	Calcareous Fen	The AA is, or is part of, a calcareous fen. See the Plants_Calcar worksheet in the accompanying Supplnfo file for list of plant indicators (calciphiles). Enter 1 If more than two Strong or more than five Moderate calciphile species are present; otherwise enter 0 , but if not able to identify those and no information, change to blank.	0	[PH, PR]

S4	Excessive Sediment Loading from Contributing Area				
	In the last column, place a check mark next to any item present in the CA that is likely to have elevated the load of waterborne or windborne sediment reaching the wetland from its CA. [FA, FR, INV, PH, SRv, STR]				
	Erosion from plowed fields, fill, timber harvest, dirt roads, vegetation clearing, fires.				
	Erosion from construction, in-channel machinery in the CA.				
	Erosion from off-road vehicles in the CA.				
	Erosion from livestock or foot traffic in the CA.				
	Stormwater or wastewater effluent.				1
	Sediment from road sanding, gravel mining, other mining, oil/ gas extraction.				
	Accelerated channel downcutting or headcutting of tributaries due to altered land use.				
	Other human-related disturbances within the CA.				
	If any items were checked above, then for each row of the table below, assign points (3,2 , or 1 as shown in header) in the last column. However, if you believe the checked items did not cumulatively add significantly more sediment or suspended solids to the AA, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Erosion in CA:	Extensive evidence, high intensity.*	Potentially (based on high-intensity* land use) or scattered evidence.	Potentially (based on low-intensity* land use) with little or no direct evidence.	0
	Recentness of significant soil disturbance in the CA:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	1
	Duration of sediment inputs to the wetland:	Frequent and year-round.	Frequent but mostly seasonal.	Infrequent \& during high runoff events mainly.	1
	AA proximity to actual or potential sources:	0-15m.	15-100 m.	In more distant part of contributing area.	3
	* high-intensity= extensive off-road vehicle use, plowing, grading, excavation, erosion with or without veg removal; low-intensity= veg removal only with little or no apparent erosion or disturbance of soil or sediment.			Sum=	5
				Stressor subscore=	0.42
S5	Soil or Sediment Alteration Within the Assessment Area				
	Compaction from machinery, off-road vehicles, livestock, or mountain bikes, especially during wetter periods.				
	Leveling or other grading not to the natural contour.				
	Tillage, plowing (but excluding disking for enhancement of native plants).				
	Fill or riprap, excluding small amounts of upland soils containing organic amendments (compost, etc.) or small amounts of topsoil imported from another wetland.				
	Excavation.				
	Ditch cleaning or dredging in or adjacent to the wetland.				
	Boat traffic in or adjacent to the wetland and sufficient to cause shore erosion or stir bottom sediments.				
	Artificial water level or flow manipulations sufficient to cause erosion or stir bottom sediments.				
	If any items were checked above, then for each row of the table below, assign points. However, if you believe the checked items did not measurably alter the soil structure and/or topography, then leave the "0's" for the scores in the following rows. To estimate effects, contrast the current condition with the condition if the checked items never occurred or were no longer present.				
		Severe (3 points)	Medium (2 points)	Mild (1 point)	
	Spatial extent of altered soil:	>95\% of wetland or >95\% of its upland edge (if any).	$5-95 \%$ of wetland or 5-95\% of its upland edge (if any).	<5\% of wetland and < 5% of its upland edge (if any).	
	Recentness of significant soil alteration in wetland:	Current \& ongoing.	1-12 months ago.	>1 yr ago.	
	Duration:	Long-lasting, minimal veg recovery.	Long-lasting but mostly revegetated.	Short-term, revegetated, not intense.	
	Timing of soil alteration: Frequent and year-round.		Frequent but mostly seasonal.	Mainly during one-time or scattered events.	
				Sum=	0
	Stressor subscore=				0.00

Wetland ID: PLW-W-02

Latitude \& Longitude (decimal degrees): $45.165598,66.202174$
$\begin{array}{l}\text { Scores will appear below after data are entered in worksheets OF, F, and } \\ \text { S. See Manual for definitions and descriptions of how scores were } \\ \text { computed. }\end{array}$

Wetland Functions or Other Attributes:	Function Score (Normalised)	Function Rating	Benefits Score (Normalised)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Water Storage \& Delay (WS)	4.40	Moderate	0.37	Lower	5.11	0.45
Stream Flow Support (SFS)	2.66	Loner	3.32	Moderate	1.42	1.93
Water Cooling (WC)	0.00	Lower	0.00	Lower	0.00	0.00
Sediment Retention \& Stabilisation (SR)	6.75	Higher	1.19	Lower	7.78	0.72
Phosphorus Retention (PR)	4.46	Higher	4.55	Moderate	6.06	4.44
Nitrate Removal \& Retention (NR)	2.62	Moderate	3.75	Moderate	5.45	4.44
Carbon Sequestration (CS)	7.21	Higher			7.67	
Organic Nutrient Export (OE)	3.44	Moderate			4.16	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	0.00	Lower	0.00	Lower	0.00	0.00
Aquatic Invertebrate Habitat (INV)	6.61	Higher	1.24	Moderate	6.20	1.91
Amphibian \& Turtle Habitat (AM)	3.21	Lower	1.49	Lower	5.00	3.00
Waterbird Feeding Habitat (WBF)	0.00	Lower	0.00	Lower	0.00	0.00
Waterbird Nesting Habitat (WBN)	0.00	Lower	0.00	Lower	0.00	0.00
Songbird, Raptor, \& Mammal Habitat (SBM)	7.82	Higher	2.50	Lower	6.49	2.50
Pollinator Habitat (POL)	9.05	Higher	0.00	Lower	7.29	0.00
Native Plant Habitat (PH)	5.64	Moderate	5.29	Moderate	5.36	4.59
Public Use \& Recognition (PU)			4.58	Moderate		3.59
Wetland Sensitivity (Sens)			5.64	Higher		3.89
Wetland Ecological Condition (EC)			4.94	Moderate		7.08
Wetland Stressors (STR) (higher score means more stress)			4.18	Moderate		3.80
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.66	Moderate	0.37	Lower	5.11	0.45
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	5.68	Higher	3.85	Lower	7.26	3.82
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	4.89	Moderate	2.42	Moderate	4.57	1.61
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	1.93	Lower	0.89	Lower	3.00	1.80
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.28	Higher	3.94	Moderate	6.83	3.48
WETLAND CONDITION (EC)			4.94	Moderate		7.08
WETLAND RISK (average of Sensitivity \& Stressors)			4.91	Higher		3.84

[^0]: FUNDY Engineering

[^1]: FUNDY Engineering $B \cap \cap E M L$

[^2]: FUNDY Engineering $B D_{x=1} R_{o n}$

[^3]: FUNDY Engineering $B_{n} \prod_{x} R_{N} E M_{x} L$

[^4]: FUNDY Engineering $B_{n} \prod_{n} R_{\infty} E M_{N} L$

