

KENNY'S DEVELOPMENTS LIMITED River Mist Estates Development Environmental Impact Assessment Registration (Final)

336 Highway 105, Maugerville, NB

February 2016 – 15-2555

Table of Contents

1.0	The Proponent					
	1.1	Proponent Name	1			
2.0	The Ur	ndertaking	2			
	2.1	Project Title	2			
	2.2	Project Overview	2			
	2.3	Purpose/Rationale/Need for the Undertaking	5			
	2.4	Project Location	5			
	2.5	Siting Considerations	6			
	2.6	Regulatory Framework	7			
	2.7	Physical Components and Dimensions of the Project	7			
	2.8	Construction Phase Details	9			
	2.9	Operation and Maintenance Details	11			
	2.10	Future Modifications, Extensions, or Abandonment	12			
	2.11	Accidents and Malfunctions	12			
3.0	Existin	g Environment	13			
	3.1	Methodology	13			
	3.2	Terrestrial Environment	15			
	3.3	Aquatic Environment	22			
	3.4	Atmospheric Environment	25			
	3.5	Cultural Heritage Resources	26			
	3.6	Archaeological and Cultural Features	26			
	3.7	Socio-Economic Environment	27			
4.0	Assess	ment of Potential Environmental Impacts	29			
	4.1	Valued Components	29			
	4.2	Project Activities	29			
	4.3	Project Interaction Matrix				
5.0	Enviro	nmental Effects Assessment and Mitigation	31			
	5.1	Methodology	31			
	5.2	Terrestrial Environment				
	5.1	Aquatic Environment	36			

	5.2	Atmospheric Environment Results	40
	5.3	Cultural and Heritage Resources Environment	43
	5.4	Socio-Economic Environment	46
	5.5	Effect of the Environment on the Project	47
6.0	Public C	Consultation	49
7.0	Conclus	sions	51
8.0	Closure)	52

Figures

Figure 2-1: Proposed Project Location	3
Figure 2-2: Proposed Site Location	
Figure 2-3: Site Plan	
Figure 3-1: Project Component Study Areas	16
Figure 3-2: 1973 and 2008 Flood Levels	17
Figure 3-3: Project Environmental Constraints	20

Tables

Table 3-1: Summary of Flora Species of Conservation Concern	19
Table 3-2: Summary of Wetland Function	24
Table 4-1: Project Interaction with Environmental	
Components	30

Appendices

References

1.0 The Proponent

1.1 Proponent Name

Kenneth Cormier

Kenny's Developments Ltd. 330 Highway 105, Maugerville, NB E3A 8G2 Email: <u>kennethcormier@rogers.com</u> Telephone: 506-260-2980

Consultant Contact:

Kristin Banks, P.Eng.

Dillon Consulting Limited 1149 Smythe Street Fredericton, NB E3B 3H4 Email: <u>kbanks@dillon.ca</u> Telephone: 506-444-8820 Fax: 506-444-8821

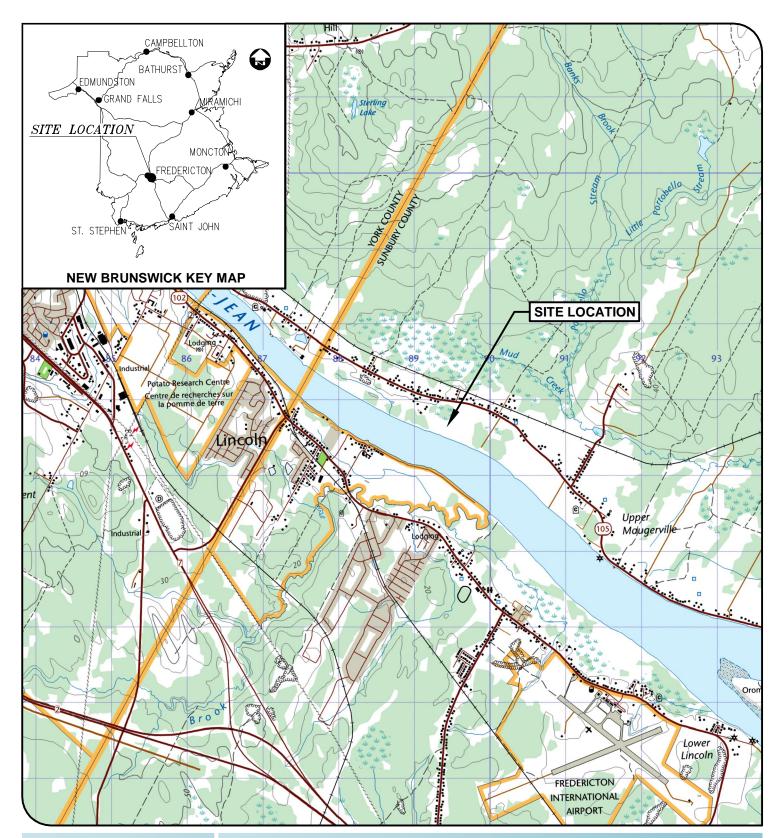
2.0 The Undertaking

2.1 Project Title

River Mist Estates Development, Maugerville, NB.

2.2 Project Overview

Kenny's Development Limited is proposing to construct a 44-unit residential condominium development ("the project") known as "River Mist Estates" on the properties identified by property identification (PID) numbers 60153483, 60153475, and 60153467 located at 336 Highway 105 in Maugerville, New Brunswick. The project area will encompass the entire area of all three PIDs, (**Figure 2-1**).


The townhouses will be constructed in three phases over the next five years and will be located in the central portion of the PIDs. Phase I consists of six attached townhouses, wastewater treatment system installation, and potable well and pumphouse installation. Phase II and III consist of 18 attached townhouses and 20 attached townhouses, respectively as well as connection to the utilities. Initially, the area to be developed will be filled in until the ground surface elevation is at least 0.6m above the 1973 flood level. Each unit will be one story wood frame construction supported on a concrete slab foundation with an attached one car garage. At the completion of the proposed project there is planned to be four rows of six connected units on the western side of the driveway with four rows of five connected units on the eastern side of the driveway. The project will require the installation of a wastewater treatment system and potable water. Refer to **Figure 2-2**.

It is estimated that the development will require approximately 40 m³/day (based on an assumption of 350L/day/person) of potable water which will be supplied by a well located along the western property boundary. As part of this project a Water Supply Source Assessment (WSSA) was required to determine if the local aquifer has the capacity to provide the development with sufficient potable water of an acceptable quality without impacting the local groundwater resources.

A wastewater treatment system will be constructed to accommodate the development and will consist of a private waste water tanks, a centralized wastewater treatment and disposal system. Refer to **Figure 2-2**.

Because the proposed projects is considered to be a major residential development outside of an incorporated are where wastewater treatment is required and potential water requirements could exceed 50 m³/day, an Environmental Impact Assessment (EIA) registration

ENVIRONMENTAL IMPACT ASSESSMENT **RIVER MIST ESTATES** 336 ROUTE 105 MAUGERVILLE, NB EIA REGISTRATION No. 4561-3-1421 PID No. 60153475, 60153467, 60153483

SITE LOCATION MAP FIGURE 2-1

MAP/DRAWING INFORMATION National Topographic System Mapsheet 21G/16.

Elle Location: c:\projectwise\working directorylactive\S0heb\d0184436\152555-05-03-fig 2-1 (eio).dwg February, 16, 2016 10:59 AM

CREATED BY: HEB CHECKED BY: DESIGNED BY:

SCALE 1:50,000

1000m

PROJECT: 15 2555 STATUS: DRAFT DATE: 16/02/16 SITE : RIVER MIST

FIGURE 2-2

File Location: c:\projectwise\working directory\active\50heb\d0184436\152555-05-03-fig 2-2.dwg May, 05, 2016 1:44 PM MAP/DRAWING INFORMATION Property boundaries are based on service New Brunswick records and may not be exact. This is not a legal survey. CREATED BY: HEB CHECKED BY: DESIGNED BY:

0 50 100 150 SCALE 1: 3000

DILLON

NOTE: INFRASTRUCTURE LOCATIONS ARE APPROXIMATE ONLY.

PROJECT: 15 2555 STATUS: DRAFT

DATE: 16/02/16

under the Clean Environment Act is necessary. This document provides the information required for the EIA registration as set out in the New Brunswick Department of Environment and Local Government (NBDELG) "A Guide to Environmental Impact Assessment in New Brunswick (2012).

2.3 Purpose/Rationale/Need for the Undertaking

According to the report by the Premier's Panel on Seniors (GNB, 2012), in 2001, New Brunswick's population began to change as the province felt the triple impact of working age baby boomers retiring, a reduced birth rate and outmigration of youth. As of 2011, New Brunswick was home to approximately 375,000 people (approximately half of the province's population) aged 45 years and older with an expectation for the population of retirees (55 and older) to dramatically increase over the next two decades (New Brunswick's Population Growth Strategy, 2013).

Kenny's Development Limited has recognized the growing need for retirement living and has identified a market opportunity for retirement living in rural areas. Retirement living is generally considered to be smaller residential dwellings on a single level with assisted maintenance and upkeep.

This proposed development has been designed to provide safe, private, accessible, attractive and low maintenance homes (compared to traditional housing) and aims to provide homes that allow aging owners to maintain their independence and remain active members of their community.

In addition, the proposed development is located along the scenic Saint John River with waterfront access providing residents opportunities for recreational activities ranging from boating to photography. The central location between Fredericton and Oromocto also provides convenient access to public facilities, services and shopping.

2.4 Project Location

The proposed project site will encompass the three land parcels legally identified by PID Nos. 60153483, 60153475, and 60153467 and located at approximate latitude N45° 54' 30.0" and longitude W66° 33' 33.6", **Figure 2-1**. All three land parcels occupy an approximate total area of 6.5 hectares (ha) and are owned by Mr. Joseph Kenneth Cormier who is the owner of the proponent company; Kenny's Developments Limited.

The proposed project site is located in a rural area along the Saint John River south of Highway 105 in Maugerville, Sunbury County, New Brunswick, as illustrated on **Figure 2-1** and **Figure 2-2**.

2.5 Siting Considerations

The proposed project area is approximately 6.5 ha of relatively flat undeveloped river front land, located primarily in an agricultural setting within Maugerville, NB. All three properties included in the proposed project location are currently classified as having residential land usage. Historically, the proposed project area was farmed and used for agricultural purposes, however has remained vacant since the 1950's. There are two meadow wetlands located on the northern half of the proposed project area; however because they have been previously disturbed through historical land use they are considered to be low functioning. No watercourses have been identified within the proposed project boundaries.

The proposed project area is accessible from Highway 105 and includes an access road (driveway) which runs south from the Highway 105. The proposed location is not currently serviced with electricity; however, power distribution lines run adjacent to the property along Highway 105 and will be installed approximately parallel to the access road to reach the development.

Properties in the Maugerville area are supplied potable water by private wells. The project area is not currently supplied potable water and a supply is required. A supply well has been selected based on technical information gathered from the Water Supply Source Assessment (WSSA) completed in conjunction with this project (Appendix A). The proposed development was sited in such a way as to reduce distance to the potable wells. As well, consideration of the provincial regulations from a potable water source, dwellings and property boundaries were considered when locating the wastewater treatment system for the development.

Consideration of the adjacent land use and the surrounding biophysical environment was observed during the siting and design of the development. Where possible, the development was located and/or adjusted to avoid impacting the natural environment. Evidence of the thought process is as follows:

- To minimize environmental and potential cultural impacts, the proposed site location was selected due to its historical development activities;
- Development on previously farmed lands reduces and minimizes clearing/grubbing requirements;
- The proposed project will not change the current land use classification and will align well with the developed properties currently in the area;
- Riverfront properties in the Maugerville area are prone to flooding, the proposed project has been designed to withstand potential flood events from the Saint John River during the spring freshet;
- In consideration of the Saint John River applicable setbacks have been applied; and,
- Biophysicial surveys were completed to avoid interaction with potential species at risk or species of conservation concern.

2.6 Regulatory Framework

The proposed project requires an EIA in accordance with the NB EIA Regulation – *Clean Environment Act* (NB Reg. 87-83) since the project proposes both a wastewater disposal system and drilled well with the potential capacity to exceed 50 m³ the EIA triggers involved are:

- (n.) "...all sewage disposal or sewage treatment facilities, other than domestic, on-site facilities";
- (s) "...all waterworks with a capacity greater than fifty cubic metres of water daily"; and,
- (t) "...all major residential developments outside incorporated areas" as per Schedule A of NB Reg. 87-83.

As the water supply for the development will be obtained from a drilled well, a water source supply assessment (WSSA) is required. A WSSA application has been provided as part of this EIA registration (**Appendix A**). The proposed project is subject to a variety of federal and provincial regulatory requirements including but not limited to those summarized in **Appendix B**.

2.7 Physical Components and Dimensions of the Project

A preliminary site plan for the proposed project is provided in **Figure 2-3**. Construction of the 44-units and supporting structures (i.e. wastewater treatment system, pump house, etc.) will be phased over five years will consist of four rows of six attached townhouses and four rows of five attached townhouses. The phases of the development are graphically illustrated on **Figure 2-3**. Each townhouse will have a separate 750 gallon wastewater tank which will overflow to a larger 15000 gallon tank as depicted on **Figure 2-3**.

The proposed project phases will include:

- Phase I
 - Six approximately 150 m² attached townhouses (the foundation for one currently exists);
 - Potable well installation and connection to residential units;
 - Pumphouse around the potable well and storage tank;
 - Wastewater treatment system installation and connection to Phase I townhouses; and,
 - Access ("future driveway") upgrades and parking.
- Phases II and III
 - Three rows of six approximately 150 m² attached townhouses;
 - Four rows of five approximately 150 m² attached townhouses;
 - Connections to the existing water and waste water systems;

ENVIRONMENTAL IMPACT ASSESSMENT

RIVER MIST ESTATES 336 ROUTE 105 MAUGERVILLE, NB EIA REGISTRATION No. 4561-3-1421 PID No. 60153475, 60153467, 60153483

SITE PLAN FIGURE 2-3

SMENT		EXISTING STRUCTURE A/G		FUTURE INFRASTRUCTURE U/G	· · · · · POWER LINE
	PROPERTY LINES	FUTURE INFRASTRUCTURE A/G		DRAINAGE DITCH	
	WATERBODY	EXISTING INFRASTRUCTURE U/G	•	SANDPOINT WELL (SW)	

File Location: c:\projectwise\working directory\active\50heb\d0184436\152555-05-03-fig 2-3.dwg May, 05, 2016 3:09 PM MAP/DRAWING INFORMATION Property boundaries are based on service New Brunswick records and may not be exact. This is not a legal survey. CREATED BY: HEB CHECKED BY: DESIGNED BY:

Q

NOTE: INFRASTRUCTURE LOCATIONS ARE APPROXIMATE ONLY.

PROJECT: 15 2555 STATUS: DRAFT

DATE: 16/02/16

- Repurposing of the meadow wetlands located within the proposed project area; and,
- Landscaping and paving.

The proposed project will make use of the existing access road, which egresses south off of Highway 105 highway by converting it to a driveway.

2.8 Construction Phase Details

The proposed project will consist of several concurrent construction components including site preparation and civil works, townhouse construction, and installation of water and waste water services. A description of the major components of the development is provided below.

2.8.1 Site Preparation and Civil Works

In preparation for preliminary site construction activities a portion of the site was previously cleared in 2012. It is expected that the remainder of the site preparation work will be completed in the area of northeast of the Phase I townhouses on either side of the access road and will involve the removal of organic material and unsuitable soil from the proposed project area. Material that cannot be used on site will be transported to a pre-approved disposal location.

Earthworks, including grading, will be required to prepare a generally level area for the construction of the development. The area to be developed as townhouses will be pre-loaded with engineered fill to expedite the settling process of the backfilled soil. A sufficient amount of engineered fill will remain in place to ensure that the foundation for each unit will be located 0.5m above the 1973 flood level. This work has already been completed for Phase I, and pre-loading has been completed for Phase II. Should additional materials be required for the earthworks and/or pre-loading of Phase III of the development, they will continue to be sourced locally. Material that has been used for pre-loading will be backfilled into the low functioning meadow wetlands located north of town house development on the proposed project PIDs to increase the usability of this area for future tenants (i.e. green space).

The majority of the project will be accessed using the existing access road (driveway). This road may require some minor improvements including widening and the addition of a sub-base/base and/or paving. The improvements will be identified following the final design.

It is anticipated that the access road and parking areas on the property will be paved following the final phase of construction. Other areas will be landscaped and re-vegetated to provide green space.

2.8.2 Facilities Construction

2.8.2.1 Townhouse Construction

The total footprint for each row of the six unit townhouses will be approximately 850 m² while the total footprint for each row of the five unit townhouses will be approximately 725 m². Each unit will be a single story (approximate height of 4.5 m) constructed on engineered fill that will raise the foundation of each unit to 0.5m above the 1973 flood level. Building characteristics include:

- Reinforced concrete slab on grade foundation;
- Wood frame construction;
- Concrete slab patio area;
- Sanitary and water connection lines;
- Power supply from overhead electrical lines;
- Electric heat source (baseboard heaters); and,
- Individual 750 gal sanitary tanks.

It is anticipated that building construction during each phase will occur during working hours during spring, summer and fall months. During subsequent Phases (i.e. Phases II and III) interior finishing (painting, cabinetry) of the units may be completed during winter months. Construction activities are expected to be limited to the use of tools with the exception of the occasional piece of heavy equipment (i.e. excavator, etc.).

Building construction may generate recyclable materials that can be diverted from landfills and non-recyclable materials that must be disposed of in a construction and demolition or solid waste landfill.

2.8.2.2 Potable Water Supply

Potable water will be supplied to the subject site by a well located along the western side of the site, refer to **Figure 2-2**. A potable well and observation well were installed in 2015 by a licensed well driller under the supervision of Dillon personnel to approximate depths of 30 and 35 meters below ground surface. Details of the well construction and supply assessment are presented in **Appendix A**.

Following the approval of the Water Source Supply Assessment, both the potable and observation well will be completed with steel casing to at least 0.6m above the 1973 flood stage. During Phase II of the construction activities, a storage tank will be installed in the pump house to meet instantaneous demand by the tenants (the volume of the storage tank will be finalized during the final design). A wood framed pump house supported on a concrete slab foundation will then be constructed around the potable well and storage tank. The elevation of the floor for the pump house will also be 0.6 m above the 1973 flood stage.

2.8.2.3 Wastewater System Construction and Installation

Each residential unit will have a dedicated sewer service that discharges into individual 750 gal wastewater tanks. These individual tanks will provide the initial primary treatment of the wastewater where the heavier solids, fats, oils, greases and other floatables will be removed from the wastewater stream prior to entering the collection sewer. Due to the size of the units and the targeted demographic, it is anticipated that the average household size will be one or two adults, and each wastewater tank will be pumped out regularly (approximately 2-3 years). The individual tanks will be connected and wastewater will be collected in a buried PVC sewer system and conveyed to the secondary treatment system. As wastewater enters the treatment system, it will initially be collected in a gravity settling tank to remove remaining solids. The water will then pass through a filter and into a re-circulation 15,000 gal tank. A pumping system in the recirculation tank will dose the wastewater in a controlled manner into a series of fixed film media reactors where biological treatment of the wastewater occurs. A portion of the treated wastewater flows back to the re-circulation tank and gets reintroduced to the stream for further treatment, while the remaining flow is pumped to the on-site disposal field (approximately 25m x 15m) for subsurface disposal, refer to **Figure 2-1**.

Kenny's Developments Limited will oversee the operation and maintenance of the waste water treatment system until the all townhouses have been sold when ownership will be transferred to the association of elected townhouse owners.

2.9 Operation and Maintenance Details

Operation and maintenance of the development will be managed in two phases; Phase I which will run from the date that the first townhouse is purchased until the date that the last townhouse is sold; and, Phase II which will run in perpetuity after the last townhouse has been purchased. Kenny's Developments Limited will oversee the operation and maintenance of the development during Phase I while elected townhouse owners will form an association and will be responsible during Phase II.

It is anticipated that over the lifetime of the development maintenance will be required. Maintenance is expected to include;

- Landscaping
- Snow removal
- Potable water monitoring and testing
- Unit maintenance
- Garbage collection
- Pest management
- Maintenance and repairs from accidents and natural disasters
- Maintenance/repairs to the wastewater treatment system

It is estimated that the completed townhouse development will require an average of 40m³/day of potable water based on a demand of 350L per person per day and every unit being occupied by two people. Based on the WSSA (Appendix A), the demand will be met by the potable well currently located on the subject site.

As during the construction phase, power for each unit will be supplied via overhead distribution lines. It is anticipated that power will be derived from the NB Power owned overhead distribution line along Highway 105.

It is expected that the development will remain in place and operational, for the foreseeable future.

2.10 Future Modifications, Extensions, or Abandonment

Future modifications, extensions or abandonment of the development is not anticipated at this time.

2.11 Accidents and Malfunctions

The project components will be designed or implemented in accordance with applicable Acts, regulations, guidelines, codes and standards for industrial plant; however, accidental events may still occur and some accidents may have significant consequences. To minimize environmental emergencies and health and safety risks, an Environmental Management Plan (EMP) and Emergency Response Plan (ERP) will be developed and implemented as part of the pre-construction planning. Accidental events may include but are not limited to:

- Hazardous material, chemical and fuel spills and fires;
- Traffic control and vehicle accidents; and,
- Discovery of Archaeological Resources or Human Remains.

3.0 Existing Environment

The following section describes the current environmental conditions at the subject site and includes the site specific information gathered through a desktop review and field investigation surveys. The site conditions are described in the following sections:

- Terrestrial Environment;
- Aquatic Environment;
- Atmospheric Environment;
- Species at Risk and of Conservation Concern (including habitat);
- Archaeological and Heritage Resources; and,
- Socio-Economic and Land use.

3.1 Methodology

3.1.1 Desktop Review

The desktop review consisted of an analysis of the biophysical and socio-economic setting based on available background information for the proposed project study area. The proposed study area was dependent on the parameter being evaluated, for example a larger study area was considered for atmospheric conditions due to the ease at which particulate matter can travel. The project study area for each site condition is indicated in the applicable section.

Prior to conducting field investigation studies, regional, federal and provincial databases were consulted to identify potential occurrences of rare and endangered flora and fauna, and unique or sensitive habitats that have been known to occur within a 500 m radius of the proposed project boundaries and identified as the "study area". The following lists were reviewed to identify species and habitats of concern:

- Species listed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC);
- Species listed under the Species at Risk Act (SARA);
- Species listed under the New Brunswick Species at Risk Act (NBSARA);
- Species ranked or identified by New Brunswick Department of Natural Resources (NBDNR) species at risk biologist; and,
- Species listed by the Atlantic Canada Conservation Data Center (ACCDC) as extremely rare (S1), rare (S2) and uncommon (S3). Refer to **Appendix C** for the complete report.

In addition, available background information was also obtained from the following sources to gather a thorough understanding of the proposed project study area:

- Nature NB;
- GeoNB;

- New Brunswick Department of Energy and Mines Surficial Geology and Bedrock Mapping;
- Aerial Photographs from Service New Brunswick and Google;
- Provincial Depth to Water Table Mapping;
- Important Bird Areas (IBA), the Ramsar Convention on Wetlands and federally recognized Migratory Bird Sanctuaries;
- Protected Wellfields and Watersheds;
- Protected Natural Areas; and,
- Interviews with persons knowledgeable of the study area (residents and government representatives).

Various data resources were consulted to conduct the desktop assessment for the atmospheric environment and are discussed further throughout this section.

3.1.2 Biophysical Field Surveys

Site surveys were carried out in August 2015. The surveys consisted of a topographical and environmental aspect review focused on identifying the existing environment and potential environmental constraints. Characterization of the existing conditions included:

- Watercourses/wetlands within the study area;
- Forest habitat and vegetation assessment;
- Migratory birds;
- Wildlife and wildlife habitat;
- Species at risk and of conservation concern; and,
- Land use, topography and existing structures.

Watercourses and wetland habitats initially identified through the desktop study were field verified using hydrophytic vegetation and/or the presence of water as key indicators during the site survey. Hydric soils information was not analyzed as part of the field identification surveys.

The goal of the wetland assessment was to identify wetlands and to evaluate for wetland functional value and importance to the surrounding environment.

To establish the level of breeding/foraging evidence for bird species within the study area, a breeding bird survey was conducted on August 25, 2015. Point count surveys of 5 minute intervals using the Canadian Bird Studies Point Count protocol were conducted at three locations. Survey stations were established with a minimum distance of 200 m between points to maximize coverage of the area as shown in the report in **Appendix D**. Subsequent to the 5 minute point count, a digital recording of various birds was played back for an additional 5 minutes with the objective to attract migratory birds potentially foraging/nesting in the area that may not be vocalizing during the 5 minute point count. Because the survey was

conducted late in the breeding bird season, the habitat in the area was also assessed to determine potential suitability for future nesting birds in the area.

During the field survey direct observations of wildlife signs (sightings, auditory detections, tracks, scat, and dens/nests) and habitat conditions were observed to indicate the absence/presence or potential of wildlife within the study area. The habitat was evaluated to determine if the proposed project area would provide unique or limited habitat for any species.

Vegetation surveys were conducted on August 31, 2015 and included recording tree, shrub and herbaceous species within the study area. The focus of the vegetation assessment was to determine the presence/absence of priority/at risk species, based on existing data and habitat suitability as identified by the ACCDC.

3.2 Terrestrial Environment

For the purposes of this EIA, the description of the terrestrial environment considers topography, geology, and flora and fauna (including species at risk) habitat/populations within 500m of the subject site, **Figure 3-1**.

3.2.1 Site Topography and Physiography

The proposed project footprint area is located within the Grand Lake Lowlands Ecoregion, specifically the Aukpake Ecodistrict which encompasses the Grand Lake basin, the Oromocto River watershed, and the floodplains surrounding the mid-section of the lower Saint John River. The Aukpake Ecodistrict is a low-lying, gently rolling area that encompasses the Saint John River. The proposed project area is recognized to be highly disturbed by intensive settlement, logging activities, and farming activities.

The general topography in the area of the proposed project consists of low lying relatively flat fields gently sloping south towards the Saint John River. Immediately north of the proposed project area is a 2.5m high manmade embankment on which Highway 105 is constructed.

3.2.2 Hydrology and Hydrogeology

The proposed project area is located within the Saint John River watershed in the New Brunswick Lowland sub-region on the banks of the Saint John River. The mean annual discharge for the Saint John River is approximately 1100 m³ /s (CRI, 2012). Like most eastern Canadian rivers, its peak water levels and discharge occur in the late spring after the spring thaw. The river experiences a second, smaller pulse later in the fall. According to the Province's flood mapping information (http://geonb.snb.ca/geonb/), the proposed project location is within the flood zone (1973 and 2008) of the Saint John River. Refer to **Figure 3-2**.

ENVIRONMENTAL IMPACT ASSESSMENT

RIVER MIST ESTATES 336 ROUTE 105 MAUGERVILLE, NB EIA REGISTRATION No. 4561-3-1421 PID No. 60153475, 60153467, 60153483

PROPOSED STUDY AREA FIGURE 3-1

PROPOSED PROJECT AREA

50m AQUATIC ENVIRONMENTAL STUDIY AREA AND ARCHEOLOGICAL STUDY AIREA - - - 500m TERRESTRIAL STUDY AREA

5km ATMOSPHERIC ENVIRONMENTAL STUDY AREA

File Location: c:\projectwise\working directory\active\50heb\d0184436\152555-05- 03-lig 3-1.dwg February, 16, 2016 11:28 AM MAP/DRAWING INFORMATION Property boundaries are based on service New Brunswick records and may not be exact. This is not a legal survey. CREATED BY: HEB CHECKED BY: DESIGNED BY:

NOTE: INFRASTRUCTURE LOCATIONS ARE APPROXIMATE ONLY.

PROJECT: 15 2555 STATUS: DRAFT DATE: 10/02/16

Regional groundwater flow is expected to flow south towards the Saint John River, located immediately south of the proposed project area.

The proposed study area is not located within a watershed protected area as outlined in the New Brunswick Watershed Protection Program or a wellfield protected area under the New Brunswick Wellfield Protection Program.

Based on interviews with local residents, the Cormier residence (PID No. 60153491) and a number of residential properties in the Maugerville area are supplied potable water by private

FIGURE 3-2: 1973 AND 2008 FLOOD LEVELS

sandpoint potable wells. The wells are typically installed to depths of less than 6m. It is assumed that other properties are supplied potable water by drilled potable wells.

In 2015 two wells (source and observation) were installed in the proposed project area by a licensed well driller (**Figure 2-2**) under the supervision of Dillon personnel to approximate depths of 30 and 35 meters below ground surface. Details of the well construction and supply assessment are presented in the WSSA in **Appendix A**. Concentrations of iron and manganese exceeding applicable Canadian Drinking Water Quality guidelines was identified in potable water samples collected during the assessment; concentrations of other trace metals, E. Coli and coliforms were below applicable guidelines.

3.2.3 Geology

Based on the Generalized Surficial Geology Map of New Brunswick (Rampton, V.N. 1984, 2002 Ed.), the surficial geology in study area is Holocene aged alluvial sediments comprised of terraces and floodplains of sand, gravel, and some silt. The deposits are generally greater than 2 m thick.

Based on the Department of Natural Resources Geological Map (St. Peter, C.J. and Fyffe, L.R, 2005), the regional bedrock geology in the study area is identified as the Minto Formation of the Pictou Group deposited during the Late Carboniferous period. The Minto formation is comprised of grey to red-brown feldspathic and quartzose arenites, round clasts conglomerate, fine grained sandstone or siltstone and to a lesser extent mudstones and shales. Thinly bedded coal seams have been identified within this unit.

3.2.4 Environmentally Sensitive Areas

The proposed project is located within the "Lower Saint John River (Sheffield/Jemseg) Important Bird Area (IBA) which extends 25 km along the Saint John River, from approximately 7 km northeast of the proposed project location to 20 km east of the proposed project location (**Figure 3-3**). Extensive annual spring flooding in the IBA has resulted in the creation of a unique hardwood and flora complex creating the single largest wetland complex in Atlantic Canada (CIBA, 2015). As a result the area provides important breeding habitat for a number of migratory birds including raptors, waterfowl, shorebirds and passerines (CIBA, 2015).

No other environmentally significant areas were identified within 500m of the proposed project location.

3.2.5 Vegetation (Flora) Assessments

The study area consists mainly of previously disturbed land through historical agricultural activities and residential development and consists primarily of weeds, grasses and small shrubs.

3.2.5.1 Forest Habitat

The proposed project area is located within the Grand Lake Lowlands Ecoregion, specifically the Aukpake Ecodistrict, however due to historical development in the proposed project area mature forested habitat was not identified on land parcels. Dominant forest compositions within the study area (i.e. within 100m of the proposed development but on adjacent PIDs) consisted primarily of alder scrub with some hardwood stands of sugar maple (*Acer saccharum*), white ash (*Fraxinus Americana*), and glossy buckthorne (*Frangula alnus*) located along the Saint John River shoreline.

3.2.5.2 Vegetation (Flora) Surveys

A review of the ACCDC data determined that one vegetation species of conservation concern, Ditch Stonecrop (*Penthorum sedoides*), had the potential to occur within the study area and had previously been identified 350m east of the proposed project area. Field surveys were targeted on the habitat potential for this identified priority species. A summary of flora species of conservation concern is presented in **Table 3-1** and in **Appendix E**.

Vegetation within the study area consists of four distinct vegetation communities on the property including shrub wetland, meadow, upland disturbed and floodplain (riparian) habitat. A total of 110 plant species were noted within the study area during the field survey of these, 81 (74%) are native and 29 (26%) are species considered by ACCDC to be non-native (exotic) (SE). All species noted during the survey were identified as being common and widespread (S4 to S5) to New Brunswick with the exception of two species of conservation concern: Hop Sedge (*Carex lupulina*) and Northern Meadow Rue (*Thalictrum confine*)which are both listed

regionally as S3 (uncommon) by the ACCDC. Both species were identified outside of the proposed development boundaries (**Figure 3-3**). The Hop Sedge was observed within the meadow/graminoid wetland to the east of the proposed development and the Meadow Rue located along the Saint John River shoreline southwest of the proposed development. Neither of these species are listed under COSEWIC, SARA or the NBSARA.

Ditch Stonecrop (*Penthorum sedoides*) was not identified within the study area during the field survey.

Refer to Appendix ED for the complete list of all plant species within the study area.

Common Name	Scientific Name	ACCDC Status	COSEWIC/ SARA Status	NBSARA Status	SITE LOCATION	TYPICAL HABITAT ¹
Ditch Stonecrop	Penthorum sedoides	\$3	N/A	N/A	Noted by the ACCDC 350 m east of the proposed project (within the provincially significant wetland)	Aquatic - (Fresh water); found on muddy or gravelly shores
Northern Meadow Rue	Thalictrum confine	\$3	N/A	N/A	Noted during field investigations along the Saint John River Shoreline, outside the southern property boundary	Found along calcareous shores and in alluvial meadows
Hop Sedge	Carex lupulina	S3	N/A	N/A	Noted during field investigations along outside the eastern property boundary	Forest – Swampy woods (Red and Silver Maple)

TABLE 3-1: SUMMARY OF FLORA SPECIES OF CONSERVATION CONCERN

Habitat information obtained from the NBDNR flora Vascular Plant Distribution list (2002) and Flora of New Brunswick (Hinds, 2000)

3.2.6 Wildlife (Fauna) and Wildlife Habitat

The subject area provides habitat that appears to be suitable for small mammals, including muskrat (*Ondatra zibethicus*), red fox (*Vulpes vulpes*), skunk (*Mephitis mephitis*), and raccoon (*Procyon lotor*) as well as other smaller mammals such as meadow voles (*Microtus pennsylvanicus*), American mink (*Neovison vison*), squirrels (*Sciurus vulgaris*) and chipmunk (*Tamias striatus*). The habitat in this area may also provide occasional foraging for other larger species such as white tailed deer (*Odocoileus virginianus*) and coyote (*Canis latrans*). There were no unique or special wildlife (excluding birds) habitat areas identified in the existing data or wildlife species of conservation concern identified as potentially occurring within the study area.

ENVIRONMENTAL IMPACT ASSESSMENT River Mist Estates 336 Rte 105, Maugerville, NB EIA Registration No. 4561-3-14-21

Figure 3-3. Project Environmental Constraints

62	PROPOSED DEVELOPMENT AREA
	PROPERTY BOUNDARIES
	PROPOSED HOUSING DEVELOPMENT
	PROPOSED WASTEWATER TREATMENT SYSTEM
	EXISTING INFRASTRUCTURE
	SAINT JOHN RIVER
	PROVINCIALLY SIGNIFICANT WETLAND (PSW)
	UNMAPPED WETLAND
	CLEARED DURING 2012 SITE ACTIVITIES
\$	WELL
•	SPECIES OF CONSERVATION CONCERN
	ACCESS ROAD

*Note: The proposed project area is located within the Lower Jemseg Important Bird Area (IBA)

0 5 10 20 30 40 50 Meters

MAP CREDITS: GEONB, SNB MAP CREATED BY: RMD MAP CHECKED BY: KDB MAP PROJECTION: NAD 1983 UTM Zone 19N

1:1,500

PROJECT: 152555 STATUS: DRAFT DATE: 2/15/2016

During the field survey evidence of white tailed deer and red fox were observed (scat and tracks) within the study area. No other wildlife was observed. Given the limited availability of forest habitat and the level of development in the area there is limited potential for diverse wildlife habitat.

3.2.7 Birds and Bird Habitat

There are approximately 450 species of native birds which may nest and/or migrate through Canada, the majority of which are protected under the *Migratory Birds Convention Act*, 1994. Regulations associated with the *Migratory Birds Convention* Act state that "no person shall disturb, destroy, or take or have in their possession a migratory bird (alive or dead), or its nest or eggs, except under authority of a permit".

3.2.7.1 Background Data Review

Important Bird Areas (IBA)

As outlined in **Section 3.2.4**, the proposed project area is located within the Lower Saint John River Sheffield/Jemseg) IBA (NB010). There are approximately 250 migratory bird species known to migrate, roost, breed and/or nest in this IBA year round including waterfowl, shorebirds, upland birds, passerine, woodpeckers, raptors and owls.

Maritime Breeding Bird Atlas

The Maritime Breeding Bird Atlas (MBBA) database provides information on the presence of breeding bird species counts conducted between 2006-2010. During this period, a total of 99 species of birds were identified within their study area (which encompasses the proposed project location). Of these species, 31 were confirmed as breeding (including one species of conservation concern: Bald Eagle, Endangered under the NBSARA), two were probable breeders, and 45 were possible breeders.

Atlantic Canada Conservation Data Center (ACCDC)

The ACCDC database indicates that there are no bird species records of conservation concern within 500 m of the proposed project.

3.2.7.2 Breeding Bird Surveys

As previously noted, much of the original bird habitat (mature trees) had been disturbed beforehand through historical farming activities and initial earthworks completed in the proposed project area.

During the bird survey, a total of 20 different bird species were noted of the 51 individual birds observed. The most common species observed was the Mallard (11 individuals) and American Crow (9 individuals) as well as Song Sparrow (4 individuals), American Goldfinch (4 individuals), Double Crested Cormorant (3 individuals), and Black-capped Chickadee (3 individuals). These

species are considered to be common and widespread within New Brunswick. Most of the species were observed or heard along the eastern edge of the proposed project area as well as along the Saint John River. Very few birds were observed to be using the proposed project area. Refer to **Appendix D** for the complete bird report. It should be noted that a Bald Eagle was observed flying over (foraging) the study area.

During the assessments, there were no nests or other birds of prey noted within the study area and potentially sensitive or critical habitat was not identified. Other habitat along the Saint John River floodplain would provide more attractive nesting areas for migratory birds. However, gravel areas on site may attract potential ground nesting birds such as Killdeer and Common Nighthawk. Killdeer are identified by the ACCDC as S3B (Uncommon) and the Common Nighthawk is listed as Threatened under Schedule 1 of SARA and on the NBSARA.

Based on the available habitat in the area it is not expected that large numbers of migratory birds would use the study area for nesting habitat. As identified on Environment Canada's "nesting zone" calendar, the period between and April 1 to August 31 is the timing that has been identified as the most sensitive breeding/nesting periods in wetland, open and forest habitats for migratory birds in this region (Region C3).

3.3 Aquatic Environment

3.3.1 Wetlands

According to the GeoNB wetland mapping database and field studies conducted in 2015, there are no regulated wetlands or provincially significant wetlands (PSW) within the study area. A PSW has been identified approximately 55 m east of the proposed project area (**Figure 3-2**).

Although regulated wetlands were not identified within the property boundaries, two unmapped wetlands (WL1 and WL2) were identified as illustrated on **Figure 3-2**. These wetlands are not regulated under the New Brunswick *Clean Water Act*.

3.3.1.1 Wetland Delineation and Characterization

The wetlands were delineated using standard wetland delineation and functional assessment protocols based on Environment Canada's Wetland Ecological Functions Assessment: An Overview of Approaches (2008), then mapped using GPS points. The two wetlands identified were observed to be bisected by the existing access road. Refer to **Figure 3-2**.

High moisture levels in both of the identified wetlands have been promoted by topography and restricted drainage. These wetlands are in varying stages of succession and show evidence of in-filling originating from historical highway and access road construction and residential development on adjacent properties.

The wetland habitat located along the eastern side of the proposed development (WL1) is classified as a mixture of a shrub wetland and meadow with areas of saturation (0-5 cm) and hydrophytic vegetation indicative of wetland habitat. Dominant vegetation communities in this wetland consist of speckled alder and regenerating red maple, balsam fir, and gray birch along with a variety of common herbaceous vegetation such as ferns, raspberry, weeds, grasses and sedges. Refer to **Appendix E** for the complete plant list. There were no identified inlets or outlets of the wetland.

The wetland habitat located along the western side of the access road (WL2) is characterized as a meadow wetland, with observed areas of open standing water ranging from 0-20 cm in depth as well as saturated soils. The vegetation observed was dominated by hydrophytic grasses, rushes, weeds and sedge as well as some small patches of cattails and speckled alder. Similar to WL1, there were no identified inlets or outlets of the wetland and it was apparent that the wetland.

3.3.1.2 Wetland Functional Assessments

The functional value and importance of a wetland to the surrounding environment is evaluated by the following factors:

- Vegetative abundance, health and diversity (including rare species identified in the EIA documents and invasive species);
- Hydrological conditions (groundwater/surface water/water quality);
- Wildlife and fish habitat sustainability;
- Spring/snowmelt and storage attenuation;
- Adjacent impacting land use and anthropogenic activities; and,
- Scenic value (aesthetics), recreation, education and scientific purpose.

The study area has been extensively altered by past agricultural, highway and residential development activities, and therefore, the function of both unmapped wetlands has decreased. **Table 3-2** provides a summary of the functional assessment for both wetlands.

TABLE 3-2: SUMMARY OF WETLAND FUNCTION

		Connected to other Watercourse or Wetland	Functional Assessment Summary							
Wetland ID	Wetland Type		Vegetative Abundance and Health	Base Stream Flow Maintenance (Hydrology)	Water Quality Protection	Groundwater	Spring/Snowmelt Storage Attenuation	Habitat for Wildlife	Species at Risk or of Conservation Concern	Anthropogenic Influences
WL1	SW/ MW	WL2/ PSW	L	L	n/a	L	Μ	L	n/a	н
WL2	MW	WL1/PSW	L	L	n/a	L	М	L	n/a	н

SW=Shrub Wetland, MW=Meadow Wetland, PSW=Provincially Significant Wetland n/a= not applicable, L=Low, M=Moderate, H=High

Vegetation diversity is ranked "Low" within both WL1 and WL2 as the vegetation communities observed had been previously disturbed from farming activities and demonstrated varying degrees of succession. The vegetative species identified were common and no observations of unique or sensitive species of concern were noted.

Hydrology (i.e., base stream flow maintenance, water quality protection, groundwater and spring/snowmelt storage attenuation) within the wetlands in the area would be geomorphically classified as depressional. The hydrology has likely been altered due to past development in the area and as a result has been ranked "Low - Moderate". Hydrology indicators in the area consisted primarily of saturated soils and drainage patterns. These wetlands would be hydrologically connected through minor groundwater influences to the Saint John River and the Provincially Significant Wetland located 55 m east of the proposed development area. The unmapped wetlands also provide stormwater/snowmelt attenuation which provides some minor protection from stormwater runoff and flooding to the surrounding area.

Wildlife habitat within these wetlands is "Low" as these wetland areas are not large enough to support any sizeable wildlife communities. Given the size of these wetlands and the absence of a forest cover (i.e. mature trees); these wetlands would serve as small "stopover" feeding/drinking area for larger wildlife and serve as better habitat for smaller mammals, amphibians/reptiles and/or invertebrates. There were no identified species of conservation concern during the field assessments or through the ACCDC.

Based on the assessment of these wetlands, it has been likely that they do not perform any major functions within the watershed (i.e., Saint John River floodplain) nor to the adjacent PSW. Overall, WL1 and WL2 have been generally ranked as "Low to Moderate" functioning with high anthropogenic (man-made) influences indicating that these wetlands provide minimal functional value to the surrounding environment.

3.3.2 Watercourses

Provincial mapping and field studies conducted in August 2015 did not identify watercourses within the proposed project area. The Saint John River is located immediately south of the development properties, however, it is located 150 m from the proposed project construction area; refer to **Figure 2-2**.

3.4 Atmospheric Environment

For the purpose of this EIA, the atmospheric environment is confined to within 5km of the proposed project location, and is characterized by the following:

- Air quality the chemical and physical properties of the air in the atmosphere that includes particulate contaminates;
- Climate the composite or prevailing weather conditions in an area averaged over several years which generally includes the temperature, precipitation, winds and air pressure; and,
- Sound levels (noise quality) any pressure variation (in air, water or other medium) that can be detected by the human ear. Noise is characterized as any unwanted sound.

The New Brunswick Department of Environment and Local Government (NBDELG) and industry maintain and operate a number of ambient air monitoring stations within the province to measure ground-level concentrations of a variety of air contaminants. The closest monitoring station in relation to the proposed project is located at the Fredericton Airport, approximately 5 km southeast of the project. An ozone monitoring station is located in Fredericton, approximately 10 km west of the project. As these monitoring stations are located in primarily commercial/ industrial areas the data from these locations is not considered to be representative of the proposed project area.

3.4.1 Climate

Canadian Climate Normals recorded from the Fredericton Airport climate station (Environment Canada, 2015) indicate an annual daily mean temperature of 5.6°C, with extremes ranging from -37.2°C to 37.2°C for the study area. Precipitation data from the Fredericton Airport climate station recorded a historical average of approximately 1100 mm of precipitation per year with approximately 850 mm falling as rain and 250 cm as snowfall. The extreme daily rainfall occurred on August 5, 1989 when approximately 150 mm of rain fell. The extreme daily snowfall occurred on December 4, 1967 when approximately 80 cm of snow fell.

According to the Climate Normals, the average annual wind speed at the Fredericton Airport is 12.0 km/h from the west with a maximum observed hourly wind speed of 80 km/h (February 3, 1970) and maximum gust speed of 132 km/h (June 30, 1971). The average monthly wind speeds tend to be highest between March and May and lowest between July and September. The prevailing winds are generally from the south in the summer and the west in the winter.

3.4.2 Ambient Sound Quality

The proposed project is located within a rural area of Maugerville, however small commercial businesses are located within 2.5km of the proposed project location along Highway 105. Given the setting, existing sound pressure levels in vicinity of the project are expected to be typical of sound pressure levels in a suburban mixed development area near at city outskirts. Based on data collected by the US EPA (1971) of typical background community noise, existing sound pressure levels in the (L_{10} to L_{90}) range of 39 to 52 dBa(A) as a 24-hour arithmetic average. Existing sound quality conditions in study area were not measured for this assessment.

3.5 Cultural Heritage Resources

There were no federal or provincial heritage resources identified within the proposed project footprint, or within 1 km of the proposed project area. However, the proposed project area is located within the Traditional Lands of the Maliseet Nation and it is assumed that hunting and gathering would have historically, and may still, occur in the area.

The Saint John River, located immediately adjacent to the proposed project area, supports a dynamic fishing and boating community during the spring, summer and fall months. No public docks or landing areas have been identified within 1 km of the proposed project location.

3.6 Archaeological and Cultural Features

Through a request to Archaeological Services, Heritage Branch within the New Brunswick Department of Tourism, Heritage and Culture, a copy of the archaeological and cultural resources GIS model was obtained and is provided in **Appendix F**. Based on the model information, there are no known registered archaeological sites within 1 km of the proposed project area.

When the modeling was applied to the proposed project location a band, totaling 80 m in width, extending perpendicular from the bank of the Saint John River was identified as having elevated potential for archaeological significance based on the "Guidelines and Procedures for Conducting Professional Archaeological Assessments in New Brunswick" (2012). The 50 m nearest to the Saint John River are described as having high potential, while the following 30 m are described as having moderate potential. Construction and operation activities for the

proposed project are not expected to occur within the area of elevated potential for archaeological significance.

3.7 Socio-Economic Environment

The Maugerville area was first developed as a farming community in the late 1700's by Loyalists who had immigrated from the northern United States. Since that time the area has largely been used for agricultural purposes. In the late 20th century land development slowly changed to smaller residential properties, with agricultural properties being abandoned.

3.7.1 Population and Labour Force

The Maugerville Parrish is approximately 925km² in size and is centrally located between Fredericton, the provincial capital, and the Town of Oromocto.

The Parrish's population has remained relatively steady at approximately 1750 people since the early 2000's based on the 2001, 2006 and 2011 census' conducted by Statistics Canada. The average household size in the community is approximately 2.3 people with the mean age of the population being 45. Over half of the households have at least one child under the age of 18 (Statistics Canada, 2011).

In general, the labour force residing in the Maugerville community travels to the local communities of Fredericton or Oromocto for employment. Educational facilities are supplied by the City of Fredericton and school aged students are transported by a public bus system.

The community's population achieved higher educational attainment compared to the province as a whole. In 2011, approximately 75% of the population 15 years and over had certificates, diplomas or degrees, compared to 70.6% for New Brunswick (Statistics Canada, 2007).

In 2011, the median household income was slightly over \$75 000, which is higher than the provincial average of approximately \$50 000 (Statistics Canada, 2011). The majority of the population was employed in the business/finance or social science/educational disciplines.

3.7.2 Existing and Historic Land Use

The proposed project location is within a rural area of Maugerville, NB, however small commercial businesses have been identified within 2.5km of the proposed project location. The three land parcels included in the proposed project area are classified as having residential land use. Photographs of the proposed project area are presented in **Appendix G**.

The proposed project is bordered to the north by residential properties (PID Nos. 60093002, 60126091, 60071602) and the New Brunswick Department of Transportation right-of-way for

Highway 105. Beyond Highway 105 are additional residential properties and a vacant commercial property (PID No. 60149580) that formerly operated as a vehicle repair facility. There is a NBDELG remediation file associated with the commercial property; however, additional details were not available. Residential properties are located to the east (PID No. 60151628) and west (PID No. 60153491) of the proposed project. The Saint John River is located immediately south of the proposed project location.

3.7.3 Aboriginal Communities

The proposed project area is located within the Traditional Lands of the Maliseet Nation. Two First Nations communities, St Mary's First Nation and Oromocto First Nation are located within 10km of the proposed project area.

St Mary's First Nation is a Maliseet community with approximately 1850 members, half of which reside on the community land. The community is located on the north side of the Saint John River in Fredericton, N.B.

The Oromocto First Nation is a Maliseet community of 654 persons (304 on-reserve) (AANDC, 2014) located within Oromocto town limits. The First Nation provides 95 dwellings to 95 households, in developments north and south of Waasis Road (AANDC, 2014).

4.0 Assessment of Potential Environmental Impacts

An assessment of potential impacts has been undertaken in consideration of the proposed project, as well as potential accidental events/malfunctions.

4.1 Valued Components

Each component of the biophysical and socio-economic environment described above was assessed based on their intrinsic value to the ecosystem, heritage and culture, protection afforded by legislation, and professional judgment. Components deemed to have specific value to the ecosystem are identified as Valued Ecosystem Components (VEC) and Valued Socio-Economic Components (VSC's). In relation to the proposed project, the following have been identified as VECs/VSCs:

- Terrestrial Environment (flora, wildlife/wildlife habitat, birds/bird habitat and protected areas);
- Aquatic Environment (groundwater and wetlands);
- Atmospheric Environment (air quality, and sound quality);
- Archaeological and Cultural Resources; and,
- Socio-Economic Environment (First Nations/aboriginal interests and labour/economy).

4.2 **Project Activities**

As presented in Section 2, this EIA recognizes four distinct phases of the proposed project;

- Site Preparation and Civil Works includes clearing/grubbing for the final phase of the proposed development, pre-loading and site grading, upgrading of the access road (if necessary) and paving;
- Facilities Construction includes construction activities for the four rows of six unit attached townhouses and four rows of five unit attached townhouses, potable water system setup and connections, and wastewater treatment system installation;
- Operations and Maintenance includes activities involved in the operation and maintenance of the development for the lifetime of the project; and
- Accidents and Malfunctions includes any accidents, spills, leaks or other unplanned events that could potentially occur during the project components.

The site preparation and civil works and facilities construction phases have been grouped together under the *Construction Phase* of the project as they are expected to be occurring simultaneously. As the development is expected to operate for the foreseeable future, the decommissioning of the development was not considered in this EIA. Decommissioning of the

project would be subject to and assessed pursuant to the applicable regulatory environment of the day.

4.3 **Project Interaction Matrix**

Each project activity involved in the construction and operation of the proposed project was evaluated to identify potential for interactions with the identified VECs and VSCs. This step is shown in a simple matrix format (see **Table 4-1** in **Section 4.3**). In instances where an interaction was identified, further analysis was completed and is described in the following sections.

		Project Components			
		Construction Phase		Operations	
Environmental Components		Site Preparation and Civil Works	Facilities Construction	and Maintenance	Accidents and Malfunctions
	Environmentally Significant Area - Sheffield/Jemseg) IBA	~			~
Terrestrial	Vegetation (Flora)	×			V
	Wildlife (Fauna)	×	V		v
	Migratory Birds	v			v -
	Groundwater			×	v
Aquatic	Wetlands	×			v -
	Watercourses				
	Ambient Air Quality	×		-	
Atmospheric	Ambient Sound Quality	v	×		
Archaeological and Cultural	Archaeological / Cultural Heritage Resources				~
Socio-Economic	First Nations / Aboriginal Interests	v		v	~
	Labour and Economy	~	×	v	

TABLE 4-1: PROJECT INTERACTION WITH ENVIRONMENTAL COMPONENTS

5.0 Environmental Effects Assessment and Mitigation

5.1 Methodology

5.1.1 Potential Impact from Interaction

Each action completed during each project phase (for example, digging a trench for the installation of the wastewater treatment system during the Construction Phase) was recognized and potential interactions with the VECs and VSCs were considered. If the interaction was expected to result in a net negative impact to the VEC it was included in the potential impact section and carried forward for mitigation and a residual effect was predicted.

Impacts that were not expected to pose a net change to the VECs and VSCs for the proposed project were not considered under the potential impact section.

5.1.2 Impact Effects Boundaries

5.1.2.1 Spatial Boundaries

The spatial boundaries for the environmental effects assessment (EEA) encompasses the physical or geographical limit for which impacts related to the proposed project will be considered and assessed. For the purpose of this assessment the spatial boundary for the EEA generally encompasses a 200 m area surrounding the proposed project. This area encompasses the Saint John River and a number of the residential/commercial properties within the community of Maugerville. Spatial boundaries were restricted or extended for certain VECs as indicated below;

- Terrestrial Environment encompasses the terrestrial environment within the proposed project footprint.
- The spatial boundaries for the atmospheric environment were selected by professional judgment and scientific literature review and were extended to approximately 500m from the proposed project area.
- Socio-Economic boundaries encompass a 1 km radius around the proposed project footprint within the community of Maugerville.

5.1.2.2 Temporal Boundaries

The temporal boundaries for the EIA define the time periods for which environmental effects are anticipated to occur, such as the duration of the construction phase of the proposed project or lifetime of the development. Temporal boundaries vary according to project phase. In the construction phase the temporal boundary has been set to the duration of construction

activities (five years). Effects associated with the operational of the development are anticipated to be long term.

Accidents and malfunctions could occur during either phase of the project lifecycle, and as their nature is unknown, the temporal boundary varies. However, most of these events are relatively short in duration and as such the effects are considered to be short-term unless otherwise stated.

5.1.3 Effect Prior to Mitigation

Following the identification of an interaction between the site activity and a VEC or VSC, the expected duration and potential effect is predicted using professional judgment. This predicted effect assumes no mitigation has been completed.

The predicted significance of the interaction is evaluated using the following questions as a guide;

- 1. What is the magnitude of the effect?
- 2. What is the geographic extent of the effect?
- 3. What is the duration (short or long term) and frequency of the effect?
- 4. How does the net effect compare to the existing environment? Does it represent a substantive or order of magnitude negative change in baseline conditions?
- 5. Is there a substantive public, government or agency concern?
- 6. What is the ecological and/or social context for the effect?
- 7. Is the effect reversible?

The predicted effect is then classified on the following scale;

- <u>Negligible</u> the magnitude of the effect is relatively small spatially or temporally, the
 effect will not irreparably impact the surrounding environment, and there are no
 substantive public or ecological concerns;
- <u>Limited</u> the magnitude or frequency of the effect is measurable either spatially or temporally, however effect will not irreparably impact the surrounding environment or an alternate environment is available, and there may be some public or ecological concerns. Species of conservation concern are not expected to be impacted;
- <u>Moderate</u> the magnitude or frequency of the effect is relatively significant spatially and/or temporally, and is predicted to impact the surrounding environment, however similar habitat is available adjacent to the proposed project area. Species of conservation concern may be impacted. There may be substantive public or ecological concerns; and,

 <u>Significant</u> – the magnitude of the effect is significant spatially or temporally, the effect will irreparably impact the surrounding environment, and there are substantive public or ecological concerns.

5.1.4 Mitigation

Mitigation is identified for each negative and potential effect in an attempt to reduce the severity, magnitude or duration of the impact. In addition, several acts, codes, regulations and guidelines may require appropriate actions be conducted as mitigative measures prior to or during the interaction. **Appendix B** provides a summary of acts, codes, regulations and guidelines that have been reviewed in the development of the mitigative measures. To minimize impacts to the environment, an environmental management plan (EMP) consisting of environmental protection and mitigation measures, waste management planning and emergency response and contingency planning will be developed and implemented prior to construction.

5.1.5 Significance of Residual Effect

The significance of the residual effect of the interaction will be predicted and classified on the same scale as the effect prior to mitigation, see **Section 5.1.3**.

5.2 Terrestrial Environment

5.2.1 Construction Phase

5.2.1.1 **Potential Effects**

Vegetation within the proposed footprint of the project is expected to be disturbed through additional clearing/grubbing and backfilling of a portion of the low functioning meadow wetlands located north of the proposed townhouses (WL1 and WL2 on **Figure 3-2**). Local wildlife (including birds) within the study area have the potential to be temporarily or permanently affected by the site preparation activities. The construction has the potential to affect the following:

- Construction noise may lead to the temporary disturbance of terrestrial animals;
- Visual impacts from the presence of humans in the area, as well as vehicles and construction equipment, may cause disruption of wildlife activity such as breeding and/or feeding;
- Clearing and grubbing activities may remove or reduce the quantity and quality of habitat within, and in proximity to, the proposed project area and may result in the permanent displacement of wildlife and destruction of vegetation;
- Attraction of nuisance wildlife through unsuitable waste management;
- Heavy equipment use during the construction activities may cause direct injury or death of wildlife through collisions or destruction of dens and food sources; and,

 The construction of the project may interact or cause a temporary disruption in wildlife migration patterns such as amphibians, reptiles, small and/or large mammals during sensitive periods in particular feeding and breeding requirements.

5.2.1.2 Effect Prior to Mitigation

The effect of the potential impacts during construction prior to mitigation on the terrestrial environment is predicted to be limited. The construction has been planned in an already disturbed area and is expected to occur over a relatively short time period. It is not expected to result in lasting or irreparable damage to the terrestrial environment or significantly impact a wildlife (including bird) population.

5.2.1.3 Mitigation

The following mitigative measures will be employed to reduce the impact to the terrestrial environment during the construction phase of the project;

- Construction crews and machinery are to use the designated roadways and accesspoints to limit disturbance off the project footprint and minimize the interactions with wildlife and wildlife habitat;
- To minimize wildlife encounters site, working areas shall be kept clean of food scraps and garbage and will be removed from the site daily;
- In the case of wildlife encounters the following shall be implemented:
 - No attempt will be made by any worker at the project site to chase, catch, divert, follow or otherwise harass wildlife by vehicle or on foot;
 - Equipment and vehicles will yield the right-of-way to wildlife; and,
 - Any wildlife sightings or encounters shall be reported to the site supervisor as soon as possible.
- Workers will adhere to the Environment Canada's *Migratory Birds Convention Act*,1994 (MBCA) and the Migratory Birds Regulations (MBR);
- Grubbing will be initiated as early as possible in the calendar year, and must be completed in 30 days;
- No one shall disturb, move or destroy migratory bird nests. If a nest or young birds are
 encountered, the contractor shall cease work in the immediate area of the nest and
 contact a bird specialist or Environment Canada for further mitigation. A 20 m buffer
 zone will be flagged around identified active nests and work in the area may be
 delayed until after the birds have fledged; and,
- To minimize disruptions with bird activity at night, the project construction activities will be limited to daylight hours.

5.2.1.4 Significance of Residual Effects

With these mitigation measures in place, the potential environmental residual effects of construction activities during the project are reduced from limited (pre-mitigation) to negligible.

5.2.2 Operational Phase

5.2.2.1 Potential Effects

It is not anticipated that operation and maintenance of the development will result in a net increase in terrestrial environment interactions. It is expected that potential interactions would be comparable to current conditions at the proposed project location.

5.2.3 Accidents and Malfunctions

5.2.3.1 Potential Effects

During all phases of the project there is a potential for accidents to occur, and some have the potential to impact the local terrestrial environment. The following accidents and unplanned events are more likely to impact terrestrial environment and have been considered:

- Chemical and fuel spills petroleum hydrocarbons and some chemicals have the potential to kill vegetation, resulting in a loss of habitat or food sources.
- Fires Fire may result in a loss of vegetation which has the potential to impact riparian areas, food sources and nesting habitats.

5.2.3.2 Effect Prior to Mitigation

The effect of the potential impacts of accidents and other unplanned events prior to mitigation on the terrestrial environment is predicted to be moderate. Because the nature and outcome of unplanned events is difficult to predict the moderate effect was selected based on a worst case scenario in which a chemical spill could significantly damage the terrestrial environment (vegetation and habitat) for a significant period of time.

5.2.3.3 Mitigation

The following mitigative measures will be employed prior to, or during, construction to reduce the potential for the local terrestrial environment to be impacted by a chemical spill or fire;

- A spill response plan will be completed and detailed in the project EMP and the contractor will be required to provide spill response training to construction personnel;
- Prior to commencing construction, the contractor will be required to ensure that spill response equipment is readily available onsite and each piece of machinery is equipped with a spill response kit;
- Any spills or leaks that occur will be reported to the appropriate regulatory authorities, if applicable, as soon as possible;

	 Remedial action, or engineered controls, for any spills or leaks that occur will be completed; Refueling, oiling, and maintenance of equipment will be completed in specifically designated to minimize the potential for terrestrial impacts; Servicing of equipment will be completed off-site by a licensed mechanic; however, if required to be completed onsite the work will be completed over an impervious surface or trap; Any chemicals stored on site will be kept in appropriate containers; Rubbish and waste materials will be kept at minimum quantities and burning of this material will be prohibited; and, Oily rags will be stored in approved receptacles and disposed of at approved waste facilities.
	 The following mitigative measures will be employed during the operational phase of the project; Rubbish and waste materials will be kept in a predetermined locations and will be managed on a regular basis; Any spills or leaks that occur will be reported to the appropriate regulatory authorities, if applicable, as soon as possible; Remedial action, or engineered controls, for any spills or leaks that occur will be completed; and Work entailing use of toxic or hazardous materials and/or chemicals, or otherwise creating hazard to life or health, will be conducted in accordance with National Fire Code of Canada to minimize the potential for spills or fires.
5.2.3.4	Significance of Residual Effects
	With these mitigation measures in place, the potential environmental residual effects of chemical spills and/or fire incidents during all phases of the project are reduced from moderate (pre-mitigation) to negligible.
5.1	Aquatic Environment

5.1.1 Construction Phase

5.1.1.1 Potential Effects

Aquatic habitat (two unmapped wetlands, **Figure 3-2**) has been identified within the proposed project area. The planned repurposing of the unmapped wetlands has the potential to affect the local aquatic environment.

Construction activities have the potential to affect the following:

- Increased sediment loading in the adjacent wetlands resulting from construction and ground breaking activities due to improper stormwater management of the subject site during construction; and,
- The stormwater retention capacity in the remaining wetlands as a result of the repurposing of the unmapped wetlands identified in the proposed project area.

5.1.1.2 Effect Prior to Mitigation

The effect of the potential impacts during construction to the aquatic environment (unmapped wetlands) is predicted to be limited. The construction phase is expected to occur over a relatively short time period and is not expected to result in lasting or irreparable damage to the aquatic environment at the proposed project area.

Based on the functional assessment in **Section 3.3.1.2**, WL1 and WL2 have been ranked as a "Low to Moderate" functioning wetlands with high anthropogenic influences indicating that they provide minimal functional value to the environment with the exception of their capacity for stormwater retention. The repurposing of the wetlands is not expected to irreparably impact the surrounding environment as engineered controls (drainage ditch, surface topography and pond) have been included in the design to handle the additional stormwater. Therefore the potential impacts during construction to the aquatic environment are predicted to be limited.

5.1.1.3 Mitigation

The following mitigative measures will be employed prior to, or during, construction to reduce the potential for impact to the aquatic environment;

- A sediment erosion control plan will be developed and implemented prior to commencing construction activities and will include:
 - Appropriate erosion and sediment control measures designed and implemented to manage surface water drainage (i.e., check dams, off take ditches, ditching).
 - A drainage ditch will be constructed along the west side of the development to facilitate and direct surface runoff to the pond.
- Topography of the subject site will be sloped to increase drainage to the pond located south of the proposed development.
- Ground disturbance shall be minimized to reduce the potential for erosion and sedimentation to the aquatic environment.
- Natural vegetation (especially adjacent to the wetland) will be preserved as much as possible.
- Construction activities will not be completed outside of the proposed project area, i.e. within 80m of the Saint John River or 30m of the provincially significant wetland.

Equipment will not be permitted to enter a wetland with the exception of repurposing the unmapped wetlands identified in the proposed project area.

- Stock piled materials will be kept at a minimum of 80m away from the Saint John River.
- If practical, work will be scheduled so as to avoid outdoor work during periods of significant precipitation, defined as rainfall in excess of 25 mm in 12 hours, or an intensity of greater than 5 mm/hour for 2 or more hours. This shall be considered a minimum; conditions may require more stringent criteria to adequately control erosion and sedimentation.
- Prior to heavy rainfall events sediment control measures will be checked to ensure they are continuing to operate properly.

5.1.1.4 Significance of Residual Effects

With these mitigation measures in place the potential environmental residual effects on the aquatic environment at the proposed project area are reduced from moderate (pre-mitigation) to negligible.

5.1.2 Operational Phase

5.1.2.1 Potential Effects

Potential interactions between the aquatic environment (groundwater and surface water) and the proposed project during the operational and maintenance phase are expected. Drawdown of the groundwater table associated with use of the new potable well in the area is possible. Based on the results of the pumping test completed as part of the WSSA (**Appendix A**), a maximum pumping rate of 40 m³/day (anticipated to exceed the daily use requirements of the development) would result in a minimal drawdown of the local groundwater table (<2m).

An assessment of the groundwater quality as part of the WSSA indicated that concentrations of iron and manganese exceeded applicable Canadian Drinking Water Quality guidelines. These concentrations are attributed to the bedrock unit, not to proposed development activities, in which the aquifer is present.

5.1.2.2 Effect Prior to Mitigation

The effects of the potential impacts during the operation and maintenance phase prior to mitigation on the aquatic environment are predicted to be negligible.

5.1.2.3 Mitigation

The following mitigative measures will be employed prior to, or during, the operation and maintenance phase to reduce the potential for impact to the aquatic environment;

- Following the completion of Phase II of the development a water storage tank (volume yet to be determined) will be connected to the water system to meet instantaneous demand and reduce the stress on the aquifer; and,
- Treatment of the potable water, likely by water softener, prior to consumption will be completed.

5.1.2.4 Significance of Residual Effects

With these mitigation measures in place the potential environmental residual effects on the aquatic environment at the proposed project area continue to be negligible.

5.1.3 Accidents and Malfunctions

5.1.3.1 Potential Effects

During all phases of the project there is a potential for accidents to occur, and some have the potential to impact the local aquatic environment. The following accidents and malfunctions are more likely to impact the aquatic receptors and have been considered:

 Hazardous material spill – hazardous spills have the potential to impact groundwater as well as potential migration to the drainage channel and potentially the Saint John River.

5.1.3.2 Effect Prior to Mitigation

The effect of the potential impacts of accidents and malfunctions prior to mitigation on the aquatic environment is predicted to be moderate. Because the nature and outcome of unplanned events is difficult to predict the moderate effect was selected based on a worst case scenario in which a chemical spill reached the aquifer and/or watercourse. This scenario could significantly impact the potable water supply and surface water quality in the receiving environments.

5.1.3.3 Mitigation

The following mitigative measures will be employed prior to, and during, construction to reduce the potential for impact on the aquatic environment;

- A spill response plan will be completed and detailed in the project EMP and the contractor will be required to provide spill response training to construction personnel;
- Prior to commencing construction the contractor will be required to ensure that spill response equipment is readily available onsite;
- Proper labeling of chemical storage containers will be completed and appropriate MSDS will be stored onsite;
- Any spills or leaks that occur will be reported to the appropriate regulatory authorities, if applicable, as soon as possible;

- Remedial action, or engineered controls, for any spills or leaks that occur will be completed;
- Work entailing use of toxic or hazardous materials, chemicals and/or explosives, or otherwise creating hazard to life, safety of health, will be conducted in accordance with National Fire Code of Canada to minimize the potential for spills or fires;
- Refueling, oiling, and maintenance of equipment will be completed in specifically designated areas at least 100 m from the Saint John River and 30 m from the drainage ditch located to the west of the proposed building footprint;
- Servicing of equipment will be completed offsite by a licensed mechanic; however if required to be completed onsite the work will be completed over an impervious surface or trap;
- The proposed project area will be kept clear of rubbish and construction debris;
- Ground surface coverage will be maintained with vegetation, crushed rock or other impermeable surfaces to reduce sediment erosion at the subject site;
- Sediment control measures will be installed along the drainage ditch; and,
- Prior to heavy rainfall events sediment control measures will be checked to ensure they are continuing to operate properly.

5.1.3.4 Significance of Residual Effects

With these mitigation measures in place the potential environmental residual effects on the aquatic environment are reduced from moderate (pre-mitigation) to negligible.

5.2 Atmospheric Environment Results

5.2.1 Construction Phase

5.2.1.1 Potential Effects

During the construction phase, the potential for adverse environmental effects to the atmospheric environment exists due to the release of combustion gases from vehicles and heavy equipment (including earth movers, excavation equipment and grading equipment), wind raised dust (particulate matter) from material handling or stockpiled soil, and noise from construction equipment and activities.

5.2.1.2 Effect Prior to Mitigation

The effect of the potential impacts identified above on the atmospheric environment (including air quality and noise) prior to mitigation is predicted to be limited. The construction phase is expected to occur over a relatively short time period and is not expected to result in lasting or irreparable damage to the atmospheric environment.

5.2.1.3	Mitigation
	 The following mitigative measures will be employed to reduce the impact to air quality and noise quality in the proposed project area prior to, or during, the construction phase of the project; As part of the EMP, a noise reduction plan will be established and communicated to the contractors prior to construction; Vehicles and equipment will be properly muffled and maintained according to emission and noise suppression standards; The estimated hours of construction will be 7am to 7pm. Longer hours may be required to meet the project schedule but will not go beyond the hours of 6am to 9pm (Monday to Saturday); All construction equipment will be turned off when not in active use to minimize emissions of NOX, CO, VOCs and SO₂ and noise levels near the proposed project area;
	 Monitoring of weather (wind conditions) and stabilization of stockpiles and bare slopes will be conducted on an as needed basis. In windy conditions, stabilization or covering of stockpiles and bare slopes will be completed to reduce fine particulate matter uplift; Water will be used on gravel/dirt road and parking areas to reduce fugitive dust, when necessary; Exposed soils will be stabilized as soon as practical; Proper labeling of chemical storage containers will be completed and appropriate MSDS will be stored onsite;
	 Burning of rubbish and waste within the proposed project area will be prohibited; Oily rags will be stored in approved receptacles onsite and disposed of at approved waste facilities; Operation requirements will be completed in accordance with the NBDELG Approval to Operate Certificate; and,
	• Complaints related to noise from the construction will be addressed by the contractor.
5.2.1.4	Significance of Residual Effects
	With these mitigation measures in place the potential atmospheric environmental residual effects during the construction phase of the proposed project are decreased from limited (prior to mitigation) to negligible.
5.2.2	Operational Phase
5.2.2.1	Potential Effects
	It is not anticipated that operations will impact air quality or noise levels in and around the

It is not anticipated that operations will impact air quality or noise levels in and around the proposed project area.

Potential Effects During all phases of the project there is a potential for accidents to occur, and some have the potential to impact the local aquatic environment. The following unplanned events are more likely to impact the atmospheric environment and have been considered:
potential to impact the local aquatic environment. The following unplanned events are more likely to impact the atmospheric environment and have been considered:
 Fires – Fires may result in the release of toxic chemicals or smoke to the atmosphere.
Effect Prior to Mitigation
The effect of an unplanned event prior to mitigation on the atmospheric environment is predicted to be limited. Because the nature and outcome of unplanned events is difficult to predict the limited effect was selected based on a worst case scenario in which a significant fire occurs.
Mitigation
 The following mitigative measures will be employed prior to, or during, construction to reduce the potential for the atmospheric environment to be impacted by a fire; An emergency response plan will be completed and the contractor will ensure that employees are aware of appropriate actions; Rubbish and waste materials will be kept at minimum quantities and burning of this material will be prohibited; and, Oily rags will be stored in approved receptacles and disposed of at approved waste facilities.
The following mitigative measures will be employed during the operational phase of the project;
 Rubbish and waste materials will be kept in a predetermined locations and will be managed on a regular basis; and,
 Work entailing use of toxic or hazardous materials and/or chemicals, or otherwise creating hazard to life or health, will be conducted in accordance with National Fire Code of Canada to minimize the potential for spills or fires.
Significance of Residual Effects
With these mitigation measures in place, the potential environmental residual effects of fires during all phases of the project are reduced from limited (pre-mitigation) to negligible.

5.3	Cultural and Heritage Resources Environment
5.3.1	Construction Phase
5.3.1.1	Potential Effects
	The proposed project area is located within the Traditional Lands of the Maliseet First Nation and the communities may use area for traditional uses (gathering and fishing). Potential exists for First Nations to be impacted by the proposed construction activities.
5.3.1.2	Effect Prior to Mitigation
	 The effect of the potential impacts identified above on the First Nations prior to mitigation is predicted to be negligible because, as described in Section 2, the proposed project area is; located between Highway 105 and the Saint John River; surficial soil and vegetation has been previously disturbed through farming and the 2012 site clearing activities; and, no water courses have been identified on the subject site.
	These site characteristics make areas adjacent to the proposed project area more desirable habitat for hunting and gathering.
5.3.1.3	Mitigation
	 The following mitigative measures will be employed to maintain a negligible impact to the natural environment in the proposed project area prior to, or during, the construction phase of the project; Construction crews and machinery are to use the designated roadways and access-points to limit disturbance off the project footprint; Workers will adhere to the Environment Canada's <i>Migratory Birds Convention Act</i>,1994 (MBCA) and the Migratory Birds Regulations (MBR); A sediment erosion control plan will be developed and implemented prior to commencing construction activities and will include: Appropriate erosion and sediment control measures designed and implemented to manage surface water drainage (i.e., check dams, off take ditches, ditching). A drainage ditch will be constructed along the west side of the development to facilitate and direct surface runoff to the pond. Topography of the subject site will be sloped to increase drainage to the pond located south of the proposed development; Ground disturbance shall be minimized to reduce the potential for erosion and sedimentation to the aquatic environment; Natural vegetation will be preserved as much as possible;
	Kenny's Developments Limited

	 Construction activities will not be completed outside of the proposed project area, i.e. within 80m of the Saint John River or 30m of the provincially significant wetland; Equipment will not be permitted to enter a wetland with the exception of repurposing the unmapped wetlands identified in the proposed project area; Stock piled materials will be kept at a minimum of 80m away from the Saint John River; If practical, work will be scheduled so as to avoid outdoor work during periods of significant precipitation, defined as rainfall in excess of 25 mm in 12 hours, or an intensity of greater than 5 mm/hour for 2 or more hours. This shall be considered a minimum; conditions may require more stringent criteria to adequately control erosion and sedimentation; Prior to heavy rainfall events sediment control measures will be checked to ensure they are continuing to operate properly; As part of the EMP, a noise reduction plan will be established and communicated to the contractors prior to construction; Vehicles and equipment will be properly muffled and maintained according to emission and noise suppression standards; and, Monitoring of weather (wind conditions) and stabilization of stockpiles and bare slopes will be conducted on an as needed basis. In windy conditions, stabilization or covering of stockpiles and bare slopes will be completed to reduce fine particulate matter uplift.
5.3.1.4	Significance of Residual Effects
	With these mitigation measures in place the residual effects during the construction phase of the proposed project will remain negligible.
5.3.2	Operational Phase
5.3.2.1	Potential Effects
	The proposed project area is located within the Traditional Lands of the Maliseet First Nation and communities may use area for traditional uses (gathering and fishing). Potential exists for First Nations to be impacted by the operation of the proposed development.
5.3.2.2	Effect Prior to Mitigation
	The effect of the potential impacts identified above on the First Nations prior to mitigation is predicted to be negligible because areas adjacent to the proposed project area more desirable habitat for hunting and gathering.
5.3.2.3	Mitigation
	The following mitigative measures will be employed to reduce the impact to the natural environment in the proposed project area prior to, or during, the construction phase of the project;
	Kenny's Developments Limited River Mist Estates Development Environmental Impact Assessment Registration (Final)DILLON CONSULTINGEebruary 2016 - 15-2555CONSULTING

February 2016 – 15-2555

	 Topography of the subject site will maintain a slope to increase drainage to the pond located south of the proposed development; Any further ground disturbance for maintenance of the development shall be minimized to reduce the potential for erosion and sedimentation to the aquatic environment; Natural vegetation will be preserved as much as possible; Construction activities will not be completed outside of the proposed project area, i.e. within 80m of the Saint John River or 30m of the provincially significant wetland; and, Vehicles will be properly muffled and maintained according to emission and noise suppression standards.
5.3.2.4	Significance of Residual Effects
	With these mitigation measures in place the residual effects during the operational phase of the proposed project will remain negligible.
5.3.2.5	Potential Effects
	It is not anticipated that construction activities will impact cultural and heritage resources in the proposed project area.
5.3.3	Accidents and Malfunctions
5.3.3.1	Potential Effects
	 During the construction and operational phases of the proposed project, there is a potential for an unplanned discovery of archaeological artifacts and/or human remains. The following accidents and unplanned events have been considered: Potential discovery and destruction or alteration of all or part of an archaeological resource; and, Potential discovery of human remains.
5.3.3.2	Mitigation
	 The following mitigative measures will be employed prior to and during construction activities to reduce the potential for destruction or alteration of an archaeological resource or human remains; Construction crews will be made aware of the potential for archaeological resources within the construction area; The contractor will be educated on the proper mitigative activities if an archaeological resource or human remains is unearthed; Should an archaeological resource be unearthed, work in the area will cease immediately and Archaeological Services New Brunswick (ASNB) will be contacted at (506) 453-3014 for further mitigation. Until a qualified archaeologist arrives at the
	Kenny's Developments Limited River Mist Estates Development Environmental Impact Assessment Registration (Final)

February 2016 – 15-2555

scene, no one shall disturb, move or rebury any uncovered artifact. Construction at the proposed project area will only resume when authorized by ASNB and once mitigative measures have been completed; and,

 Should human remains be unearthed, work in the area will cease and the RCMP will be notified immediately. No one will disturb, move or rebury any uncovered human remains. If it is a suspected First Nations burial site, the St Mary's and Oromocto First Nations will be contacted.

5.3.3.3 Significance of Residual Effects

With these mitigation measures in place, significance of residual to cultural and heritage resources from accidents and malfunctions during the construction and operational phases of the proposed project are rated negligible.

5.4 Socio-Economic Environment

5.4.1 Construction Phase

5.4.1.1 Potential Effects

The socio-economic environment has the potential to be positively affected by the construction related activities for the proposed project as local contractors and trades persons will be hired to complete the various phases of construction.

5.4.1.2 Effect Prior to Mitigation

The potential effects of the construction of the proposed project on the local socio-economic environment are expected to be positive due to job creation, but limited as the jobs created are expected to last for a relatively short period of time.

5.4.2 Operational Phase

5.4.2.1 Potential Effects

The socio-economic environment has the potential to be positively affected by the operational and maintenance activities for the proposed project because local companies will be hired to complete the required work (i.e. lawn care, snow removal, etc.).

5.4.2.2 Effect Prior to Mitigation

The potential effects of the construction of the proposed project on the local socio-economic environment are expected to be positive due to job creation, but limited as the jobs created are expected to be temporary or seasonal.

5.4.3	Accidents and Malfunctions
5.4.3.1	Potential Effects
	It is not anticipated that activities completed during the construction or operational phases will impact the socio-economic resources for the proposed project and surrounding areas.
5.5	Effect of the Environment on the Project
5.5.1	Construction Phase
5.5.1.1	Potential Effects
	 According to the Province's flood mapping information (http://geonb.snb.ca/geonb/), the proposed project location is within the flood zone (1973 and 2008) of the Saint John River (Figure 3-2). Potential exists for the proposed project to be flooded during construction activities which could affect the following: Damage or loss of surficial materials (engineered backfill, vegetation, paved surfaces); Damage to equipment and materials located on the proposed project area; and, Damage or loss of infrastructure (partially or fully completed townhouses, wastewater system, etc.) present at the time of the event.
5.5.1.2	Effect Prior to Mitigation
	The effect of the potential impacts to the proposed project during construction prior to mitigation is predicted to be moderate. The construction is not expected to result in lasting or irreparable damage to proposed project.
5.5.1.3	Mitigation
	 The following mitigative measures will be employed to reduce the impact to the proposed project; When possible, construction activities will be completed outside of the peak discharge periods for the Saint John River; Provincial websites, River Watch, (http://www2.gnb.ca/content/gnb/en/news/public_alerts/river_watch.html) will be monitored during the construction phase; When a flood is predicted, equipment and materials will be removed from the proposed project area where possible.
5.5.1.4	Significance of Residual Effects
	With these mitigation measures in place, the potential environmental residual effects to the proposed project during construction are reduced from moderate (pre-mitigation) to limited
	Kenny's Developments Limited

5.5.2 Operational Phase

5.5.2.1 Potential Effects

The proposed project location is within the flood zone (1973 and 2008) of the Saint John River and potential exists for the development to be flooded which could affect the following:

- Damage or loss of surficial materials (vegetation, paved surfaces);
- Damage or loss of infrastructure (townhouses, wastewater system, etc.) present at the time of the event; and,
- Health and safety risks to residents.

5.5.2.2 Effect Prior to Mitigation

The effect of the potential impacts to the proposed project during operation prior to mitigation is predicted to be moderate to significant. Potential flooding is not expected to result in lasting or irreparable damage to proposed project during operation.

5.5.2.3 Mitigation

The following mitigative measures will be employed to reduce the impact to the proposed project during operation;

- Backfilling with an engineered fill will be completed for the proposed project to ensure infrastructure (townhouses, wells, etc) will be installed at a minimum of 0.5m above the 1973 flood level.
- It will be recommended that purchasers of the townhouse monitor provincial websites, River Watch,

(<u>http://www2.gnb.ca/content/gnb/en/news/public_alerts/river_watch.html</u>) will be follow recommendations by provincial officials posted there; and,

• When a flood is predicted materials will be stabilized or removed from the development where possible.

5.5.2.4 Significance of Residual Effects

With these mitigation measures in place, the potential environmental residual effects to the proposed project during operation are reduced from moderate to significant(pre-mitigation) to limited.

6.0 Public Consultation

INTRODUCTION

In accordance with the New Brunswick EIA Regulation (87-83), public notification of the proposed project is required. Evidence of notification will be provided to the NBDELG within 60 days of the submission of this EIA document.

Consultation with Other Departments

Federal and Provincial Departments that have been contacted through email communication and/or telephone:

- 1. Lee Swanson Project Manager, NBDELG Environmental Assessment Section
- 2. Brent Suttie Manager, NB Tourism, Heritage and Culture, Archeological Services Unit
- 3. Stewart Lusk NBDNR Species at Risk Biologist
- 4. Mallory Gillis Hydrogeologist, NBDELG Water and Wastewater Management Section

COMMUNICATIONS OBJECTIVES

The following objectives have been established by Kenny's Developments Limited to ensure effective communications with the stakeholders and public:

- 1. Keep the public informed about the proposed project through timely and meaningful information release(s).
- 2. Consult with affected stakeholders in a timely manner in an effort to mitigate impacts.
- 3. Provide the public and interested stakeholder groups with opportunities to be involved and learn more about the proposed project.

DIRECT WRITTEN COMMUNICATIONS TO AREA RESIDENTS

Direct written communications regarding the Undertaking and its location will be conducted with potentially affected local residents, landowners, business owners and individuals. The written notification, including the required content of Public Notices [NBDELG, 2012], will be sent through the mail. The letter will be directed to all residents, business owners and landowners within 200 m of the proposed project location.

Similar to Step 1, each letter will contain the following information:

- Brief description of the proposed project;
- Description of the location for the proposed project;
- Map showing the location of the proposed project;
- Status of the Provincial Regulatory Approval process;
- Statement indicating that members of the general public can ask questions and/or raise concerns with the Proponent regarding any and all environmental impacts; and,
- Date that the public comment period expires.

DIRECT WRITTEN COMMUNICATIONS TO FIRST NATIONS COMMUNITIES

Direct written communications regarding the Undertaking and its location will be conveyed to both St Mary's First Nation and Oromocto First Nation communities. The written notification, including the required content of Public Notices [NBDELG, 2012], will be sent through the mail.

Similar to Step 1, each letter will contain the following information:

- Brief description of the proposed project;
- Description of the location for the proposed project;
- Map showing the location of the proposed project;
- Status of the Provincial Regulatory Approval process;
- Statement indicating that members of the general public can ask questions and/or raise concerns with the Proponent regarding any and all environmental impacts; and,
- Date that the public comment period expires.

REGISTRATION DOCUMENT AVAILABILITY

Kenny's Developments Limited will provide a copy of the Registration document to the NBDELG office in Fredericton. Requests for copies from the public, stakeholders and First Nation communities will be honoured by providing a copy of the Registration document directly. Subsequent submissions in response to issues raised by the Technical Review Committee will be made available upon request.

7.0 Conclusions

This EIA registration has been prepared for the construction, operation and maintenance of the proposed project on behalf of Kenny's Developments Limited. The information provided in this document is based on the current available design/planning information and existing environment information obtained in 2016.

The applicable environmental components and potential project effects were assessed and presented with meaningful mitigation measures to minimize and in some cases eliminate the potential effects. Based on these interactions, it can be concluded that, with the proper mitigation and standard operating procedures as outlined in this document, the residual effects of the project would be considered not significant for all project components. The project would be considered to provide a net positive effect for the Fredericton area which includes a retirement housing facility and a potential regional employment increase.

8.0 Closure

This report was prepared by Dillon on behalf of the Kenny's Developments Limited. Dillon has used the degree of care and skill ordinarily exercised under similar circumstances at the time the work was performed by reputable members of the environmental consulting profession practicing in Canada. Dillon assumes no responsibility for conditions which were beyond its scope of work. There is no warranty expressed or implied by Dillon.

The material in the report reflects Dillon's best judgment in light of the information available to Dillon at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Dillon accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Yours Truly,

DILLON CONSULTING LIMITED

K.D. BADKS

Kristin Banks, P.Eng. Project Manager

Appendix A *River Mist Estates – Water Supply Source Assessment*

KENNY'S DEVELOPMENTS LTD. River Mist Estates – Water Supply Source Assessment (Final)

336 Route 105, Maugerville, NB

February 8, 2016

New Brunswick Department of Environment and Local Government 20 McGloin Street PO Box 6000, Fredericton, NB E3B 5H1

Attention: Lee Swanson, B. Sc. M.A. Project Manager

Water Supply Source Assessment River Mist Estates – Kenny's Developments Ltd. 336 Route 105, Maugerville, NB EIA Registration No. 4561-3-1421

Dear Ms. Swanson,

We are pleased to present a final copy of this Water Supply Source Assessment document supporting the River Mist development. This document is being submitted on behalf of Kenny's Developments Ltd. to the New Brunswick Department of Environment and Local Government as part of the application process for a water supply source assessment as part of the NBDELG EIA Registration process.

If you have any questions, please contact the undersigned.

Yours sincerely,

DILLON CONSULTING LIMITED

Kristin Banks, P.Eng. Project Manager

Our file: 15-2555

Table of Contents

1.0 2.0	Introduc Project [tion Description	1 1
	2.1	Site Description	1
	2.2	Purpose/Rationale	1
	2.3	WSSA Initial Application	4
	2.4	Water Supply/Groundwater Usage	4
	2.5	Geology, Hydrogeology, Topography and Drainage	6
	2.6	Climate Conditions	6
3.0	Water Su	upply Source Assessment	8
	3.1	Field Work Scope	8
	3.2	Methodology	8
	3.2.1	Potable Well Installation	8
	3.2.2	Water Elevation Monitoring	9
	3.2.3	Step-Drawdown Test	9
	3.2.4	72 Hour Constant Rate Pumping Test	10
	3.2.5	Laboratory Analytical Program	10
	3.3	Results	11
	3.3.1	Preliminary Relative Water Levels – Non Pumping Conditions	11
	3.3.2	Step-Drawdown Test	13
	3.3.3	72 Hour Constant Rate Pumping Test	13
	3.3.3.1	Theoretical Assessment	15
	3.3.3.2	Empirical Assessment	18
	3.3.4	Laboratory Analytical Results	20
	3.3.4.1	Microbial Analysis (Total Coliforms and E. Coli)	20
	3.3.4.2	General Chemistry and Trace Metals	20
4.0 5.0	Conclusi Closing F	ons and Recommendations Remarks	24 25

Figures

Figure 1 - Subject Site Location	2
Figure 2 - Subject Site and Surrounding Properties	
Figure 3 - Site Plan	5
Figure 4 - Relative Water Levels - Non Pumping conditions	12
Figure 5 - Relative Water Levels Step-Drawdown Test	14
Figure 6 - Relative Water Levels Pumping Test	16
Figure 7 - Relative Water Levels Recovery Period	17
Figure 8 - Pumping Test Analysis	19

Tables

Table 1 - Average Daily Temperature Per Month (1980- 2010)	7
Table 2 - Average Monthly Precipitation (1980-2010)	
Table 3 - Average Number of Days With Precipitation PerMonth (1980-2010)	7
Table 4 - Laboratory Analytical Program	11
Table 5 - Aquifer Test Results	18
Table 6 - Total Coliforms and E.Coli	21
Table 7 - General Chemistry and Trace Metals in Groundwater	22

Appendices

А	WSSA Initial Application
В	Boreholes and Water Well Drillers Reports
С	Laboratory Analytical Certificates
D	Disclaimer

References

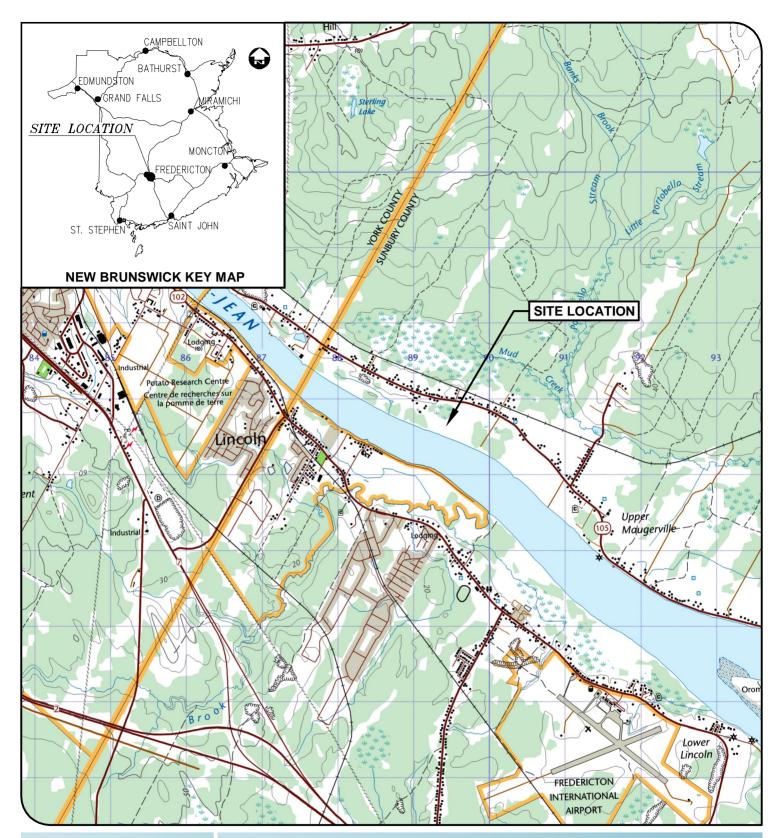
1.0 Introduction

Dillon Consulting Limited (Dillon) was retained by Kenny's Developments Limited (Kenny's) to complete an Environmental Impact Assessment (EIA) and Water Supply Source Assessment (WSSA) at the River Mist Development (proposed development) located at 336 Route 105 in Maugerville, New Brunswick (subject site, see **Figure 1**.) The assessment work was conducted in accordance with the "New Brunswick Department of Environment and Local Government (NBDELG), Environment Impact Assessment, Water Supply Source Assessment Guidelines (WSSA Guidelines)" issued by the NBDELG in March 2014.

The following sections of this report detail a project description, methodologies applied in the WSSA, results of this assessment, as well as conclusions. The initial WSSA application submitted to NBDELG is presented in Appendix A. Borehole logs and copies of the Water Well Drillers Reports from the subject site are located in Appendix B. Laboratory analytical certificates are included in Appendix C. The statements made in this report are subject to the limitations detailed in the disclaimer presented in Appendix D.

2.0 **Project Description**

2.1 Site Description


The subject site is located in a residential/commercial area of Maugerville, New Brunswick and is illustrated on **Figure 2**. The subject site is currently owned by Kenny's (contact: Mr. Kenneth Cormier, 336 Route 105, Maugerville, NB, E3A 8G2, Tel: 506-260-2980) and is legally identified by property identification (PID) numbers 60153475, 60153467, and 60153483.

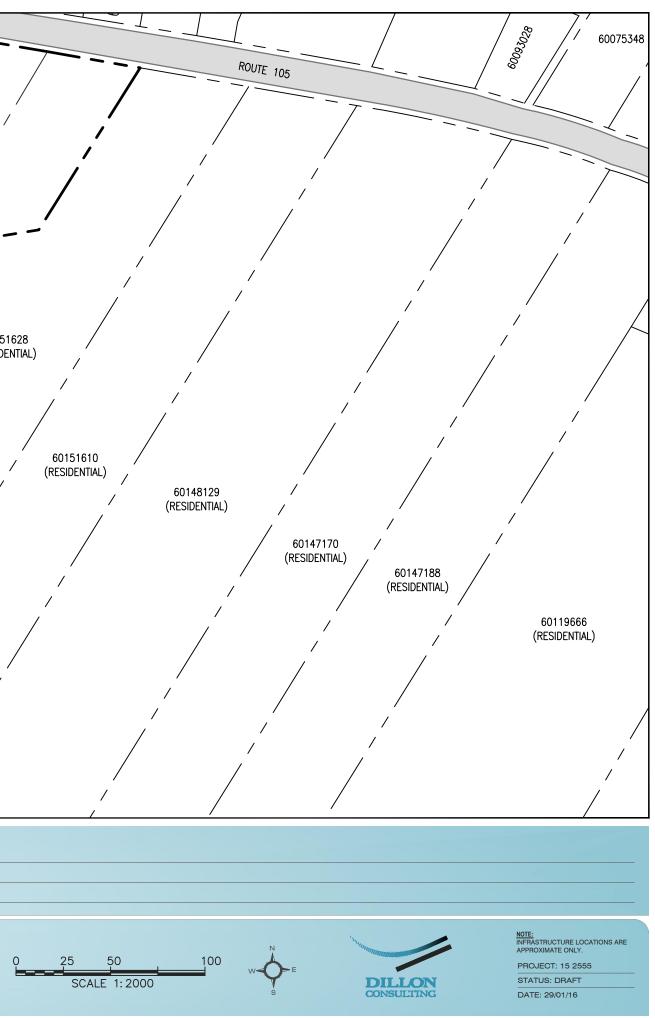
As shown on **Figure 2**, the subject site is bounded to the east and west by residential / agricultural properties. A New Brunswick Department of Transportation and Infrastructure (NBDTI) right-of-way (Route 105) is located along the northern limit of the subject site, while the Saint John River bounds the subject site to the south. One residence, owned by Mr. Kenneth Cormier, is situated on the adjacent parcel west of the subject site (PID No. 60153491).

2.2 Purpose/Rationale

The subject site is located approximately 3.5 kilometres (km) east of the City of Fredericton municipal limits, and therefore is located outside of the municipal services area. The subject site is classified as a major development (requiring an average of 40 m³/day of water) outside of an incorporated area, therefore the proposed development required registration under the EIA Regulation and as such a WSSA completed.

KENNY'S DEVELOPMENTS LTD. RIVER MIST ESTATES - WSSA 330 ROUTE 105 MAUGERVILLE, NB EIA REGISTRATION No. 4561-3-1421 PID No. 60153475, 60153467, 60153483

SITE LOCATION MAP FIGURE 1


MAP/DRAWING INFORMATION National Topographic System Mapsheet 21G/16.

CREATED BY: HEB CHECKED BY: BCG DESIGNED BY: BCG

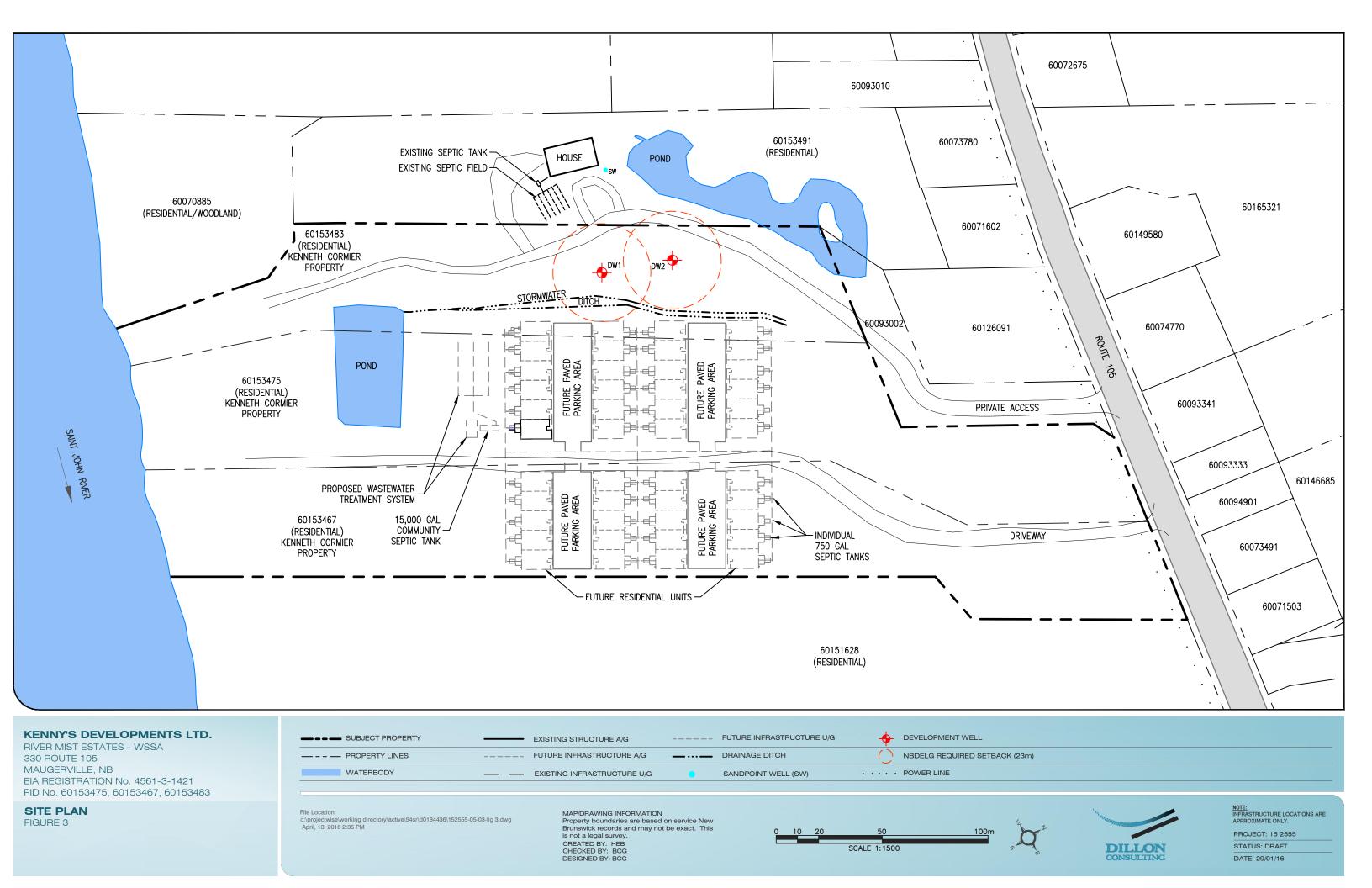
File Location: c: \projectwise\working directory\cctwe\S0heb\d0184436\152555-05-03-fig 1.dwg January, 29, 2016 10:19 AM SCALE 1:50,000 0 250 500 1000m

PROJECT: 15 2555 STATUS: DRAFT DATE: 29/01/16 SITE : RIVER MIST

It is estimated that the proposed development will require an average of 40 m³/day of water. This volume is based upon an estimated demand of water of 350 L per person per day (ACWWA, 2004) and an assumed maximum of 88 people living in 44 condominiums. The proposed condominiums are intended to be sold to senior citizens; therefore it is assumed that a maximum of two people will reside in each condominium. Additionally, a safety factor of 25% was added to the calculated daily water demand for conservatism and to address likelihood that overnight visitors may occur.

2.3 WSSA Initial Application

As per the WSSA Guidelines, a WSSA initial application was submitted to NBDELG by Dillon on September 23, 2015. Approval of the WSSA initial application was received on October 26, 2015. The NBDELG stated that the WSSA initial application provided sufficient information for their preliminary review of the project and that the EIA Registration document could be submitted following the WSSA.


The WSSA initial application and approval to proceed can be found in Appendix A.

2.4 Water Supply/Groundwater Usage

The Cormier residence and surrounding residential properties are serviced by private wells and septic systems. The Cormier residence utilizes a shallow installation sandpoint for a potable well installed to a depth of 5.1 metres below ground surface (mbgs). Interviews with residents located in proximity of the proposed development also described similar well construction details (sandpoint wells). These sandpoint wells are designed to be installed to relatively shallow depths, approximately 6 mbgs. Based on the anticipated depth of the sandpoint well on the subject site, inclusion of this well within the WSSA was not warranted, as it is likely sourcing from a shallow overburden aquifer and any observations made from this sandpoint would not be representative of the gravel aquifer examined during this assessment.

As part of the WSSA, two potable wells were installed on the subject site by a licensed well driller. The wells were installed with the intent of one providing a water supply for the proposed development, while the other was intended to act as an observation point for the WSSA. Furthermore, the observation well will continue to be utilized as an observation point during the next phases of the proposed development. Additional details regarding these wells are provided in **Section 3.2.1** of this report. Locations of these wells are illustrated on **Figure 3**. Approximate locations of proposed infrastructure (i.e. water line, septic system) for the proposed development are also provided on **Figure 3**.

The subject site is not located within a wellfield protection area under the New Brunswick Wellfield Protection Program or a designated watershed under the New Brunswick Watershed Protection Program. Further, the nearest wetland area (based on GeoSNB wetland mapping) was identified 300 metres (m) east of the potable wells installed during the WSSA.

2.5 Geology, Hydrogeology, Topography and Drainage

Based upon the New Brunswick Department of Energy and Mines Granular Aggregate Resource of Fredericton (21 G/15) map the proposed development is located within alluvium deposits of sand and gravel frequently capped with silt and/or fine sand. Based upon discussion with local land owners this is relatively consistent with what is found in the area. Clay and/or silty clay have also been observed across the site.

Based upon the New Brunswick Department of Energy and Mines bedrock geology of the Fredericton Area (NTS 21 G/15) map the proposed development is located within the Minto Formation of the Pictou Group. The Minto Formation consists of Late Carboniferous sedimentary deposits. The specific type of bedrock in the project area could not be verified as drilling associated with this assessment did not intercept bedrock.

During the potable well drilling activities, the observed stratigraphy consisted of the following:

- brown sand (to a max depth of 9.1 mbgs) overlying;
- grey clayey silts (to a max depth of 15.2 mbgs) overlying;
- grey sandy silts (to a max depth of 27.4 mbgs) overlying;
- fine/coarse gravels (to a maximum observed depth of 35.1 mbgs).

Descriptions of the observed stratigraphy during the WSSA can be found on the borehole logs and the water well driller's reports in **Appendix B.**

At the time of site activities, two ponds existed on the subject site. These ponds collect and retain surficial run-off water as a landscape feature. The Saint John River is located along the southern limit of the subject site, the nearest of the two potable wells installed during the WSSA is located approximately 175 m from the Saint John River. Local topography slopes gently to the south towards the Saint John River. Local surficial drainage is anticipated to occur in the same direction. Approximate locations of the ponds and Saint John River are presented on **Figure 3**.

2.6 Climate Conditions

The nearest Environment Canada weather station to the subject site is the Fredericton (Climate ID: 8101505) weather station located at the Fredericton International Airport. The weather station is located 4.5 km to the southeast of the subject site. The most recent climate data,

released by the Government of Canada, for the Fredericton weather station is presented in the Tables 1-3. A summary of average daily temperatures by month between 1980 and 2010 is found in **Table 1** while monthly precipitation total averages between 1980 and 2010 are found in **Table 2**. Monthly averages of days with precipitation are displayed in **Table 3**.

Temperature (°C)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Daily Average	-9.4	-7.9	-2.4	4.5	11.1	16.2	19.3	18.4	13.6	7.5	1.5	-5.7	5.6

TABLE 1 - AVERAGE DAILY TEMPERATURE PER MONTH (1980-2010)

(Source: Environment Canada, Climate Normals 1981-2010)

The warmest months are generally from June to August, with July being the warmest with an average daily temperature of 19.3°C. The coldest months are typically between December and February, with January being the coldest with an average daily temperature of -9.4°C.

Precipitation	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rainfall (mm)	38.0	31.4	46.7	68.3	94.5	82.4	88.3	85.6	87.5	88.2	92.9	55.3	859.1
Snowfall (cm)	69.9	47.5	49.4	18.6	1.4	0.0	0.0	0.0	0.0	0.8	14.3	50.5	252.3
Precipitation (mm)	95.3	73.1	93.2	85.9	96.2	82.4	88.3	85.6	87.5	89.1	106.3	94.9	1077.7

TABLE 2 - AVERAGE MONTHLY PRECIPITATION (1980-2010)

(Source: Environment Canada, Climate Normals 1981-2010)

TABLE 3 - AVERAGE NUMBER OF DAYS WITH PRECIPITATION PER MONTH (1980-2010)

Amount of Precipitation (mm)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
>= 0.2mm	14.2	11.3	13	13.2	13.9	12.2	12.3	10.6	10.3	11.4	13.2	13.4	148.9
>= 5mm	5.7	4.5	5.7	5.8	5.8	5.2	4.9	4.4	4.4	5	6.2	5.8	63.2
>= 10mm	3.4	2.6	3.2	2.8	3.7	2.9	2.9	2.6	2.8	3.2	3.7	3.1	36.8
>= 25mm	0.76	0.44	0.76	0.46	0.38	0.46	0.77	0.77	0.69	0.81	0.84	0.60	7.7

(Source: Environment Canada, Climate Normals 1981-2010)

Over the dataset, monthly averages totaled to 1077.7 mm of precipitation per year, with 859.1 mm of rain and 252.3 cm of snow falling per year. Generally, Fredericton saw 148 days with precipitation falling per year between 1980-2010. The highest monthly precipitation total was observed in November with 106.3 mm, while the lowest monthly precipitation total was observed in February with 73.1 mm.

Based on the climate data, the most surficial recharge to the source aquifer in the project area is expected to occur between November and December. However, the surficial recharge would be deemed negligible when compared to recharge from the constant head boundary represented by the Saint John River.

3.0 Water Supply Source Assessment

3.1 Field Work Scope

The WSSA completed at the subject site included the following field components:

- the installation of two test wells;
- a step-drawdown test;
- a 72 hour constant rate pumping test (pumping test); and,
- a water sampling program.

3.2 Methodology

3.2.1 Potable Well Installation

Between November 3 and November 6, 2015 two test wells (DW1 and DW2) were installed on the subject property under the supervision of Dillon personnel. Burpee TM Drilling Ltd. (Burpee) of Keswick Ridge, NB, was commissioned to drill the potable wells. Locations of DW1 and DW2 are presented on **Figure 3**.

Each well was drilled to such depth that the anticipated yield was deemed sufficient (DW1 yielded around 160 m³/day and DW2 yielded close to 320 m³/day). In both cases sufficient yield was achieved upon intersection with the respective observed coarse gravel layer. The coarse gravel layer was encountered at 33.5 mbgs in DW1 and was encountered at 27.1 mbgs in DW2. DW1 was installed to a depth of 35.1 mbgs, while DW2 was installed to a depth of 27.4 mbgs. Each well was installed using 0.15 m steel casing. Well construction details are provided on the borehole logs and water well driller's reports found in **Appendix B**.

Upon completing the potable wells, each well was developed via air lift for approximately 1-2 hours. Evidence of increased yield and clarity of return water was observed while developing

DW2 when compared to DW1. Based on the water return during development the estimated safe yield from DW1 was estimated to be 110 L/min (160 m^3 /day), and the estimated safe yield from DW2 was approximately 220 L/min (320 m^3 /day).

The differences in observed well characteristics could be attributed to minor differences in stratigraphy and/or amount of finer-grained materials within the formation. Based on these observations, it was recommended to Kenny's that DW2 be used as the primary pumping well for the proposed water system for the development. It was assumed at the time that DW2 would have sufficient yield to meet the estimated proposed development requirement of 38.5 m^3 /day. For the purposed of this WSSA, DW2 was utilized as the pumping well, while DW1 was used for water level observation.

Prior to the spring of 2016, casing above ground for both DW1 and DW2 will be extended to a height of 8.7 metres above sea level (masl). Following that, both well casings and a water storage tank will be enclosed by the construction of a well house. The grade of the area surrounding the future well house will be raised to 8.4 masl. Enclosure and casing extension of both wells will limit the risk of the wells being impacted by flood waters. Furthermore, DW1 will continue to be utilized as an observation point during the next phases of the proposed development.

3.2.2 Water Elevation Monitoring

Prior to the pumping test electronic pressure transducers (dataloggers[®]) were installed in both DW1 and DW2 on December 10, 2015 for 4 days. Over this span, the dataloggers were programed to record relative water level readings every ten minutes. Both dataloggers were removed on December 14, 2015 to allow access for the pump installation in DW2. The dataloggers were installed on direct-read cables and connected to a data acquisition and telemetry unit such that water level readings could be reported wirelessly to a home station computer.

On December 16, 2015 the step-drawdown and pumping test were initiated on the subject property. During the step-drawdown test, dataloggers recorded relative water levels every second between 0900 until 1100. The pumping test then commenced at 1100; and relative water level readings were recorded every minute until the pump was turned off at 1100 on December 19, 2015. After the pump was turned off, relative water levels were recorded in DW1 and DW2 every minute for approximately 30 minutes, until sufficient recovery had been observed.

3.2.3 Step-Drawdown Test

A 3 horsepower (hp) variable frequency drive (VFD) pump was purchased by Kenny's to supply the proposed development, and was utilized for the step-drawdown and pumping test. The

VFD pump was designed to operate with a water pressure regulating switch and to discharge to a 4 cm polyline. The pressure regulating switch was bypassed using the pump control box to allow the pump to operate at a constant rate independent of pressure for the step-drawdown and pumping test.

The step-drawdown test commenced at 0900 December 16, 2015. A gate valve was installed along the discharge line to regulate flow from the pump. Relative water level observations were observed in real-time as the flow from the pump was altered. An analog flowmeter (2.5 cm diameter, supplied by Dillon) was installed along the discharge line to measure flow during the tests. The flow meter could not be utilized as flow from the pump was required at greater volumes and therefore turbulent flow through the meter would not allow for accurate measurement.

Results of the step-drawdown test are discussed in Section 3.3.1.

3.2.4 72 Hour Constant Rate Pumping Test

At approximately 1100 on December 16, the 72 hour constant rate pumping test was initiated. Based upon the results of the step-drawdown test (observed water level decreases at maximum pumping capacity), it was determined that the pump was likely capable of pumping from DW2 at its full capacity, approximately 200 L/min (290 m³/day) for the duration of the pumping test. A power outage occurred at the subject property on December 16 from around 1230 until 1330, resulting in pumping stoppage and subsequent recharge in relative water level data.

The flowmeter and valve were left installed along the discharge line throughout the pumping test. This assessment conservatively assumed that the head losses related to the pumping test setup would be less than or equal to the head losses associated with the connection of this well/pump to the proposed developments. Therefore, results observed were a conservative representation for the proposed development.

3.2.5 Laboratory Analytical Program

The laboratory analytical program for this assessment was developed based on the WSSA guidelines sampling requirements. Samples were collected, preserved (as directed by the laboratory), and submitted for laboratory analysis. Samples were submitted to Research and Productivity Council Inc. (RPC) in Fredericton, NB for microbial analysis (i.e. total coliforms and E. Coli), general chemistry and traces metals. RPC is accredited by the Standards Council of Canada (SCC) for each of the analytical methods utilized and have in-house QA/QC programs to govern sample analysis and analytical data quality assurance. The results of the analytical program are discussed in **Section 3.3.3** and laboratory analytical certificates are presented in **Appendix C**. The laboratory analytical program is summarized below in **Table 4**.

	DW1	DW2
Microbial Analysis	0	1
General Chemistry/Metals	1	4
Total # Samples	1	5

TABLE 4 - LABORATORY ANALYTICAL PROGRAM


Samples collected from DW2 at the 0, 24, 48, and 72 hour marks of the pumping test were analyzed for general chemistry and metals. A sample was collected from DW2 at the 72 hour mark of the pumping test and analyzed for microbial content. The sample collected from DW1 was taken at the 72 hour mark of the pumping test and analyzed for general chemistry and metals. The NBDELG required water sample was not collected from DW2 at the completion of the pumping test as the NBDELG laboratory had closed for the holiday season by that time. An NBDELG required water sample will be submitted to the NBDELG prior to the commissioning of DW2 as a water supply source for the proposed development.

3.3 Results

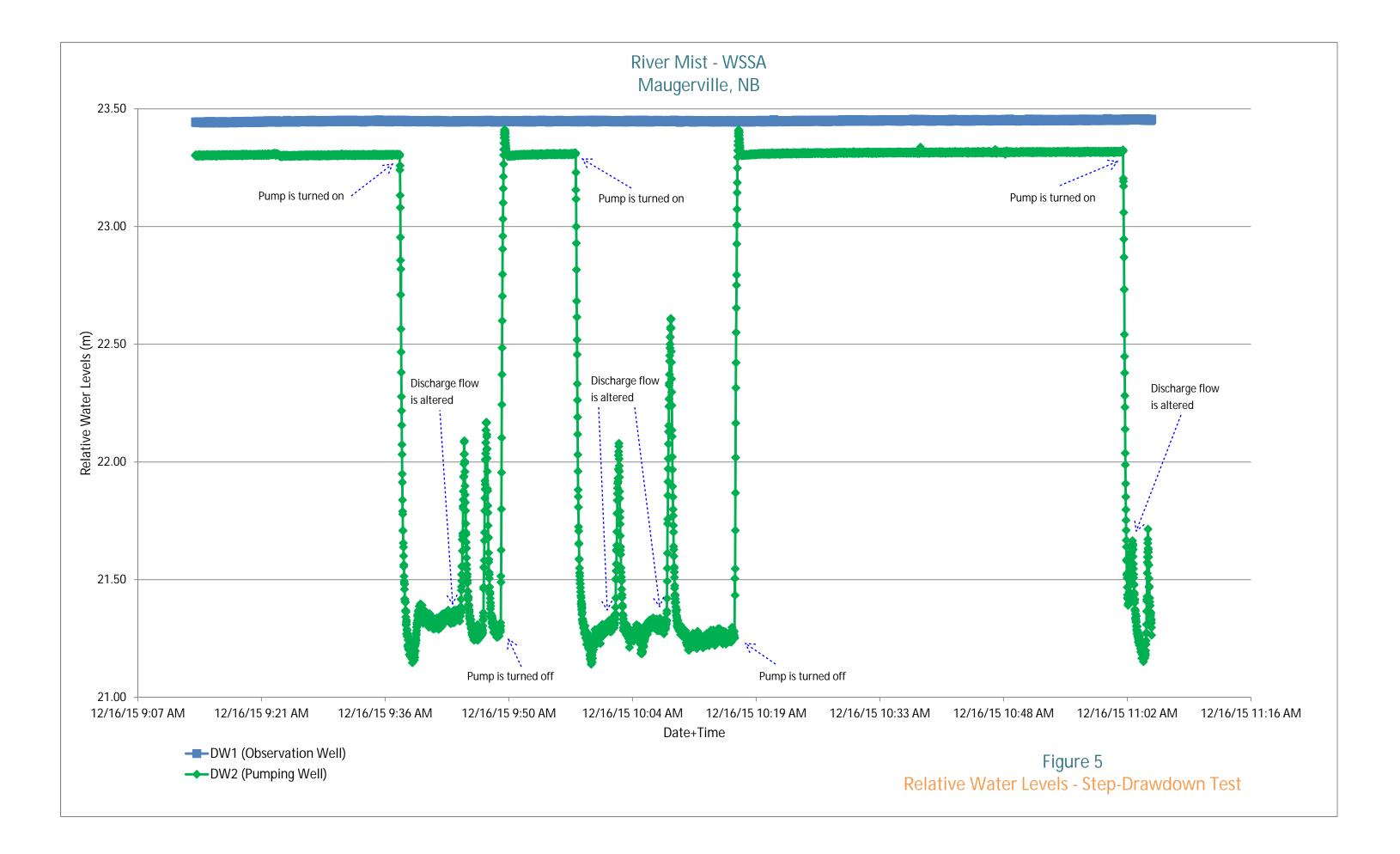
3.3.1 Preliminary Relative Water Levels – Non Pumping Conditions

Relative water levels from DW1 and DW2 between December 10 and December 14 are displayed on **Figure 4**. Both DW1 and DW2 appear to follow similar trends under non-pumping conditions, which is to be expected as they source from similar depths and are located in close proximity to another.

3.3.2 Step-Drawdown Test

Initially, the pump was discharging at its full capacity, approximately 200 L/min (290 m³/day) and an instantaneous drawdown of 2.5 m was observed in the pumping well (DW2). Review of the data, suggests that steady-state flow conditions were achieved 2-3 minutes after the pump in DW2 was turned on, this was replicated for three power cycles of the pump (i.e. turning it off and on) during the step-drawdown test. Nearly instantaneous recoveries (approximately 30 seconds) to the static level were observed in the water levels in DW2 after pump shutdown. Each pump cycle lasted approximately 10-20 minutes.

Discharge flow from the pump was also reduced to half of the pump capacity, approximately 100 L/min (140 m³/day), on the three occasions during the step-drawdown test to observe water level changes in DW1 and DW2. The water level in the observation well (DW1) remained constant with no observable drawdown during the step-drawdown test.


Based on these observations, it was anticipated that the pump would be able to discharge at the maximum capacity of the pump, approximately 200 L/min (290 m^3 /day) for the duration of the pumping test. Relative water levels from both wells observed during the step-drawdown test are provided on **Figure 5**.

3.3.3 72 Hour Constant Rate Pumping Test

On December 16 prior to the field activities, the static water level in DW2 was 4.88 metres below top of casing (mbtoc). Within minutes of the pump being turned on (200 L/min (290 m^3 /day)), the water elevation dropped to a maximum depth of approximately 7.11 mbtoc. The static water level in DW1 prior to the start of the pumping test was 4.85 mbtoc, and the water level dropped to maximum depth of 4.91 mbtoc shortly after the pump in DW2 was turned on. Measurements of flow rate observed throughout the pumping test remained relatively consistent at 200 L/min (290 m^3 /day). Over the pumping test, relative water level readings exhibited some fluctuation, but did appear to indicate that the water level was rising in both DW1 and DW2, this trend was confirmed with manual measurements from the wells. These increases in water levels are likely attributed to barometric pressure changes. The water level in DW1 was higher (4.59 mbtoc) at the conclusion of the pumping test than the static water level (4.85 mbtoc) on December 16.

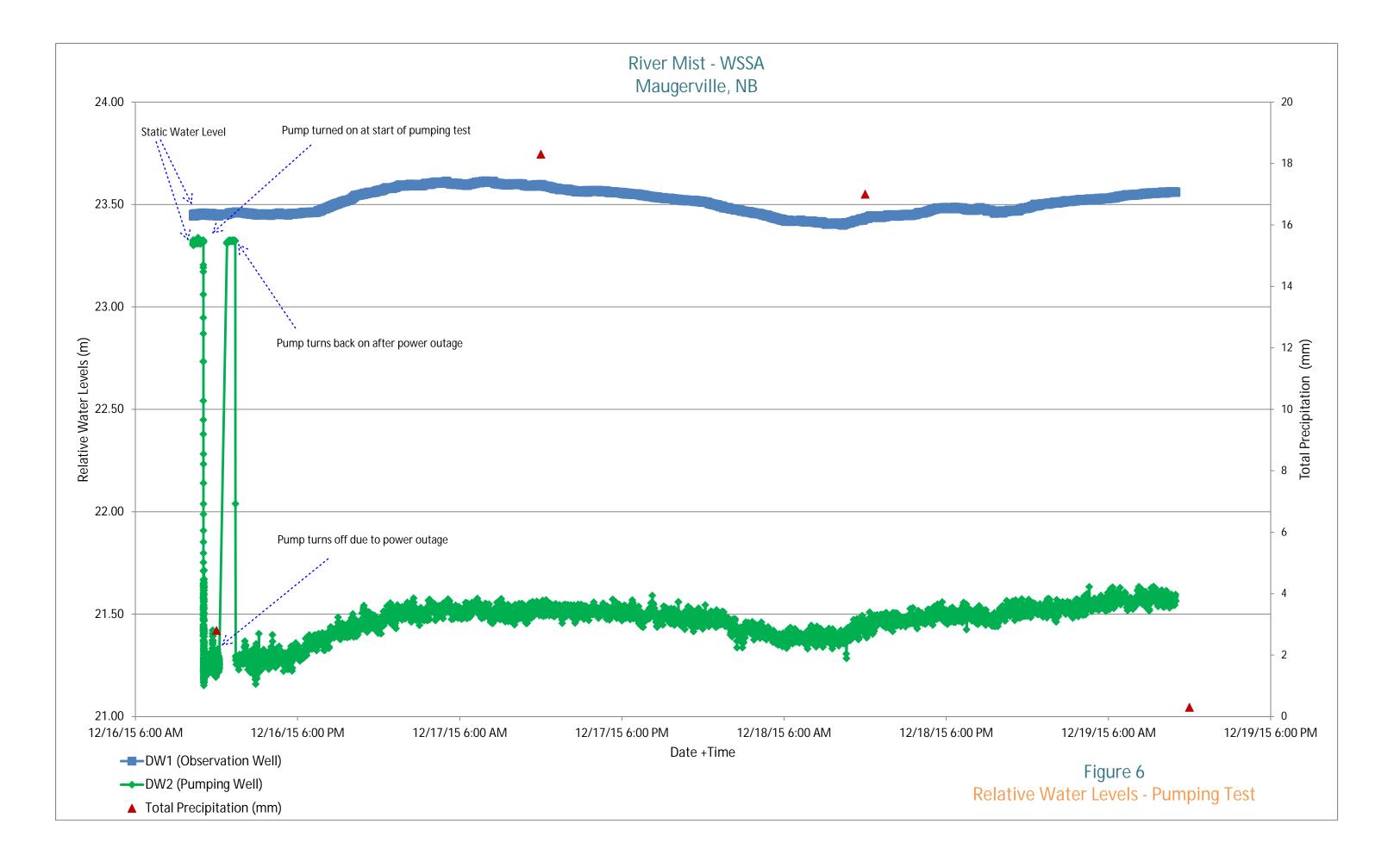
Upon completion of the pumping test, water levels were observed in DW1 and DW2 for approximately 30 minutes. An instantaneous recovery (approximately 30 seconds) of approximately 1.9 m in the water level was observed in DW2. A recovery of 0.02 m in the water level in DW1 was observed within minutes of pumping test completion. A return to equilibrium conditions within DW1 and DW2 was observed within 2-3 minutes of turning the pump off.

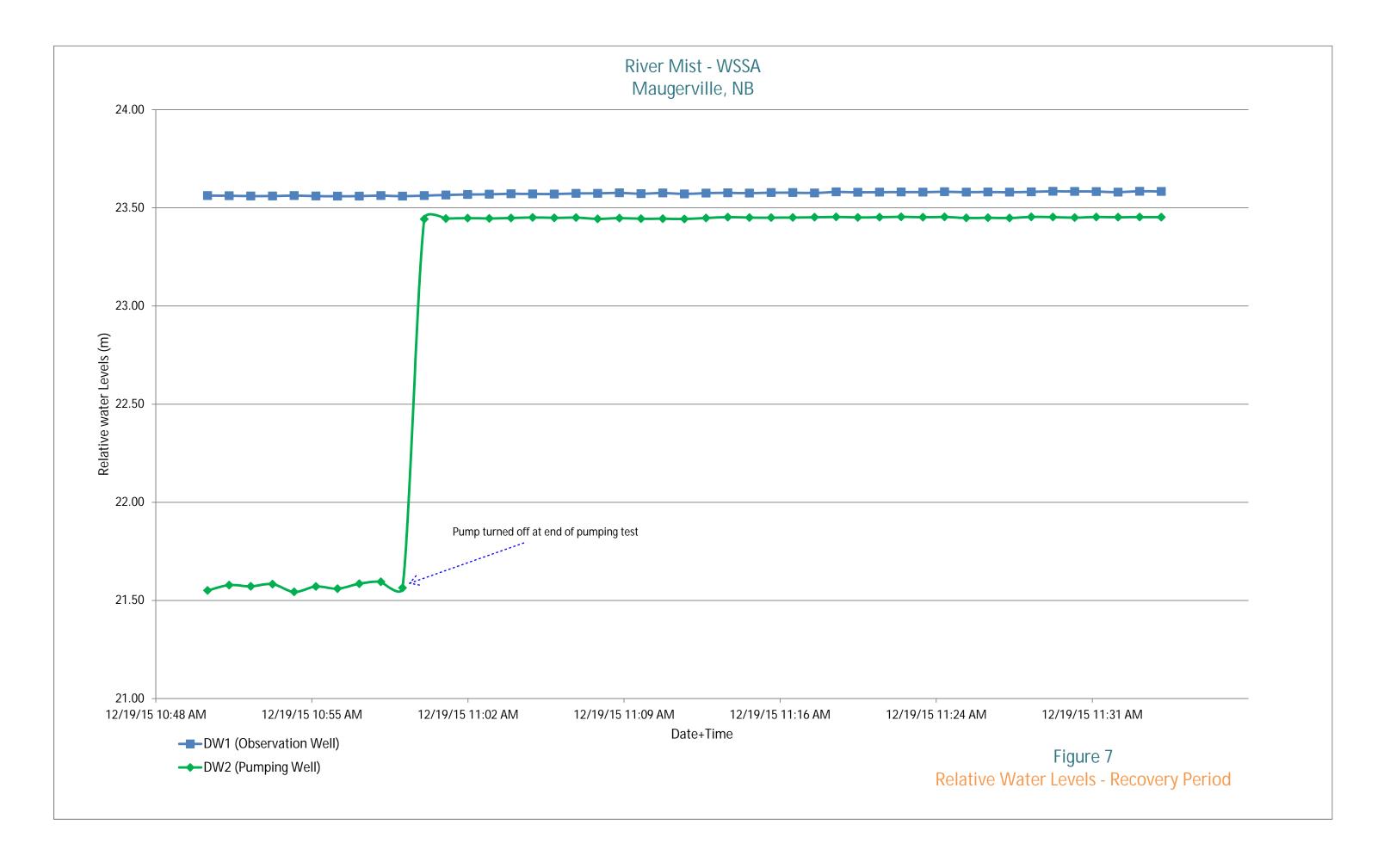
Relative water level data observed throughout the pumping test is displayed on **Figure 6**. Data collected over the course of the recovery period immediately after the pump was turned off is depicted on **Figure 7**.

3.3.3.1 Theoretical Assessment

The WSSA guidelines suggest that an appropriate analysis be completed on the data collected from the pumping test (i.e. Cooper-Jacob, Theis). Following the pumping test, the relative water level data was compiled and reviewed. Various Methods of analysis were evaluated based upon the recovered data and hydrogeological conditions. The following is a summary of hydrogeological conditions and assumptions applied to the conceptual site model with respect to data analysis:

- The aquifer is semi- confined and has an "apparent" infinite extent;
- The aquifer is homogeneous, isotropic, and uniform thickness over the area of influence by pumping;
- The piezometric surface was horizontal prior to pumping;
- The wells are partially penetrating and pumped at a constant rate;
- Water removed from storage is discharged instantaneously with decline in head; and,
- The discharge volume is high relative to well storage, and therefore well storage is negligible.


Upon reviewing the data and the conceptual site model, it was determined that a value of transmissivity could be estimated however, storativity would be considered negligible with respect to the volume of water that is being extracted as it would only account for a very small percentage of available yield. The increase in pumping infrastructure required to further test the limits of the aquifer (i.e. higher discharge rate from the pump) were deemed unnecessary as the pump installed in DW2 will be sufficient to meet the demand of the proposed development. Assessment of the overall capacity and efficiency of the aquifer can be considered conservative with respect to the estimated demand of the proposed development based upon the following:


Proposed Development Demand - It is estimated that the proposed development will require an average of 40 m³/day of water.

Aquifer Transmissivity – Based upon the near instantaneous drawdown and transition to steady-state conditions during the pumping test, additional stress could potentially be applied to the aquifer. Therefore, the available yield from the source aquifer has a greater capacity than the estimated demand of the proposed development.

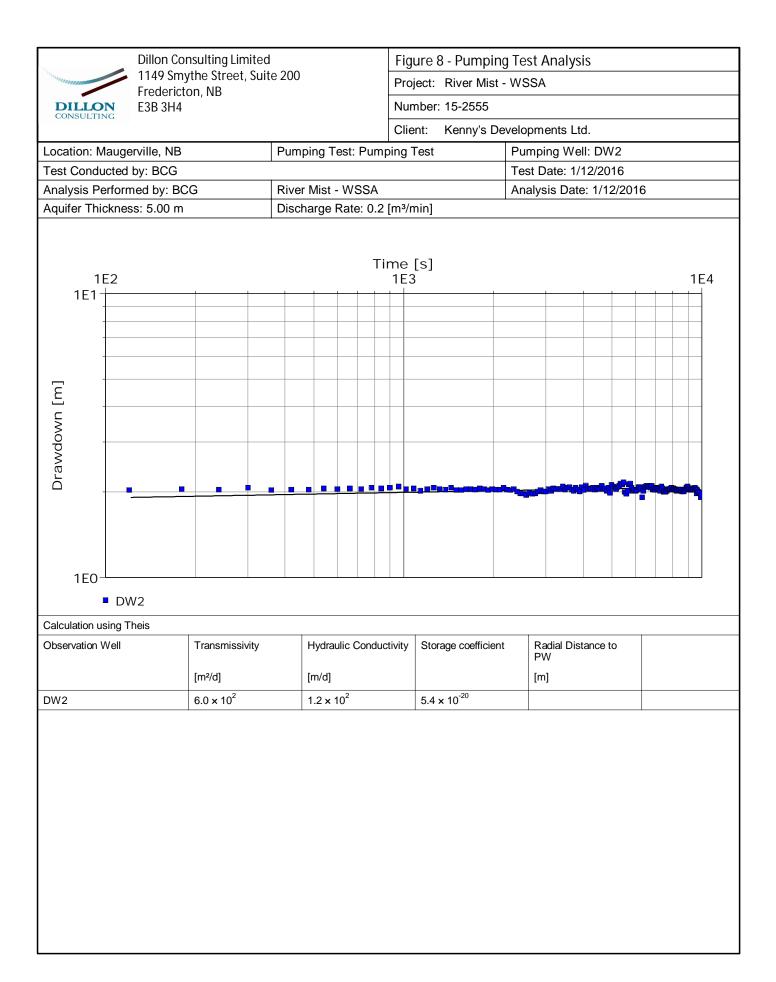
Boundary Condition – DW1 and DW2 are located within 250 m of the Saint John River which is considered to represent a constant head boundary. The presence of gravel, available transmissivity, results from the pumping test, and knowledge of similar aquifers along the Saint John River suggest hydraulic connection to the source aquifer. This hydraulic connection provides a near infinite recharge component to the confined sand and gravel beneath it.

3.3.3.2 Empirical Assessment

Based upon the results of the theoretical assessment Dillon suggests that a practical approach be taken in the determination of a safe yield for the proposed development. The following describes the evidence for determining the safe yield for the proposed development: **Boundary Condition** – The hydrogeological assessment exhibited evidence of recharge to the aquifer from the Saint John River and as such can be considered a constant head boundary. On average the Saint John River at any given time yields a flow of approximately 900 m³/s (77.8 x10⁶ m³/day) which contributes to the source aquifer recharge.

Hydraulic Testing and Pump Capacity – The hydraulic testing demonstrated that the pump in DW2 has the capacity to extract water at approximately 200 L/min with limited stress on the aquifer. This discharge rate equates to an extraction volume per day (290 m^3 /day) of 7 fold higher than the estimated daily demand of the proposed development (40 m^3 /day).

Transmissivity – The results of the pumping test were used to estimate aquifer transmissivity and are considered conservative. Select relative water level data from DW2 was input into Aquifer Test Pro 2015.1.Data from DW2 while the water level was rising during the pumping test and data from DW1, as significant drawdowns were not experienced during the pumping test in DW1, was not input into the program as this data would provide little value in estimating aquifer transmissivity. The assumptions noted in Section 3.3.3.1 were applied to the analysis as well as the following:


- Discharge was constant at a rate of 200 L/min;
- Aquifer thickness is assumed to be 5 m; and,
- DW2 is partially penetrating.

Limitations with respect to the use of values calculated during this empirical assessment could be expected as significant drawdown was not experienced within DW2 following the initial drawdown (start of the pumping test). Therefore, Dillon recommends consideration of the theoretical assessment in order to assess the safe yield for the proposed development. The results of the pumping test analysis are displayed on **Figure 8**. Calculated values for transmissivity and hydraulic conductivity from DW2 are summarized in **Table 5**.

TABLE	5 -	AQUIFER	TEST	RESULTS
-------	-----	---------	------	---------

Well ID	Hydraulic Conductivity (m/day)	Transmissivity (m²/day)
DW2	1.2 x 10 ²	6.0 x 10 ²

3.3.4 Laboratory Analytical Results

3.3.4.1 Microbial Analysis (Total Coliforms and E. Coli)

Laboratory analytical results for total coliforms and E. Coli in the groundwater sample collected from DW2 are presented in **Table 6**. Laboratory analytical certificates are shown in **Appendix C**.

Total Coliforms and E. Coli – DW2

- 1 Submitted (72 Hour sample)
- 0 Exceeded GCDWQ

Total coliforms and E.Coli were not detected in the sample collected from DW2 at the

conclusion of the pumping test. The sample was collected prior to disinfection of equipment and is representative of the natural groundwater conditions on the subject site.

A sample from DW1 was not analyzed for microbial content as DW1 had not been pumped during the pumping test and therefore results would not be representative of operational conditions.

3.3.4.2 General Chemistry and Trace Metals

Laboratory analytical results for general chemistry and trace metals are displayed in **Table 7**. Laboratory analytical certificates are shown in **Appendix C**.

Analytical results of the samples collected from DW2 were below the GCDWQ guidelines. Concentrations of Iron and Manganese were found to be in excess of the GCDWQ guidelines in the samples collected from DW1. The GCDWQ guidelines for Iron and Manganese are aesthetic objectives, and therefore the

General Chemistry and Trace Metals – DW2

- 4 Submitted (0, 24, 48, 72 Hour Samples)
- 0 Exceeded GCDWQ

General Chemistry and Trace Metals – DW1

- 1 Submitted (72 Hour Sample)
- 1 Exceeded GCDWQ

exceedences are not an indication of significant issues with water quality on the subject site. Minimal drawdown was observed in DW1 and water was not pumped from DW1 during the pumping test, therefore water within the well casing would have been stagnant since installation of the well, which could lead to elevated trace metals concentrations.

TABLE 6 Total Coliforms and E. Coli River Mist Estates - WSSA Maugerville, New Brunswick Dillon Project No. 15-1508											
Parameter	Units	GCDWQ (2012)	Pumping Well (DW2)								
			72 Hours (Dec 19/15)								
E. Coli	MPN/100 mL	0 per 100 mL	0								
Total Coliforms	MPN/100 mL	0 per 100 mL	0								
Health Canada Federal-Provincial-Territorial Committee on Canadian Drinking Water (FTP CDW) Guidelines for Canadian Drinking Water Quality (GCDWQ, August 2012)											
1 bold/shaded value denotes concentration exceeds GCDWQ											

			Ri Ma	TABLE 7 try and Trace Metals ir ver Mist Estates - WSS, ugerville, New Brunswi Ilon Project No. 15-150	A ck		
Parameter	Units	GCDWQ (2014)		Pumping \	Vell (DW2)		Observation Well (DW1)
			72 Hours (Dec 19/15)	72 Hours (Dec 19/15)			
General Chemistry							
Sodium	mg/L	200 ^{AO}	15.5	13.6	12.7	11.9	10.0
Potassium	mg/L	-	1.18	1.25	1.26	1.22	1.92
Calcium	mg/L	-	30.4	35.4	36.0	35.0	39.3
Magnesium	mg/L	-	3.90	4.44	4.53	4.36	5.50
Iron	mg/L	0.3 ^{AO}	0.21	0.09	0.10	0.06	2.94
Manganese	mg/L	0.05 ^{AO}	0.015	0.005	0.007	0.007	0.353
Copper	mg/L	1 ^{AO}	0.003	0.007	0.003	0.011	0.001
Zinc	mg/L	5 ^{AO}	0.005	0.018	0.009	0.032	0.003
Ammonia (as N)	mg/L	-	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
рН	units	6.5-8.5	6.9	7.4	7.1	7.3	8.3
Alkalinity (as CaCO3)	mg/L	-	84	100	100	104	120
Chloride	mg/L	250 ^{AO}	29.2	25.0	20.0	20.5	27.2
Sulfate	mg/L	500 ^{AO}	10	9	9	9	8
Nitrate + Nitrite (as N)	mg/L	10	0.22	0.13	0.10	0.11	< 0.05
o-Phosphate (as P)	mg/L	-	<0.01	< 0.01	< 0.01	0.03	< 0.01
r-Silica (as SiO2)	mg/L	-	13.7	13.4	13.8	13.8	1.6
Total Organic Carbon	mg/L	-	0.6	0.8	0.7	0.7	0.9
Turbidity	NTU	-	2.4	1.0	0.6	0.7	17.4
Conductivity	µS/cm	-	262	275	280	284	337
Calculated Parameters	•					•	
Bicarbonate as CaCO3	mg/L	-	83.9	99.8	99.9	104	118
Carbonate as CaCO3	mg/L	-	0.063	0.236	0.118	0.195	2.21
Hydroxide as CaCO3	mg/L	-	0.004	0.013	0.006	0.010	0.100
Cation sum	meq/L	-	2.55	2.76	2.76	2.66	3.07
Anion sum	meq/L	-	2.73	2.90	2.76	2.85	3.33
% difference	%	-	-3.26	-2.46	0.05	-3.54	-4.11
Theoretical Conductivity	µS/cm	-	262	276	266	266	301
Hardness (as CaCO3)	mg/L	-	92.0	107	108	105	121
Ion Sum (mg/L)	mg/L	-	156	164	159	160	170
Saturation pH (5oC)	units	-	8.2	8.1	8.0	8.0	7.9
Langelier Index (5oC)	-	-	-1.29	-0.65	-0.95	-0.74	0.36

^{A0} indicates guideline is an aesthetic objective and is not health based
 75 bold/shaded value denotes concentration

75 bold/shaded value denotes concentration exceeds GCDWQ - ' denotes no guideline, not analyzed, or not applicable

TABLE 7 General Chemistry and Trace Metals in Groundwater River Mist Estates - WSSA Maugerville, New Brunswick Dillon Project No. 15-1508												
Parameter	Units	GCDWQ (2014)		Pumping V	Nell (DW2)		Observation Well (DW1)					
			0 Hours (Dec 16/15)	24 Hours (Dec 17/15)	48 Hours (Dec 18/15)	72 Hours (Dec 19/15)	72 Hours (Dec 19/15)					
Trace Metals												
Aluminum	µg/L	100 ^{AO}	32	9	12	6	8					
Antimony	µg/L	6	<0.1	< 0.1	< 0.1	< 0.1	0.3					
Arsenic	µg/L	10	<1	< 1	< 1	< 1	< 1					
Barium	µg/L	1000	38	37	37	36	210					
Beryllium	µg/L	-	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Bismuth	µg/L	-	<1	< 1	< 1	< 1	< 1					
Boron	µg/L	5000	13	12	10	12	14					
Cadmium	µg/L	5	<0.01	0.02	0.01	0.03	< 0.01					
Calcium	µg/L	-	30,400	35,400	36 000	35 000	39 300					
Chromium	µg/L	50	<1	<1	1	1	1					
Cobalt	µg/L	-	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Copper	μg/L	1000 ^{AO}	3	7	3	11	1					
Iron	μg/L	300 ^{AO}	210	90	100	60	2940					
Lead	μg/L	10	1.4	1.5	0.8	1.6	0.2					
Lithium	μg/L	-	1.5	1.4	1.4	1.4	2.7					
Magnesium	µg/L	-	3900	4440	4530	4360	5500					
Manganese	µg/L	50 ^{AO}	15	5	7	7	353					
Molybdenum	µg/L	-	0.2	0.6	0.8	0.9	0.6					
Nickel	µg/L	-	<1	< 1	< 1	< 1	< 1					
Potassium	µg/L	-	1180	1250	1260	1220	1920					
Rubidium	µg/L	-	0.6	0.7	0.8	0.8	1.0					
Selenium	µg/L	10	<1	< 1	< 1	< 1	< 1					
Silver	µg/L	-	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Sodium	µg/L	200000 ^{AO}	15,500	13,600	12,700	11,900	10,000					
Strontium	µg/L	-	123	139	142	139	196					
Tellurium	µg/L	-	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Thallium	µg/L	-	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Tin	µg/L	-	<0.1	< 0.1	< 0.1	0.1	0.5					
Uranium	µg/L	20	0.1	0.5	0.5	0.6	< 0.1					
Vanadium	µg/L	-	<1	<1	< 1	< 1	< 1					
Zinc	µg/L	5000 ^{AO}	5	18	9	32	3					

*Health Canada Federal-Provincial-Territorial Committee on Canadian Drinking Water (FTP CDW) Guidelines for Canadian Drinking Water Quality (GCDWQ, October 2014)

^{AO} indicates guideline is an aesthetic objective and is not health based

75 bold/shaded value denotes concentration exceeds GCDWQ

' - ' denotes no guideline, not analyzed, or not applicable

4.0 **Conclusions and Recommendations**

The results of the pumping test suggest that the aquifer is capable of meeting and exceeding the anticipated demand for the proposed development. A maximum drawdown of 2.1 m was observed in the pumping well (DW2) while minimal drawdowns were observed in the observation well (DW1) while pumping at approximately 200 L/min (290 m³/day) for 72 hours. Recoveries to equilibrium conditions were noted in DW1 and DW2 within approximately 30 seconds after completion of the pumping test. Testing of DW2 for this assessment was completed assuming as much as 290 m³/day could be withdrawn, this is approximately 7 times the estimated daily demand for the proposed development of 40 m³/day of water.

Based on the theoretical and empirical assessments and as a means to maintain a high level of conservatism, Dillon recommends that the allowable total maximum extraction rate from DW2 be not less than 40 m³/day. It is not anticipated that the proposed development will extract more than 40 m³/day, but should the development approach or surpass 50 m³/day, an application for Approval to Operate will be submitted to the NBDELG.

In order to reduce risk of impact from flood waters to the water supply for the proposed development, the following actions will be taken prior to the spring of 2016:

- Casing above ground for DW1 and DW2 will be extended to 8.7 masl.
- A water storage tank and both DW1 and DW2 will be enclosed within a well house to be constructed on the subject site.
- The grade of the area surrounding the future well house will be raised to 8.4 masl.

5.0 Closing Remarks

This report was prepared by Brennan Gourley, EIT, and reviewed by Parrish Arnott, P.Geo., Ryan Dunbar, M.Sc., P.Eng., and by Andrew Blackmer, M.Sc., P.Geo.

Dillon has prepared this report for the exclusive use of Kenny's Developments Ltd. for specific application to the subject site. The Dillon investigation was conducted in accordance with Dillon's scope of work and accepted environmental practices. Limitations to this report are included in this disclaimer presented in Appendix D. No other warranty, expressed or implied, is made.

Appendix A WSSA Initial Application

October 23, 2015

Mr. K. Cormier Kenny's Developments Ltd. 330 Route 105 Maugerville, NB E3A 8G2 Mrs. K. Banks Dillon Consulting Ltd. 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

Mr. Cormier and Mrs. Banks:

RE: EIA Registration #4561-03-1421 – Rivermist Estates Condominium Development Registration Document and Water Supply Source Assessment Initial Application

The Technical Review Committee (TRC) has reviewed the document WSSA Initial Application – *River Mist Estates Development EIA* dated September 23, 2015. This letter hereby constitutes **approval to proceed with the Hydrogeological Assessment**, consisting of field investigations (including drilling wells and pumping tests) to determine the yield and quality of a water supply for the proposed development, **subject to the following conditions**:

- Please ensure that the March 2014 version of the Department of Environment and Local Government (DELG) Water Supply Source Assessment (WSSA) Guidelines (available online here: <u>http://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/EIA-EIE/WaterSupplyAssessmentGuidelines.pdf</u>) is followed for the well testing and reporting requirements.
- 2) Based on the information provided and the understanding that the activity will not occur within 30m of a watercourse, the Department of Fisheries and Oceans (DFO) has determined that a *Fisheries Act* authorization is not required for the proposed hydrogeological testing. In order to comply with the Act, it is recommended that you follow DFO guidance tools available at http://www.dfo-mpo.gc.ca/pnw-ppe/measures-mesures/index-eng.html. Should your plans change or if you have omitted some information in your proposal such that your proposal meets the criteria for a site specific review, as described in DFO's web site (http://www.dfo-mpo.gc.ca/pnw-ppe/index-eng.html. You should complete and submit the request for review form available on the web site.

Should you have any questions or concerns about the compliance of your proposal with the *Fisheries Act* (and/or those prohibitions of the *Species at Risk Act* (SARA) that apply to listed aquatic species), you may wish to consult an environmental professional familiar with measures to avoid impacts to fish and aquatic habitat (see <u>http://www.dfo-mpo.gc.ca/pnw-ppe/env-pro-eng.html</u>).

3) It is our understanding that the well(s) will be drilled and cased above the current ground level (approximate elevation of 6.5 masl) for the hydrogeological assessment. Once the pump testing is complete a decision will be made to use the well(s) or to decommission the well(s) following NBDELG protocols for decommissioning potable wells. If the well(s) are determined to provide adequate yield and quality, the well casing(s) will be extended such that the top of the casing(s) are at an elevation of 8.7 masl and sealed with a 150mm diameter J-Plug. The area surrounding the well casing(s) will then be built up to an elevation of 8.4 masl at a later time to construct a well house which would be large enough for storage tank(s) to meet peak load requirements, if required. The well(s) would either be decommissioned or extend to the proposed elevation before the spring of 2016.

The following points and questions identify items that need to be addressed prior to this project being determined by the Minister and/or are for your information purposes:

- 4) Please provide an overall development/subdivision plan for the proposed project including property boundaries, lot dimensions, location of communal sewage treatment facility, well location(s), and identify neighbouring properties and their wells.
- 5) Regional Service Commission 11 (RSC 11) has advised that condominiums do not fall under the Provincial subdivision regulation; therefore, before construction of the development begins you must apply for a building permit and meet RSC 11's setback regulations and fire separation standards with the design. For further information please contact RSC 11 at (506) 453-2956.
- 6) The PIDs for this development are located within a mapped and consistently documented flood zone along the St. John River. Putting new infrastructure or development in this area might place such infrastructure and its inhabitants at risk of flooding and/or being stranded during flood conditions without access to emergency vehicles when the roads and surrounding accesses will be under water. There is also strong scientific evidence for future climate change impacts including the increased risk of more extreme flood events. Given the information above, how will you mitigate the potential impacts of flooding for this development and its infrastructure? How did you determine that proposed measures will be adequate?
- 7) The proposed development will increase the presence of hardened, impermeable surfaces in an area that is currently capable of storing floodwater. Removal of the floodwater storage/filtration capacity of this area may put greater flood pressure on the surrounding residents and businesses. What impact will the development have on nearby properties and how will these potential impacts be mitigated? Will there be any measures in place to prevent the development from being eroded by the flood waters?
- 8) Please provide detailed information on the proposed communal wastewater/sewage treatment system for the development. Also include a site plan and identify where the system will be located on the property as well as all set backs of the facility to; wells on site,

neighboring wells, watercourses, and property lines. Depending on the details, the system will either be regulated by the Department of Health (DOH) or DELG.

- 9) Will the communal sewage treatment system be designed by a Professional Engineer licensed through the Association of Professional Engineers and Geoscientists of New Brunswick?
- 10) The proposed consumption of water for the project is currently estimated in the document at 38.5 m³/day. If the project approaches or surpasses 50m³/day you must apply to DELG for an Approval to Operate.
- 11) Drilled well(s) must be tested for; bacteriological, inorganic and organic parameters. Results will be provided to DELG and DOH.
- 12) In the event of a flood, will you supply potable water to the residents?
- 13) If the water well(s) are impacted by a flood, then it is recommended that residents wait a minimum of 17 days before determining if their water is acceptable for drinking, based on DELG's procedure. Further, it is recommended to wait 10 days after the flood waters have begun to recede away from the well(s) before beginning the chlorination procedure. Once the well has been chlorinated, you must wait one week before collecting a sample and submitting it to the lab for microbiology analysis.
- 14) A <u>Watercourse and Wetland Alteration Permit</u> will be required prior to any work within 30 metres of the St. John River.
- 15) If you have any questions regarding the hydrogeological requirements for the assessment you can contact Mallory Gillis, DELG Hydrogeologist, directly at (506) 453-3624.
- 16) It is your responsibility to ensure that activities comply with all other applicable acts and regulations, such as the <u>Migratory Birds Convention Act</u> and <u>Regulations</u>, and the <u>Species</u> <u>at Risk Act</u>.

If you have any questions regarding the conditions and information in this letter, please feel free to contact me at (506) 453-7108.

Sincerely,

diet. Swanson

Lee Swanson Project Manager

Cc. Mr. Parrish Arnott, Dillon Consulting Ltd. Technical Review Committee

September 23, 2015

New Brunswick Department of Environment and Local Government 20 McGloin Street, Marysville Place Fredericton, NB E3B 5H1

Attention: Ms. Lee Swanson

WSSA Initial Application - River Mist Estates Development EIA

Dear Ms. Swanson,

Dillon Consulting Limited (Dillon) was retained by Kenny's Developments Limited (Kenny's) to complete an Environmental Impact Assessment (EIA) including a Water Supply Source Assessment (WSSA) in relation to their River Mist Estates development project (herein "the proposed development"). It is anticipated that the proposed development will include 44 condominium units to be built across the parcels of land legally identified by property identification (PID) numbers 60153483, 60153475, and 60153467, with the intent of selling the condominium units to senior citizens.

This document has been prepared as a means to satisfy the minimum requirements for a WSSA initial application, as per the NBDELG Environmental Impact Assessment WSSA Guidelines (Appendix B).

Name of Proponent

Client Contact

Mr. Kenneth Cormier Kenny's Developments Ltd. 330 Route 105, Maugerville, NB E3A 8G2 Tel: 506-260-2980

Consultant Contact

Mrs. Kristin Banks, P. Eng. Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4 Tel: 506-444-8820

1149 Smythe Street Suite 200 Fredericton New Brunswick Canada E3B 3H4 Telephone 506.444.8820 Fax 506.444.8821 NBDELG Page 2 September 23, 2015

Fax: 506-444-8821 Email: KBanks@dillon.ca

Location of drill targets

As per the WSSA guidelines, a minimum of two water supply wells will be installed within the proposed development boundaries. The wells will be installed to diameters of 150 mm, at this time the required depths of the wells are not known. The depths and total numbers of wells needed to be installed will be finalized after the completion of the initial two wells, and will be based upon observed well yield measurements.

The locations of the two mandatory water supply wells have been determined, and the location of a third water supply well, should it be necessary, has also been determined. All three locations of drill targets are located within the proposed development on the parcel of land legally identified by PID number 60153483. Locations of the three drill targets are outlined, along an outline of the proposed development, on Figure 1.

Required Water Quantity

It is estimated that this development project will require a minimum of 38.5 m³/day. This volume is based upon an estimated demand of water of 350 L per person per day and an assumed maximum of 88 people living in 44 condominiums. A safety factor of 25% was added to the calculated daily water demand.

Alternate Water Supply Sources in Area

All residential and commercial properties within the limits of Maugerville are supplied potable water by private water wells. The proposed development is located approximately 0.5 kilometres from the City of Fredericton limits (Southside city limits across the Saint John River.) No other municipal water systems are known to exist within the area of the proposed development.

Hydrogeology as it relates to the project requirements

Based upon the New Brunswick Department of Energy and Mines bedrock geology of the Fredericton Area (NTS 21 G/15) map the proposed River Mist development is located within the Minto Formation of the Pictou Group. The Minto Formation

NBDELG Page 3 September 23, 2015

consists of Late Carboniferous sedimentary deposits. The specific type of bedrock in the project area is unknown.

Based upon the New Brunswick Department of Energy and Mines Granular Aggregate Resource of Fredericton (21 G/15) map the River Mist development is located within alluvium deposits of sand and sand and gravel frequently capped with silt and/or fine sand. Based upon discussion with local land owners this is relatively consistent with what is found in the area and specifically in the project area clay and/or silty clay have been observed across the site.

Outline of the proposed hydrogeological testing and work schedule

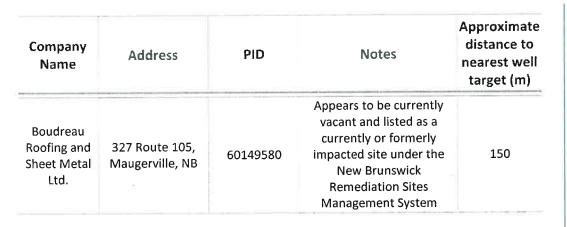
Test well drilling and hydraulic testing activities will be carried out by a licensed well driller, under the supervision of Dillon personnel, as per the New Brunswick Clean Water Act. Burpee TM Drilling Ltd. (Burpee), of Keswick Ridge, NB, has been identified as the licensed well driller for use on this project. Commencement of water supply well drilling on the proposed development will take place upon receipt and acceptance of this document by NBDELG representatives.

The following describes the work that is to be completed for the drilling of a new water supply well:

- Complete underground utility clearances prior to completing any drilling activities.
- Construction of two or three 150 mm diameter test wells at the proposed drill target locations with 150 mm steel casing. The geology/hydrostratigraphy will be logged by Dillon staff during the drilling process.
- A preliminary yield assessment will be completed using air lift methods following the construction of each well.
- Based upon the results of the preliminary yield assessment a third well may be drilled to meet the water quantity demands of the proposed development.
- The well(s) with the highest observed yield will undergo step-testing (30 min steps) and a long term pumping test (72 hours) as per the WSSA Guideline.
 Water levels will be measured in the pumping well(s) as well as the second or third well. Pressure transducers will be used in addition to manual water level measurements to record water levels in the pumping and observation well(s).
- Water samples will be collected from each well at the conclusion of the pump test and submitted to the Research and Productivity Council (RPC) for analysis of general chemistry and trace metals. Additionally, the required water quality samples from each well will be submitted to the NBDELG lab following the testing activities.

NBDELG Page 4 September 23, 2015

- The results of the pumping test will be presented in a report as per the New Brunswick WSSA to the NBDELG.
- The drilling of test/observation wells will be completed during daytime hours.
- Water discharged during the construction, development and testing activities will be managed as necessary to limit erosion and sedimentation.
- Refueling of equipment used during the construction activities will be completed off-site, where possible. Spill management kits will be available throughout construction and testing and authorities will be alerted if necessary.


Potential contamination hazards within 500 m of the proposed drill targets

The proposed development is bounded to the north by the Route 105 and to the south by the Saint John River. Potential contamination hazards in relation to the proposed drill targets could include the various residential properties located along Route 105 and the identified commercial properties located within 500 m of the proposed drill targets (see Table 1). However, it is unlikely that these identified contamination hazards will pose a risk to the proposed water supply.

Company Name	Address	PID	Notes	Approximate distance to nearest well target (m)
Furniture Medic	262 Route 105, Maugerville, NB	60152337	N/A	550
Capital Auctions Ltd.	272 Route 105, Maugerville, NB	60152345	N/A	500
Riverside Equipment	280 Route 105, Maugerville, NB	60074853	N/A	450
ALPA Equipment Ltd.	289 Route 105, Maugerville, NB	60073913	Listed as a currently or formerly impacted site under the New Brunswick Remediation Sites Management System	350
Technical Heat Treatment Ltd.	325 Route 105, Maugerville, NB	60165321	N/A	200

TABLE 1 - NEARBY COMMERCIAL PROPERTIES

NBDELG Page 5 September 23, 2015

Groundwater use problems that have occurred in the area

Based upon information gained during interviews with residents of the Maugerville area, some residences are provided potable water by sandpoint wells (sandpoints). These sandpoints are designed to be installed to relatively shallow depths (approximately 20 feet below ground surface) as a means to draw water from a shallow aquifer (contained within overburden). It was reported that at least one residence of the Maugerville area, with a sandpoint well installed on the property, requires treatment of iron. The presence of iron within a shallow water source is not uncommon and is not necessarily an indication of the presence of iron within a deeper water source (approximately 100 feet below ground surface). The total depth of the potable water supply wells to be installed on the proposed development is not currently known however, it is assumed that they will be installed to a depth of greater than 100 feet below ground surface. Groundwater quality samples will be collected from each well at the conclusion of the pumping test and submitted to the Research and Productivity Council (RPC) for analysis of general chemistry and trace metals.

Watercourse(s) within 60 m of the proposed drill targets

Based on GeoSNB wetland mapping, no wetland areas were identified within 60 metres of the proposed drill targets. The nearest wetland area was identified 300 metres to the east of the nearest drill target.

NBDELG Page 6 September 23, 2015

Site supervisory personnel

Consultant Field Staff

Mr. Parrish Arnott, P. Geo Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4 Tel: 506-444-8820 Fax: 506-444-8821 Email: PArnott@dillon.ca

Licensed Well Driller

Burpee TM Drilling Ltd. 545 Route 616 Keswick Ridge, NB E6L 1S4 Tel: 506-3634348

<u>Site Maps</u>

A site plan showing the proposed drill target locations is attached.

Contingency plan for open loop earth energy systems

Not applicable.

NBDELG Page 7 September 23, 2015

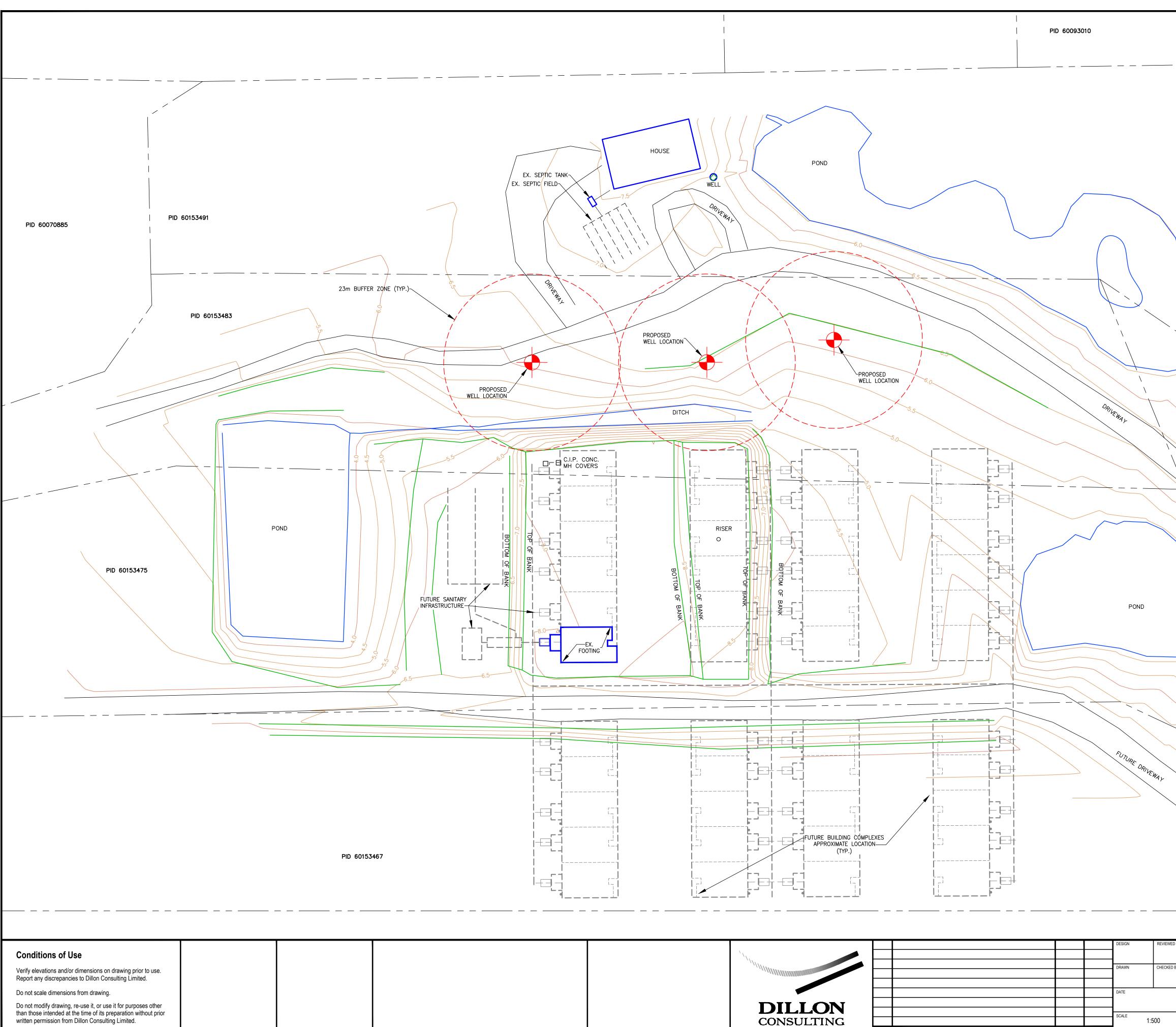
Should you have any questions, please do not hesitate to contact the undersigned.

Yours sincerely,

DILLON CONSULTING LIMITED

D BANKS 4

Kristin Banks, P.Eng. Associate Project Manager


BCG:trw

Ŧ

Enclosure(s)

cc: Mr. Kenneth Cormier

Our file: 15-2555

 		 F	PID 60093010	1	
HOUSE WELL 7.5 WELL	POND			PID 60073780	ROUTE 105
PROPOSED WELL LOCATION	6.0 PRO WEL	0.5 COSED 6.0		PID 60071602	
DITCH		5.0 	DRIVEWAY		
BOTTOM OF BANK	ER HOP OF BANK		POND	PID 60126091	
			FUTURE DRIVEWAY		
	FUTURE BUILDING COMP APPROXIMATE LOCATI	EXES			
			DESIGN REVIEWED BY		0 5 10 20m SCALE 1:500
			DRAWN CHECKED BY	RIVER MIST ESTATES	15-2555 SHEET NO.
	DILLON CONSULTING	No. ISSUED FOR	Image: Constraint of the second system DATE Image: Constraint of the second system DATE Image: Constraint of the second system SCALE Image: Constraint of the second system 1:500	PROPOSED WELL LOCATIONS	1 of 1

Appendix B Boreholes and Water Well Drillers Reports

Kenny's Developments Ltd. River Mist Estates – Water Supply Source Assessment (Final) 336 Route 105, Maugerville, NB February 2016 – 15-2555

Location: Drilling M	336 F	Mist Estates - WSSA Route 105, Maugerville, NB				
Drilling M		Route 105, Maugerville, NB				
	Location: <u>336 Route 105, Maugerville, NB</u> Drilling Method: Air Rotary Drill					
_ Date Star	ted:	<u>11/3/15</u> Date Completed:	11/4/15			
)	Well Construction	Depti Scale (m)			
ос	¥	Potable well completed with above grade protector.	-0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5			
		Potable well completed with 0.15 m casing to 34.9 mbgs (114.5 ft).	- 6.0 - 6.5 - 7.0 - 7.5 - 8.0 - 8.5 - 9.0			
			-9.5 -10.4 -10.4 -11.4 -11.4 -12.4 -12.4 -13.4 -14.4 -14.4 -15.4			
15.2			- 15. - 16. - 16. - 17. - 17.			
	рс 9.1	DC 9.1 9.1 Sand □ DC 15.2	DC First Rest 0C Potable well completed with above grade protector. 9.1 9.1 9.1 9.1 15.2 15.2			

Client:	Kenny's Developments Ltd.	Proje	ct: River	Mist Estates -	WSSA	
Project	t No.: <u>15-2555</u>				laugerville, NB	
Drilling	g Co.: Burpee TM Drilling			d: <u>Air Rotary D</u>		
Field R	Representative: <u>B. Gourley</u>	Date	Started:	11/3/15	Date Completed:	11/4/15
Depth Scale (m)	Stratigraphic Description (continued)	Lithology	Depth (m)	Well Cons	truction	Dept Scal (m)
18.5-	SANDY SILT Grey Sandy Silt <i>(Continued)</i>					-
19.0-						- 19.
19.5						- 19.
20.0-						-20.
20.5						-20.
21.0						-21.
21.5						-21.
22.0						-22.
22.0						-22.
22.5						-23.
23.5						-23.
23.5						-23.
-						-
24.5						-24.
25.0-						-25.
25.5-						-25.
26.0-						-26.
26.5						-26.
27.0						-27.
27.5	FINE GRAVEL		27.4			-27.
28.0	Grey Fine Grained Gravel	0 0 7				28.
28.5						28.
29.0						29.
29.5						-29.
30.0						30.
30.5						-30.
31.0-		200				-31.
31.5						-31.
32.0		200				-32.
32.5-						-32.
33.0-						-33.
33.5			33.5			-33.
34.0	COARSE GRAVEL Grey Coarse Grained Gravel	0°	55.5			-34.
34.5						-34.
35.0-						
	End of well at 35.1 m (115 ft)		35.1		F	
	. ,					

Olianti		D!		(a 1	int Entetee MOO	٨	
	Kenny's Developments Ltd.	-			list Estates - WSS oute 105, Mauger		
-	No.: <u>15-2555</u>				Air Rotary Drill	ville, IND	
	Co.: <u>Burpee TM Drilling</u> epresentative: B. Gourley		Starte			e Completed:	11/6/15
				u			
Depth Scale (m)	Stratigraphic Description	Lithology	Depth (m)		Well Constructio	n	Dep Sca (m
0.5-	SAND Brown Sand		•				-0.5
1.0-							-1.0
1.5							-1.5
2.0							-2.0
2.5-							-2.5
3.0-					Potable well completed with		-3.0
3.5-					above grade		-3.8
4.0-					protector.		-4.0
4.5-							-4.5
5.0-	Static water level encountered at 4.88 mbtoc			Ţ			-5.0
5.5	on Dec 16, 2015.						-5.5
6.0	,						-6.0
6.5							-6.5
7.0							-7.0
7.5					Potable well completed with		-7.5
7.5 8.0					0.15 m casing to 27.4 mbgs (90 ft)		-
_						•	-8.0
8.5-							-8.5
9.0-	CLAYEY SILT	XXX	9.1				-9.0
9.5-	Grey Clayey Silt						-9.5
10.0							-10
10.5							-10
11.0-							-11
11.5							-11
12.0-							-12
12.5-							-12
13.0							-13
13.5-							-13
14.0			1				-14
14.5							-14
15.0-		KK K	15.2				- 15
15.5	SANDY SILT Grey Sandy Silt		10.2				-15
16.0			4				16
16.5			-				16
17.0							17
17.5-							-17
Static W	/ater Level LITHOLOGY Sand				Clayey Silt		

Project	Kenny's Developments Ltd. No.: <u>15-2555</u>	Location: 336 I	Mist Estates - WSSA Route 105, Maugerville, NB	
-	Co.: <u>Burpee TM Drilling</u> epresentative: B. Gourley	Drilling Method: Date Started:	11/5/15 Date Completed:	11/6/15
Depth Scale (m)	Stratigraphic Description	Note Startiour Note Startiour Depth (m)	Well Construction	Dept Scal (m)
18.5 19.0 19.5 20.0 20.5 21.0 22.5 23.0 23.5 24.5 25.5 26.0 25.5 26.0 27.0	SANDY SILT Grey Sandy Silt(Continued)		Submersible pump set at 22.9 mbgs (75 ft).	- 18. - 19. - 19. - 20. - 20. - 21. - 22. - 22. - 22. - 23. - 24. - 24. - 24. - 25. - 26. - 26. - 27.
	Gray Coarse Gravel End of well at 27.4 m (90 ft)	27.4		

DW1 Driller's Report

runswick		VIRONMENT & LO	JUAL GOVER	PLE RECEIVED		WATER WEL	PORT U	1003874
FICE USE ONLY	HEALTH CODE	LAB NO.	SAW	DATE		AUTO A POTING THE	UIII	Charlon Base
LD NO.		EVENT NO.			SAMPLE F	RECEIVED BY:		MOTONOM
ALL OR ALL OF	HEALTH OFFICE	EVENTING.	YR	MO DAY				
		MANDATORY FOR	WATER TEST	P.L.D. NO.		WELL I.D. N	10.	EURSTEX
ESTING VOUCHER INFO	CE PRINT			Libis	348	3 520	705	
E BACK FOR DETAILS PLEA	SHOULD BE THE W	ELL OWNER AT TIME OF SA	AMPLING					Desire Third
RST NAME	AN FROM CASE	LAST NAME		WELL OW	NER INFOR	EREIN SHOULD BE THE	WELL OWNER	AT TIME OF DRILLING
	in the second			FIRST NAME	0		LAST NAME	MELIFICITY J
DDRESS (MAIL RESULTS	ro:)			Ken	lor	rier		1 1 1 4 4
		PROV. POSTA	LCODE	ADDBESS	aL	105		20012 000
ITY/TOWN/VILLAGE		PROV.		350	RE	105	0001	NCE POSTALCODE
	EA	X NO.	- U	CITY/TOWNA	/ILLAGE	la N.B	PROV	24 8GZ
AYTIME PHONE				Ina	izer		6	11 001-
	S/	VE MO DAY	HR MIN	M CIVIC NUMB	ER STREET	S ABOVE OR NAME		
EL, NO.		YR MO DAY	/	M		CAN		
DO YOU NEED A SAMPL	E FOR YOUR M	ORTGAGE?		CITY/TOWN	VILLAGE			R BY PROVINCIAL DEPT
	A REAL PROPERTY OF A REAL PROPER	0	EE BACK FOR DETAILS	1007		En Start, Sulles	OF	WELL I.D.
IF YOU WISH THE RESU MORTGAGE INSTITUTIO	LTS TO BE REL	LUDE THE		WELL ON	RESERVE?	WELL ALREADY TA		THE REAL PROPERTY IN COLUMN
FOLLOWING CONTACT	INFORMATION:			YES	NO	YES NO		134150000
ATTENTION OF:						DRILLER'S	LOG *	
ALTENTION OF		-dingle ob SH4		TOOM (TT)	TO (FT.)	COLOUR		ROCK TYPE
TEL NO.	F	AX NO.		FROM (FT.)	10 111	1		
015-51	in Ends	and the second second	alt i in	Ground	21	Brown	5	and
SIGNATURE OF WELL OWNER				Level	E	Frence	he	rdpar
00.331	Alta ShatM	SPE THE ALL WITCH		20	0	C.C.	C	du silt
WAS THE COST OF THIS W	ELL FINANCED	BY NB HOUSING?		50	70	Chey	6	Car
YES NO	1) Consecution	Manual Cales		-90	110	0.4	6	NG QUE
WELL / WATER USE:		DOMEST		110	115	(Tren	Le	urso grav
	ABANDONED	MONITO				0		10.000
EXPLORATORY	MUNICIPAL OBSERVATIO	and the state of the state						
	OBSERVATION							NEW CREWNIN
TYPE OF WORK COMP					-			
		WELL		-				
OTHER:	St. J. U.S. ORS.	the star party of the		_	4			
METHOD:		THE ST. AND THE		- I and man		the second		No.
	DTARY OT	HER	10 10 10	<u>nu - 1</u>		and the second s		
				-				-
LENGTH OF CASING ABC	VE GROUND:	FT	IN.					- Sectores
STEEL:	DIAM. FROM	0_ FT. TO/ 4.	FT.					
PVC: IN	DIAM, FROM	FT. TO	FT.					XDNV2/G
SLOTTED IN		FT. TO	FT.					
SLOTTED IN	DIAM. FROM		DDWE OUOT		1-0-3-			
SCREENS: TYPE:	SLOT SIZE		DHIVE SHOE					
IN DIAM, FROM						a Deel		_
SETBACKS: SEE BAC	K FOR DETAILS	SEPTIC TANK (1	- the	an Mindiana				
SEPTIC TANK (2)	FT. FIELD (2)	FT. / FIELD (1	1 10 104			on Lemmaria		
) 5 00 BOA	AD (2)					
*RIGHT OF WAY OF ANY PL		And the second s				the second second second second second		
*RIGHT OF WAY OF ANY PU CENTER OF ROAD	(1)	(2)	Contractor 11	T SVENC		FFICIENT SPACE PLE	ASE USE AD	DITIONAL SHEETS

WATER BEARING 1 25 igpm AT 15 FT. 2 igpm AT ____ FT. FLOWING WELL? YES NO- IF YES - RATE: AQUIFER TEST: METHOD: AIR BAILER DUMP FRACTURE ZONES: 3 _____ igpm AT _____ FT. 4 _____ igpm AT _____ FT. FT BELOW TOP OF CASING INITIAL WATER LEVEL PUMP INSTALLATION: INSTALLED NOT INSTALLED PUMPING RATE _____ igpm DURATION: _____ hrs. 3.0___min. PUMP INTAKE SETTING: ______ FT. BELOW TOP OF CASING FINAL WATER LEVEL ______ FT. BELOW TOP OF CASING ESTIMATED SAFE YIELD: ____ ____ ipgm WELL GROUTED? YES NO OTHER FROM ______ FT. TO _____ FT. GROUT TYPE: WELL DISINFECTED? YES NO lani TYPE TYPE: Supper Volli DRILLING COMPANY: DRILLER'S COMMENTS 05 LICENSE NO. COMPLETION DATE: DAY CON WHITE - NBELG BLUE - Homeowner / Voucher qua YELLOW - Homeowner G.P.S. (OPTIONAL) I CERTIFY THAT THE WELL HEREIN DESCRIBED HAS BEEN CONSTRUCTED IN ACCORDANCE WITH THE WATER WELL REGULATION UNDER THE NEW BRUNSWICK CLEAN WATER ACT. PINK - Drilling Company KEEP THIS REPORT WITH YOUR Signature of Helper Signature of Driller Fur Bud IMPORTANT DOCUMENTS

FBS-C7183-Well Drilling Log V3080813

DW2 Driller's Report

IELD NO.	HEALTH CODE	LAB NO.	SAM	PLE RECEIV	ED	DRIL	ATER WI	EPO	RT U	1000)014
IELD NO.	HEALTH OFFICE	EVENT NO.				IPLE RECE		-		1	
	Main Shert	Arter and a state of the state	YR	MO	DAY	10				110	
ESTING VOUCHER INFO	ORMATION	MANDATORY FOR W	ATER TEST	P.I.D. NO).	1	WELL I.D	NO.		1	
SEE BACK FOR DETAILS PLE NFORMATION INCLUDED HEREI	ASE PRINT			601	536	481	-	- 70	106	Xa	
TRST NAME	N SHOULD BE THE V	LAST NAME		WELLO	WNER IN	EODMA		1	00	-	1. THE 2
		n	111				N SHOULD BE TH	HE WELL	OWNER A		DRILLING
DDRESS (MAIL RESULTS	TO:)	ost Growth S		FIRST NAM	. 9 . 1			LAS	ST NAME		TETS TO
CITY/TOWN/VILLAGE		PROV. POSTAL CO	ODE	ADDRESS	N	err	miet.	1	. E .	-	
STI 17TOWIN/VIELAGE		FROM. FOSTAL CO		AUGHESS	0 1	1/10	05 1	No	aer	ville	NB
AYTIME PHONE	FA	X NO.	DITESTO I	CITY/TOWN	WILLAGE	/ /		100	PROVIN	CE POST	AL CODE
				120				E	3A-	8G	2-
EL NO.		MPLE COLLECTED YR MO DAY HR	9 MIN AM	WELL LOC	ATION: SAI		VE OR		1		IC MUMB
and the second			PM.			.5	1mm			1000-	- Service
DO YOU NEED A SAMPL	E FOR YOUR M		BACK FOR	CITY/TOWN	V/VILLAGE			WELL F	AID FOR	BY PROVIN	CIAL DEPT.
F YOU WISH THE RESU		EASED TO A D	DETAILS	- U 189	Contract,	mill	<u>8 </u>	OF			HERRIC
MORTGAGE INSTITUTIO		UDE THE		WELL ON	RESERVE		VELLALREADY T		OLD WI	ELL I.D.	
TTENTION OF:	In our line			TES				<u> </u>			
						1	DRILLER'	S LOG	*		
EL NO.	FA	XX NO.		FROM (FT.)	<u>TO (FT.)</u>		COLOUR			ROCK T	YPE
0.835-257	topold can't 9	is an all fully bet you	d n	Ground	30	K			~	1	
IGNATURE OF WELL OWNER				Level			in		an	$\frac{\alpha}{1}$	and a local
WAS THE COST OF THIS WE			Part of	30	51	46	my	_	hore	par	-
			1	50	89		Treg		Sni	My	stint
WELL / WATER USE:				89	90	G	not		ler	nge	grav
	ABANDONED	DOMESTIC			10.0		0			Photo:	1
	MUNICIPAL	MONITORING								·	item and
	OBSERVATION	OTHER							-		
		× 1				_				FEINER	not string
TYPE OF WORK COMPL	EIED: NEW W		NED								
	1000 - 200				1						
METHOD:	States and a	a lossed and the								11.0	
	ARY OTHE	iR						1-	14		
CASING INSTALLED:	man and a state of the	1 6								- 415	The second
ENGTH OF CASING ABOVE		FT. DIN.						-			
STEEL: <u>6</u> IN DI		10						_			-
PVC: IN DI/	M. FROM	FT. TO FT.	ag .				- V	_			10050
SLOTTED IN DI	AM. FROM	FT. TO FT.								_	
SCREENS: TYPE:	SLOT SIZE	DR	IVE SHOE:	- ATES	TR 1						10-10-
IN DIAM. FROM	ET TO	FT V								14/1	1112411
		YES	,	-	-		_	_			
SETBACKS: SEE BACK FO					5						
SEPTIC TANK (2) F	T. FIELD (2)	FT. FIELD (1)	FT.	C. Barrell			a parts		- 21		
			5 C 11	1							
RIGHT OF WAY OF ANY PUBLI			11.1013	A	12	· A				_	

TOTAL WELL DEPTH: __ <u>70</u> FT. DEPTH TO BEDROCK: __FL FLOWING WELL? YES NO IF YES - RATE: igpm (approx.) WATER BEARING 1 40 igpm AT 10 FT. 2 igpm AT _____ FT. AQUIFER TEST: METHOD: AIR BAILER PUMP INITIAL WATER LEVEL FRACTURE ZONES: 3 __ igpm AT igpm AT _ FT. **FT.** 4 _igpm_DURATION: hrs. SC _ min. PUMP INSTALLATION: INSTALLED NOT INSTALLED FINAL WATER LEVEL: FT. BELOW TOP OF CASING FT. BELOW TOP OF CASING PUMP INTAKE SETTING: 5°C ipgm ESTIMATED SAFE YIELD: WELL GROUTED? YES NO-OTHER FROM _____FT. TO ____FT. GROUT TYPE: WELL DISINFECTED? YES NO DRILLING FLUIDS USED: YES NO hlun TYPE _ TYPE: alall Doulla DRILLER'S COMMENTS 6 DRILLING COMPANY: 06 COMPLETION DATE: LICENSE NO. DAY lesm avu WHITE - NBELG BLUE - Homeowner / Voucher G.P.S. (OPTIONAL) YELLOW - Homeowner I CERTIFY THAT THE WELL HEREIN DESCRIBED HAS BEEN CONSTRUCTED IN ACCORDANCE PINK - Drilling Company WITH THE WATER WELL REGULATION UNDER THE NEW BRUNSWICK CLEAN WATER ACT. Signature of Driller Signature of Helper Aur Bell KEEP THIS REPORT WITH YOUR nk IMPORTANT DOCUMENTS

FBS-C7183-Well Drilling Log V3080813

Appendix C Laboratory Analytical Certificates

Kenny's Developments Ltd. River Mist Estates – Water Supply Source Assessment (Final) 336 Route 105, Maugerville, NB February 2016 – 15-2555

Report ID: 200849-ML-W1 Report Date: 22-Dec-15 Date Received: 21-Dec-15

CERTIFICATE OF ANALYSIS

Tor Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

Attention: Joe Hoyt

Project/Job #: 15-2555

Client Location: River Mist Microbiological Examination of Water

MICRODIOIOGICAL EXAMINATION OF WATER	or water			
RPC Sample ID:				200849-1
Client Sample ID:				DW2-72 HR
Date Sampled:				19-Dec-15
Time Sampled:				12:00:00 PM
Analytes	Method ID	Date Analyzed	Units	
Total Coliforms	FFA01	21-Dec-15	MPN/100mL	0
E. coli	FFA01	21-Dec-15	MPN/100mL	0
This report relates only to the sample(s) and information provided to the Jahoratory	information provided to the Jahoratony			

This report relates only to the sample(s) and information provided to the laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection

Branch and/or AOAC Official Methods.

Λ

Cornelia Maston Acting Micro Supervisor Food, Fisheries & Aquaculture

MICRO WATER Page 1 of 1

Gillian Hodges Micro Technician

Food, Fisheries & Aquaculture

21 College Hill Rd 221 College Hill Rd Fredericton NB Canada E38 629 Tel: 506.452.1368 Fax: 506.452.1368 Fax: 506.452.1368 www.rpc.ca

for Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt **Project #: 15-2555**

Location: River Mist

Analysis of Water

RPC Sample ID:			200849-1	200849-2
Client Sample ID:			DW2-72 HR	DW1-72 HR
Date Sampled:			19-Dec-15	19-Dec-15
Analytes	Units	RL		
Sodium	mg/L	0.05	11.9	10.0
Potassium	mg/L	0.02	1.22	1.92
Calcium	mg/L	0.05	35.0	39.3
Magnesium	mg/L	0.01	4.36	5.50
Iron	mg/L	0.02	0.06	2.94
Manganese	mg/L	0.001	0.007	0.353
Copper	mg/L	0.001	0.011	0.001
Zinc	mg/L	0.001	0.032	0.003
Ammonia (as N)	mg/L	0.05	< 0.05	< 0.05
рН	units	-	7.3	8.3
Alkalinity (as $CaCO_3$)	mg/L	2	104	120
Chloride	mg/L	0.5	20.5	27.2
Sulfate	mg/L	1	9	8
Nitrate + Nitrite (as N)	mg/L	0.05	0.11	< 0.05
o-Phosphate (as P)	mg/L	0.01	0.03	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	13.8	1.6
Carbon - Total Organic	mg/L	0.5	0.7	0.9
Turbidity	NTU	0.1	0.7	17.4
Conductivity	µS/cm	1	284	337
Calculated Parameters				
Bicarbonate (as $CaCO_3$)	mg/L	-	104.	118.
Carbonate (as $CaCO_3$)	mg/L	-	0.195	2.21
Hydroxide (as CaCO ₃)	mg/L	-	0.010	0.100
Cation Sum	meq/L	-	2.66	3.07
Anion Sum	meq/L	-	2.85	3.33
Percent Difference	%	-	-3.54	-4.11
Theoretical Conductivity	µS/cm	-	266	301
Hardness (as CaCO ₃)	mg/L	0.2	105	121
Ion Sum	mg/L	-	160	170
Saturation pH (5°C)	units	-	8.0	7.9
Langelier Index (5°C)	-	-	-0.74	0.36

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

WATER CHEMISTRY Page 1 of 3

Krista Skinner

Krista Skinner Chemical Technician Inorganic Analytical Chemistry

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt
Project #: 15-2555

Location: River Mist

Analysis of Metals in Water

RPC Sample ID:			200849-1	200849-2
Client Sample ID:			DW2-72 HR	DW1-72 HR
Date Sampled:			19-Dec-15	19-Dec-15
Analytes	Units	RL		
Aluminum	µg/L	1	6	8
Antimony	µg/L	0.1	< 0.1	0.3
Arsenic	μg/L	1	< 1	< 1
Barium	µg/L	1	36	210
Beryllium	µg/L	0.1	< 0.1	< 0.1
Bismuth	µg/L	1	< 1	< 1
Boron	μg/L	1	12	14
Cadmium	μg/L	0.01	0.03	< 0.01
Calcium	µg/L	50	35000	39300
Chromium	µg/L	1	1	1
Cobalt	µg/L	0.1	< 0.1	< 0.1
Copper	µg/L	1	11	1
Iron	μg/L	20	60	2940
Lead	µg/L	0.1	1.6	0.2
Lithium	μg/L	0.1	1.4	2.7
Magnesium	μg/L	10	4360	5500
Manganese	µg/L	1	7	353
Molybdenum	µg/L	0.1	0.9	0.6
Nickel	µg/L	1	< 1	< 1
Potassium	µg/L	20	1220	1920
Rubidium	µg/L	0.1	0.8	1.0
Selenium	µg/L	1	< 1	< 1
Silver	µg/L	0.1	< 0.1	< 0.1
Sodium	µg/L	50	11900	10000
Strontium	µg/L	1	139	196
Tellurium	μg/L	0.1	< 0.1	< 0.1
Thallium	μg/L	0.1	< 0.1	< 0.1
Tin	μg/L	0.1	0.1	0.5
Uranium	μg/L	0.1	0.6	< 0.1
Vanadium	μg/L	1	< 1	< 1
Zinc	μg/L	1	32	3

Report ID:200849-IASReport Date:04-Jan-16Date Received:21-Dec-15

CERTIFICATE OF ANALYSIS

for Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt **Project #: 15-2555** Location: River Mist

Analysis of Water			
RPC Sample ID:			200826-1
Client Sample ID:			DW2-48 HR
Date Sampled:	Line in a		18-Dec-15
Analytes	Units	RL	40.7
Sodium	mg/L	0.05	12.7
Potassium	mg/L	0.02	1.26
Calcium	mg/L	0.05	36.0
Magnesium	mg/L	0.01	4.53
Iron	mg/L	0.02	0.10
Manganese	mg/L	0.001	0.007
Copper	mg/L	0.001	0.003
Zinc	mg/L	0.001	0.009
Ammonia (as N)	mg/L	0.05	< 0.05
pH	units	-	7.1
Alkalinity (as CaCO ₃)	mg/L	2	100
Chloride	mg/L	0.5	20.0
Sulfate	mg/L	1	9
Nitrate + Nitrite (as N)	mg/L	0.05	0.10
o-Phosphate (as P)	mg/L	0.01	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	13.8
Carbon - Total Organic	mg/L	0.5	0.7
Turbidity	NTU	0.1	0.6
Conductivity	μS/cm	1	280
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L		99.9
Carbonate (as CaCO ₃)	mg/L		0.118
Hydroxide (as CaCO ₃)	mg/L		0.006
Cation Sum	meq/L		2.76
Anion Sum	meq/L		2.76
Percent Difference	%		0.05
Theoretical Conductivity	μS/cm		266
Hardness (as CaCO ₃)	mg/L	0.2	108
Ion Sum	mg/L	0.2	159
Saturation pH (5°C)	units		8.0
	units	+ - +	-0.95
Langelier Index (5°C)	-	-	-0.95

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

WATER CHEMISTRY

Page 1 of 3

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4 921 College Hill Rd

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt			
Project #: 15-2555			
Location: River Mist			
Analysis of Metals in Water			
RPC Sample ID:			200826-1
Client Sample ID:			DW2-48 HR
·			
Date Sampled:			18-Dec-15
Analytes	Units	RL	
Aluminum	µg/L	1	12
Antimony	µg/L	0.1	< 0.1
Arsenic	µg/L	1	< 1
Barium	μg/L	1	37
Beryllium	µg/L	0.1	< 0.1
Bismuth	µg/L	1	< 1
Boron	µg/L	1	10
Cadmium	µg/L	0.01	0.01
Calcium	µg/L	50	36000
Chromium	µg/L	1	1
Cobalt	µg/L	0.1	< 0.1
Copper	µg/L	1	3
Iron	µg/L	20	100
Lead	µg/L	0.1	0.8
Lithium	μg/L	0.1	1.4
Magnesium	µg/L	10	4530
Manganese	µg/L	1	7
Molybdenum	μg/L	0.1	0.8
Nickel	μg/L	1	< 1
Potassium	µg/L	20	1260
Rubidium	µg/L	0.1	0.8
Selenium	µg/L	1	< 1
Silver	µg/L	0.1	< 0.1
Sodium	µg/L	50	12700
Strontium	μg/L	1	142
Tellurium	μg/L	0.1	< 0.1
Thallium	μg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	μg/L	0.1	0.5
Vanadium	μg/L	1	< 1
Zinc	μg/L	1	9

Report ID:200826-IASReport Date:30-Dec-15Date Received:18-Dec-15

CERTIFICATE OF ANALYSIS

for Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt **Project #: 15-2555** Location: River Mist

Analysis of Water			
RPC Sample ID:			200759-1
Client Sample ID:			DW2-24 HR
Date Sampled:			17-Dec-15
Analytes	Units	RL	40.0
Sodium	mg/L	0.05	13.6
Potassium	mg/L	0.02	1.25
Calcium	mg/L	0.05	35.4
Magnesium	mg/L	0.01	4.44
Iron	mg/L	0.02	0.09
Manganese	mg/L	0.001	0.005
Copper	mg/L	0.001	0.007
	mg/L	0.001	0.018
Ammonia (as N)	mg/L	0.05	< 0.05
pH	units	-	7.4
Alkalinity (as CaCO ₃)	mg/L	2	100
Chloride	mg/L	0.5	25.0
Sulfate	mg/L	1	9
Nitrate + Nitrite (as N)	mg/L	0.05	0.13
o-Phosphate (as P)	mg/L	0.01	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	13.4
Carbon - Total Organic	mg/L	0.5	0.8
Turbidity	NTU	0.1	1.0
Conductivity	µS/cm	1	275
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	99.8
Carbonate (as $CaCO_3$)	mg/L	-	0.236
Hydroxide (as CaCO ₃)	mg/L	-	0.013
Cation Sum	meq/L	-	2.76
Anion Sum	meq/L	-	2.90
Percent Difference	%	-	-2.46
Theoretical Conductivity	µS/cm	-	276
Hardness (as CaCO ₃)	mg/L	0.2	107
Ion Sum	mg/L	-	164
Saturation pH (5°C)	units	-	8.1
Langelier Index (5°C)	-		-0.65

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

WATER CHEMISTRY

Page 1 of 3

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4 921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594

www.rpc.ca

Attention: Joe Hoyt			
Project #: 15-2555			
Location: River Mist			
Analysis of Metals in Wa	ater		
RPC Sample ID:			200759-1
Client Sample ID:			DW2-24 HR
Date Sampled:			17-Dec-15
Analytes	Units	RL	
Aluminum	μg/L	1	9
Antimony	μg/L	0.1	< 0.1
Arsenic	μg/L	1	< 1
Barium	μg/L	1	37
Beryllium	μg/L	0.1	< 0.1
Bismuth	μg/L	1	< 1
Boron	μg/L	1	12
Cadmium	μg/L	0.01	0.02
Calcium	μg/L	50	35400
Chromium	μg/L	1	< 1
Cobalt	μg/L	0.1	< 0.1
Copper	μg/L	1	7
Iron	μg/L	20	90
Lead	μg/L	0.1	1.5
Lithium	µg/L	0.1	1.4
Magnesium	μg/L	10	4440
Manganese	µg/L	1	5
Molybdenum	μg/L	0.1	0.6
Nickel	µg/L	1	< 1
Potassium	μg/L	20	1250
Rubidium	μg/L	0.1	0.7
Selenium	μg/L	1	< 1
Silver	μg/L	0.1	< 0.1
Sodium	μg/L	50	13600
Strontium	μg/L	1	139
Tellurium	μg/L	0.1	< 0.1
Thallium	μg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	μg/L	0.1	0.5
Vanadium	μg/L	1	< 1
Zinc	µg/L	1	18

Report ID:200759-IASReport Date:23-Dec-15Date Received:17-Dec-15

CERTIFICATE OF ANALYSIS

for Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt **Project #: 15-2555** Location: River Mist

Analysis of Water			
RPC Sample ID:			200671-1
Client Sample ID:			DW2-OHR
Date Sampled:			16-Dec-15
Analytes	Units	RL	45.5
Sodium	mg/L	0.05	15.5
Potassium	mg/L	0.02	1.18
Calcium	mg/L	0.05	30.4
Magnesium	mg/L	0.01	3.90
Iron	mg/L	0.02	0.21
Manganese	mg/L	0.001	0.015
Copper	mg/L	0.001	0.003
Zinc	mg/L	0.001	0.005
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	6.9
Alkalinity (as CaCO ₃)	mg/L	2	84
Chloride	mg/L	0.5	29.2
Sulfate	mg/L	1	10
Nitrate + Nitrite (as N)	mg/L	0.05	0.22
o-Phosphate (as P)	mg/L	0.01	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	13.7
Carbon - Total Organic	mg/L	0.5	0.6
Turbidity	NTU	0.1	2.4
Conductivity	µS/cm	1	262
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	83.9
Carbonate (as $CaCO_3$)	mg/L	-	0.063
Hydroxide (as CaCO ₃)	mg/L	-	0.004
Cation Sum	meq/L	-	2.55
Anion Sum	meq/L	-	2.73
Percent Difference	%	-	-3.26
Theoretical Conductivity	µS/cm	-	262
Hardness (as CaCO ₃)	mg/L	0.2	92.0
lon Sum	mg/L	-	156
Saturation pH (5°C)	units	-	8.2
Langelier Index (5°C)	-	-	-1.29

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

WATER CHEMISTRY

Page 1 of 3

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

for

Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4 rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Joe Hoyt			
Project #: 15-2555			
Location: River Mist			
Analysis of Metals in Wa	iter		
RPC Sample ID:			200671-1
Client Sample ID:			DW2-OHR
Date Sampled:			16-Dec-15
Analytes	Units	RL	
Aluminum	μg/L	1	32
Antimony	µg/L	0.1	< 0.1
Arsenic	µg/L	1	< 1
Barium	μg/L	1	38
Beryllium	μg/L	0.1	< 0.1
Bismuth	µg/L	1	< 1
Boron	µg/L	1	13
Cadmium	µg/L	0.01	< 0.01
Calcium	μg/L	50	30400
Chromium	µg/L	1	< 1
Cobalt	µg/L	0.1	< 0.1
Copper	µg/L	1	3
Iron	µg/L	20	210
Lead	µg/L	0.1	1.4
Lithium	µg/L	0.1	1.5
Magnesium	μg/L	10	3900
Manganese	µg/L	1	15
Molybdenum	μg/L	0.1	0.2
Nickel	µg/L	1	< 1
Potassium	µg/L	20	1180
Rubidium	µg/L	0.1	0.6
Selenium	μg/L	1	< 1
Silver	µg/L	0.1	< 0.1
Sodium	μg/L	50	15500
Strontium	μg/L	1	123
Tellurium	μg/L	0.1	< 0.1
Thallium	μg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	μg/L	0.1	0.1
Vanadium	μg/L	1	< 1
Zinc	μg/L	1	5

Report ID:200671-IASReport Date:23-Dec-15Date Received:16-Dec-15

CERTIFICATE OF ANALYSIS

for Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, NB E3B 3H4

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

Appendix D Disclaimer

Kenny's Developments Ltd. River Mist Estates – Water Supply Source Assessment (Final) 336 Route 105, Maugerville, NB February 2016 – 15-2555

DISCLAIMER

The material in this report reflects Dillon's best judgement in light of the information available to Dillon at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Dillon accepts no responsibility for damages, if any, suffered by any third party as a result of decisions or actions based on this report.

References

Atlantic Canada Water & Waste Water Association (ACWWA) (2004). Atlantic Canada Guidelines for the Supply, Treatment, Storage, Distribution and Operation of Drinking Water Supply Systems.

Environment Canada (2015). Canadian Climate Normals (1981-2010 Climate Normals & Averages). <u>http://climate.weather.gc.ca/climate_normals/index_e.html</u>. Accessed 2016.

Government of New Brunswick (2016). GeoSNB Map Viewer. http://www.snb.ca/geonb1/e/ Apps/<u>viewer-map-E.asp</u>. Accessed 2016.

Health Canada (2014). Guidelines for Canadian Drinking Water Quality-Summary Table. Water and Air Quality Bureau, Health Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.

NBDELG, March 2014. Environmental Impact Assessment: Water Supply Source Assessment Guidelines. http://www2.gnb.ca/content/gnb/en/ departments/elg/environment /content/water.html. Accessed 2016.

NBDELG, April 2012. A Guide to Environmental Impact Assessment in New Brunswick. http://www2.gnb.ca/content/gnb/en/departments/elg/environment/content/environmental_i mpactassessment.html . Accessed 2016.

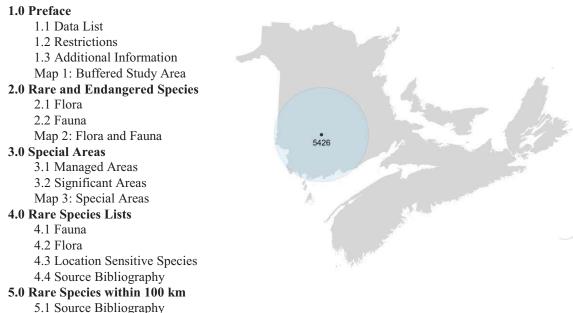
Appendix B Regulatory Environment

Kenny's Developments Limited River Mist Estates Development Environmental Impact Assessment Registration (Final) March 2015 – 14-8895

Legislation/Guidance Document	Responsible Authority	Description or Potential Trigger/Authorization
Legislation/Guidance Document	or Department	beschption of Potential Higger/Authonization
PROVINCIAL (New Brunswick) LEGISLATI	ION, GUIDELINES AND PE	RMITS
Clean Environment Act	New Brunswick	
	Department of	Undertaking on Schedule A of the EIA Regulation.
	Environment and Local	Undertaking on Schedule A of the EIA Regulation.
	Government (DELG)	
Clean Environment Act – Certificate of	DELG	
Approval to Construct and Operate Clean Environment Act - Water Quality	DELG	The project must comply with provincial approvals to operate.
Regulation	DELG	The Water Quality Regulation (82-126) - Clean Environment Act requires owners or operators of a source of water contaminants to obtain an
Regulation		approval for the construction, operation, or modification of the source. This applies to anyone constructing, operating, and/or modifying a facility that is considered by the department to be a source of contaminant. This applies to most existing or new industrial and some commercial or
		institutional facilities in New Brunswick.
Clean Air Act - Air Quality Regulation	DELG	Every source of emissions in the province, whether it's an individual or company, must obtain an Air Quality Approval and specifies operating
		conditions and emission limits. Approvals are classified according to the volume of emissions released – the lower the volume of emissions, the
		lower the class designation.
		-
		Class 1 sources release the most emissions in the province. Other resources are designated as Class 2, 3 or 4 facilities, depending on the level
		of their emissions. Only Class 1 sources have a formal, public participation component in their approval process.
Clean Water Act	DELG	Wetland and Watercourse Alteration Regulation for working within 30 m of a wetland/watercourse.
Clean Water Act - Potable Water Regulation	DELG	An owner of a regulated water supply system shall have a sampling plan approved by the Minister and ensure that water in the system is collected
		and tested in accordance with the plan. The plan shall include frequency of testing, parameters to be tested for, description of sample collection
Petroleum Product Storage and Handling	DELG	locations, date sampling is to commence, and any other information the Minister considers necessary.
Regulation	DELG	Authorization to store and handle petroleum products above and below ground.
Atlantic Canada Guidelines for the Supply,	DELG	1
Treatment, Storage, Distribution, and	DELO	
Operation of Drinking Water Supply Systems		
2004		Guide for developing and designing water supply projects in Atlantic Canada.
Guideline for Management of Contaminated	DELG	Outlines roles and responsibilities for those involved with contaminated site management based on a risk-based approach. Addresses protection
Sites Version 2		of human health and the environment.
Atlantic RBCA User Guidance (Revised	DELG	Risk-Based approach to contaminated sites management and applicable criteria for site assessment.
January 2015)		
New Brunswick Species at Risk Act	New Brunswick	To prevent wildlife species from being extirpated from the Province, to provide for the recovery of wildlife species that are extirpated, endangered
	Department of Natural Resources	or threatened as a result of human activity and to conserve species of special concern to prevent them from becoming endangered or threatened.
New Brunswick Heritage Protection Act	Tourism, Heritage and	
New Drunswick Hentage Protection Act	Culture	The Act explicitly confirms the Province's ownership of all archaeological, palaeontological and burial site heritage objects in New Brunswick. Any such objects determined to be of aboriginal origin are specifically 'held in trust' on behalf of First Nations people and their communities. The
	oullaro	Jacon operus determined up de or aborginal origin ale specificarja ned in dus on benari on nas realions people and den communities. The Jegislation requires mandatory reporting of all potential heritage object discoveries to provincial authorities, introduces regulations for heritage
		impact assessment, and prohibits the alteration of any heritage bace in the Province without specific government approval.
Duty to Consult Policy	Aboriginal Affairs New	Government of New Brunswick will consult with First Nations before an action or decision is taken that may adversely impact Aboriginal and treaty
	Brunswick	rights.
FEDERAL LEGISLATION, GUIDELINES AN	ID PERMITS	
Fisheries Act	Fisheries and Oceans	Aims to provide for the sustainability and ongoing productivity of commercial, recreational and Aboriginal fisheries. The four factors to be taken
	Canada (DFO)	into account by the Minister in decision-making (e.g. issuing authorizations) or making regulations are:
		The contribution of the relevant fish to the on-going productivity of commercial, recreational or Aboriginal fisheries;
		Fisheries management objectives;
		• Whether there are measures and standards to avoid, mitigate or offset serious harm to fish that are part of a commercial, recreational or
		Aboriginal fishery; and,
		 The public interest. Taken together, these provide a framework and direction to the Minister and Fisheries and Oceans Canada staff for decision-making, developing
		radient ogener, urse provide a namework and direction or the minister and risheries and oceans canada stan for decision making, developing regulations and implementing the regulatory regime and program.
Guidelines for Canadian Drinking Water	Environment Canada	The Guidelines give specific limits for concentrations of water quality parameters including microbiological parameters, chemical and physical
Quality Summary Table (October 2014)		parameters, and radiological parameters.
Migratory Birds Convention Acts (MBCA) and	I Environment Canada	
Regulations		Effects on migratory birds or their habitat.
Canadian Environmental Protection Act	Environment	
	Canada/Health Canada	Accidents or spills leading to potential pollution or impacts to the environment and human health
Canadian Environmental Protection Act	Environment Capada/Health Capada	Aims at enhancing the protection of the environment and human health in environmental emergency situations by promoting prevention and
Environmental Emergency Regulations	Canada/Health Canada	ensuring preparedness, response and recovery. They will mandate persons who own or manage specified toxic and hazardous substances at or
		above the specified thresholds to provide required information on the substance(s), their quantities and to prepare and implement environmental emergency plans.
Canada Labour Code	Human Resources and	
	Skills Development	Provides direction on safety issues to ensure that all projects must be conducted in a safe manner and ensure that no environmental aspects
	Canada	infringe on the safety of a federal site, workers or occupants.
Transportation of Dangerous Goods Act	Transport Canada	The Act applies to all shipping and handling dangerous goods, offering for transport and transporting of dangerous goods by any means of
		transport whether or not the goods originate from or are destined for any place or places in Canada.
Canadian Electrical Code	Canadian Standards	Electrical fixtures and controls in screening areas where hazardous gases may accumulate shall comply.
	Association	allounder induced and controls in dereening allous where hazaroous guess may accumulate anali comply.

Appendix C Atlantic Canada Conservation Data Center (ACCDC) Report

Kenny's Developments Limited River Mist Estates Development Environmental Impact Assessment Registration (Final) March 2015 – 14-8895



DATA REPORT 5426: Maugerville, NB

Prepared 25 August 2015 by J. Churchill, Data Manager

CONTENTS OF REPORT

Map 1. A 100 km buffer around the study area

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (ACCDC) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The ACCDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the ACCDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees. URL: www.ACCDC.com.

Upon request and for a fee, the ACCDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the ACCDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

Included datasets:	
Filename	Contents
MaugervilleNB_5426ob.xls	All Rare and legally protected Flora and Fauna within 5 km of your study area
MaugervilleNB_5426ob100km.xls	A list of Rare and legally protected Flora and Fauna within 100 km of your study area
MaugervilleNB_5426ma.xls	All Managed Areas in your study area
MaugervilleNB_5426sa.xls	All Significant Natural Areas in your study area
MaugervilleNB_5426ff.xls	Rare and common Freshwater Fish in your study area (DFO database)

1.1 DATA LIST

1.2 RESTRICTIONS

The ACCDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting ACCDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The ACCDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) ACCDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) ACCDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an ACCDC data response.

1.3 ADDITIONAL INFORMATION

The attached file DataDictionary 2.1.pdf provides metadata for the data provided.

Please direct any additional questions about ACCDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries

Sean Blaney, Senior Scientist, Executive Director Tel: (506) 364-2658 sblaney@mta.ca

Animals (Fauna) John Klymko, Zoologist Tel: (506) 364-2660 jklymko@mta.ca

Data Management, GIS

James Churchill, Data Manager Tel: (902) 679-6146 jlchurchill@mta.ca Plant Communities Sarah Robinson , Community Ecologist Tel: (506) 364-2664 srobinson@mta.ca

Billing Jean Breau Tel: (506) 364-2659 jrbreau@mta.ca

Questions on the biology of Federal Species at Risk can be directed to ACCDC: (506) 364-2657, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

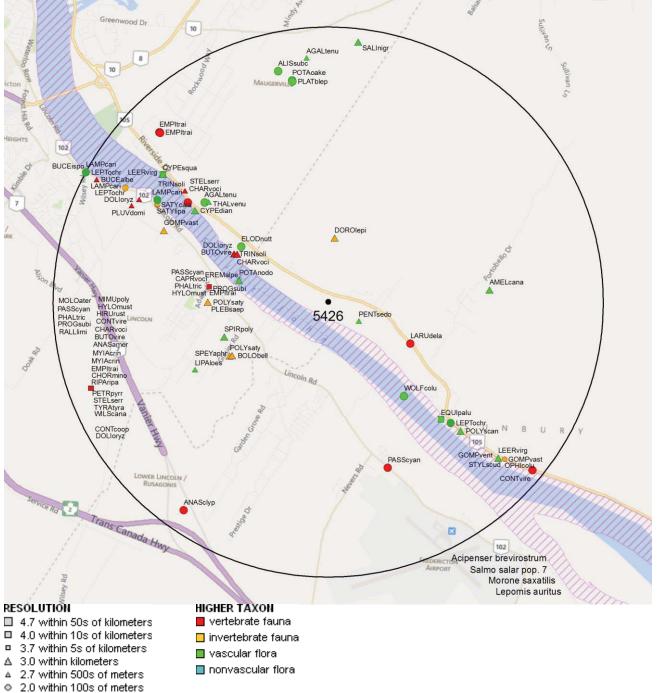
For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Stewart Lusk, Natural Resources: (506) 453-7110.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Sherman Boates, NSDNR: (902) 679-6146. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NSDNR Regional Biologist:

Western: Duncan Bayne (902) 648-3536 <u>baynedz@gov.ns.ca</u>	Western: Donald Sam (902) 634-7525 samdx@gov.ns.ca	Central : Shavonne Meyer (902) 893-6353 <u>meyersj@gov.ns.ca</u>	Central: Kimberly George (902) 893-5630 georgeka@gov.ns.ca
Eastern: Mark Pulsifer (902) 863-7523	Eastern: Donald Anderson (902) 295-3949	Eastern : Terry Power (902) 563-3370	
<u>pulsifmd@gov.ns.ca</u>	andersdg@gov.ns.ca	<u>powertd@gov.ns.ca</u>	

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Rosemary Curley, PEI Dept. of Agriculture and Forestry: (902) 368-4807.

2.0 RARE AND ENDANGERED SPECIES


2.1 FLORA

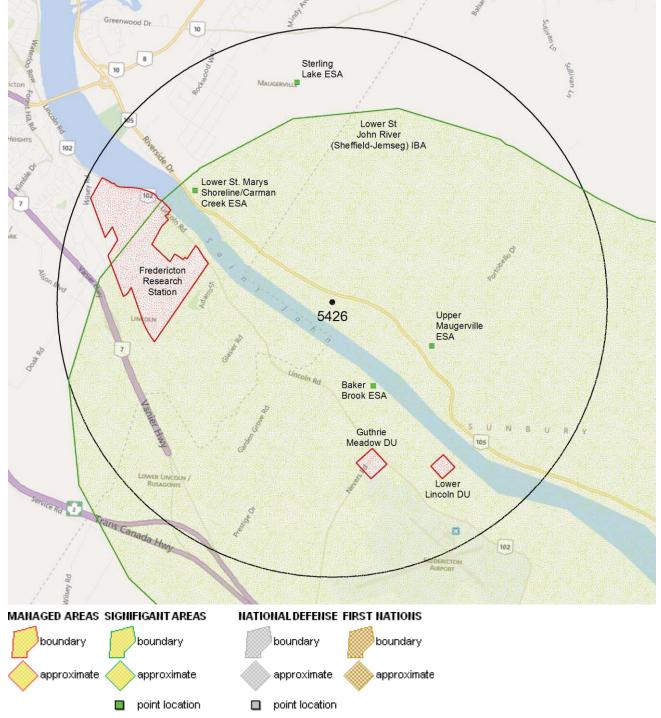
A 5 km buffer around the study area contains 23 records of 18 vascular, no records of nonvascular flora (Map 2 and attached: *ob.xls).

2.2 FAUNA

A 5 km buffer around the study area contains 101 records of 30 vertebrate, 25 records of 13 invertebrate fauna (Map 2 and attached data files - see 1.1 Data List). Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

Map 2: Known observations of rare and/or protected flora and fauna within 5 km of the study area.

3.0 SPECIAL AREAS


3.1 MANAGED AREAS

The GIS scan identified 3 managed areas in the vicinity of the study area (Map 3 and attached file: *ma*.xls)

3.2 SIGNIFICANT AREAS

The GIS scan identified 5 biologically significant sites in the vicinity of the study area (Map 3 and attached file: *sa*.xls)

Map 3: Boundaries and/or locations of known Managed and Significant Areas within 5 km of the study area.

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the 5 km-buffered area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community.

4.1 FLORA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Ρ	Agalinis tenuifolia	Slender Agalinis				S1	2 May Be At Risk	2	2.9 ± 0.0
Ρ	Alisma subcordatum	Southern Water Plantain				S1	5 Undetermined	1	4.3 ± 0.0
Ρ	Cyperus diandrus	Low Flatsedge				S1	2 May Be At Risk	2	2.9 ± 1.0
Ρ	Potamogeton nodosus	Long-leaved Pondweed				S1	2 May Be At Risk	2	1.7 ± 1.0
Ρ	Wolffia columbiana	Columbian Watermeal				S1?	2 May Be At Risk	1	2.2 ± 0.0
Ρ	Cyperus squarrosus	Awned Flatsedge				S2	3 Sensitive	1	3.8 ± 10.0
Ρ	Elodea nuttallii	Nuttall's Waterweed				S2	3 Sensitive	1	1.9 ± 0.0
Ρ	Leersia virginica	White Cut Grass				S2	2 May Be At Risk	3	3.8 ± 1.0
Ρ	Penthorum sedoides	Ditch Stonecrop				S3	4 Secure	1	0.7 ± 0.0
Ρ	Polygonum scandens	Climbing False Buckwheat				S3	4 Secure	1	3.4 ± 1.0
Ρ	Thalictrum venulosum	Northern Meadow-rue				S3	4 Secure	1	2.8 ± 0.0
Ρ	Amelanchier canadensis	Canada Serviceberry				S3	4 Secure	1	2.9 ± 1.0
Ρ	Salix nigra	Black Willow				S3	3 Sensitive	1	4.8 ± 1.0
Ρ	Liparis loeselii	Loesel's Twayblade				S3	4 Secure	1	2.7 ± 0.0
Ρ	Platanthera blephariglottis	White Fringed Orchid				S3	4 Secure	1	4.1 ± 0.0
Ρ	Equisetum palustre	Marsh Horsetail				S3	4 Secure	1	3.0 ± 10.0
Ρ	Spirodela polyrrhiza	Great Duckweed				S3S4	4 Secure	1	2.0 ± 1.0
Ρ	Potamogeton oakesianus	Oakes' Pondweed				S3S4	4 Secure	1	4.1 ± 0.0

4.2 FAUNA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
А	Hylocichla mustelina	Wood Thrush	Threatened		Threatened	S1S2B	2 May Be At Risk	3	2.2 ± 7.0
Α	Caprimulgus vociferus	Whip-Poor-Will	Threatened	Threatened	Threatened	S2B	1 At Risk	6	2.2 ± 7.0
Α	Chordeiles minor	Common Nighthawk	Threatened	Threatened	Threatened	S3B	1 At Risk	2	4.6 ± 7.0
Α	Hirundo rustica	Barn Swallow	Threatened		Threatened	S3B	3 Sensitive	5	4.6 ± 7.0
Α	Riparia riparia	Bank Swallow	Threatened			S3B	3 Sensitive	2	4.6 ± 7.0
Α	Contopus cooperi	Olive-sided Flycatcher	Threatened	Threatened	Threatened	S3S4B	1 At Risk	1	4.6 ± 7.0
Α	Wilsonia canadensis	Canada Warbler	Threatened	Threatened	Threatened	S3S4B	1 At Risk	3	4.6 ± 7.0
Α	Dolichonyx oryzivorus	Bobolink	Threatened		Threatened	S3S4B	3 Sensitive	4	1.9 ± 1.0
Α	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye - Eastern pop.	Special Concern	Special Concern	Special Concern	S2N	3 Sensitive	1	4.8 ± 0.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern		Special Concern	S4B	4 Secure	4	4.6 ± 7.0
Α	Phalaropus tricolor	Wilson's Phalarope				S1B	3 Sensitive	2	2.2 ± 7.0
Α	Butorides virescens	Green Heron				S1S2B	3 Sensitive	2	1.9 ± 1.0
Α	Empidonax traillii	Willow Flycatcher				S1S2B	3 Sensitive	9	2.2 ± 7.0
Α	Progne subis	Purple Martin				S1S2B	2 May Be At Risk	4	2.2 ± 7.0
Α	Stelgidopteryx serripennis	Northern Rough-winged Swallow				S1S2B	2 May Be At Risk	2	3.1 ± 0.0
Α	Anas clypeata	Northern Shoveler				S2B	4 Secure	1	4.6 ± 0.0
Α	Eremophila alpestris	Horned Lark				S2B	2 May Be At Risk	1	2.2 ± 7.0
Α	Tringa solitaria	Solitary Sandpiper				S2B,S5M	4 Secure	8	1.9 ± 1.0
Α	Anas americana	American Wigeon				S3B	4 Secure	2	4.6 ± 7.0
Α	Rallus limicola	Virginia Rail				S3B	3 Sensitive	1	4.6 ± 7.0
Α	Charadrius vociferus	Killdeer				S3B	3 Sensitive	9	1.9 ± 1.0
Α	Larus delawarensis	Ring-billed Gull				S3B	4 Secure	1	1.7 ± 0.0
А	Myiarchus crinitus	Great Crested Flycatcher				S3B	3 Sensitive	4	4.6 ± 7.0

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Α	Mimus polyglottos	Northern Mockingbird				S3B	3 Sensitive	3	4.6 ± 7.0
А	Passerina cyanea	Indigo Bunting				S3B	4 Secure	4	2.2 ± 7.0
А	Molothrus ater	Brown-headed Cowbird				S3B	2 May Be At Risk	3	4.6 ± 7.0
А	Pluvialis dominica	American Golden-Plover				S3M	3 Sensitive	1	3.9 ± 0.0
А	Bucephala albeola	Bufflehead				S3N	3 Sensitive	1	4.8 ± 0.0
А	Tyrannus tyrannus	Eastern Kingbird				S3S4B	3 Sensitive	5	4.6 ± 7.0
А	Petrochelidon pyrrhonota	Cliff Swallow				S3S4B	3 Sensitive	7	4.6 ± 7.0
1	Gomphus ventricosus	Skillet Clubtail	Endangered		Endangered	S1	2 May Be At Risk	1	4.3 ± 0.0
1	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S2	3 Sensitive	4	3.6 ± 0.0
1	Ophiogomphus colubrinus	Boreal Snaketail				S1S2	2 May Be At Risk	1	4.3 ± 0.0
1	Satyrium calanus	Banded Hairstreak				S2	3 Sensitive	2	3.6 ± 0.0
1	Gomphus vastus	Cobra Clubtail				S2	3 Sensitive	5	3.3 ± 1.0
1	Plebejus saepiolus	Greenish Blue				S3	4 Secure	1	2.2 ± 1.0
1	Speyeria aphrodite	Aphrodite Fritillary				S3	4 Secure	1	2.0 ± 1.0
1	Boloria bellona	Meadow Fritillary				S3	4 Secure	1	2.0 ± 1.0
1	Polygonia satyrus	Satyr Comma				S3	4 Secure	3	2.0 ± 1.0
1	Dorocordulia lepida	Petite Emerald				S3	4 Secure	1	1.2 ± 1.0
1	Stylurus scudderi	Zebra Clubtail				S3	4 Secure	1	4.3 ± 0.0
1	Leptodea ochracea	Tidewater Mucket				S3	4 Secure	3	3.1 ± 0.0
Ι	Satyrium liparops	Striped Hairstreak				S3S4	4 Secure	1	3.6 ± 0.0

4.3 LOCATION SENSITIVE SPECIES

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting a 5 km buffer of your study area are indicated below with "YES".

New Brunswick Scientific Name	Common Name	SARA	Prov Legal Prot	Known within 5 km of Study Site?
Chrysemys picta picta	Eastern Painted Turtle			No
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	YES
Haliaeetus leucocephalus	Bald Eagle		Endangered	YES
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.	Special Concern	Endangered	No
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat Hibernaculum	-	[Endangered] ¹	[Endangered] ¹	YES

1 Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

The recipient of these data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

recs CITATION

- 54 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 29 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 11 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
- 9 Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
- 8 Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.
- 6 Benedict, B. Connell Herbarium Specimens (Data) . University New Brunswick, Fredericton. 2003.
- 6 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs.
- 5 eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
- 5 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 4 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc.
- 3 Klymko, J.J.D. 2014. Maritimes Butterfly Atlas, 2012 submissions. Atlantic Canada Conservation Data Centre, 8552 records.
- 3 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 2 Atlantic Canada Conservation Area Database (ARCAD)
- 2 Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.
- 2 Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
- 2 Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
- 1 Bird Studies Canada & Nature Canada. 2004-10. Important Bird Areas of Canada Database. Bird Studies Canada, Port Rowan ON, 62 objects.
- 1 Bradford, R.G. et al. 1999. Update on the Status of Striped bass (Morone saxatilis) in eastern Canada in 1998.
- 1 Dept of Fisheris & Oceans. 2001. Atlantic Salmon Maritime provinces overview for 2000. DFO.
- 1 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99. , Pers. comm. to K.A. Bredin. 91 recs.
- 1 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- Houston, J.J. 1990. Status of the Redbreast Sunfish (Lepomis auritus) in Canada. Can. Field-Nat. 104:64-68.
- 1 Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
- 1 Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- 1 Tingley, S. (compiler). 2001. Butterflies of New Brunswick., Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.

5.0 RARE SPECIES WITHIN 100 KM

A 100 km buffer around the study area contains 16244 records of 133 vertebrate and 1104 records of 64 invertebrate fauna; 8411 records of 370 vascular, 258 records of 127 nonvascular flora (attached: *ob100km.xls).

Rare and/or endangered taxa within the 100 km-buffered area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record).

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
A	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	1 At Risk	61	7.2 ± 1.0
A	Myotis septentrionalis	Northern Long-eared Myotis	Endangered	Endangered	Endangered	S1	1 At Risk	17	9.4 ± 1.0
A	Perimyotis subflavus	Eastern Pipistrelle	Endangered	Endangered	Endangered	S1	1 At Risk	8	71.7 ± 100.0
A	Eubalaena glacialis	North Atlantic Right Whale	Endangered	Endangered	Endangered	S1		1	39.2 ± 0.0
A	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1B	1 At Risk	2	99.1 ± 0.0
А	Dermochelys coriacea (Atlantic pop.)	Leatherback Sea Turtle - Atlantic pop.	Endangered	Endangered	Endangered	S1S2N	1 At Risk	3	84.7 ± 50.0
A	Morone saxatilis	Striped Bass	Endangered			S2	2 May Be At Risk	9	23.7 ± 0.0
А	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy pop.	Endangered	Endangered	Endangered	S2	2 May Be At Risk	464	18.1 ± 0.0
A A	Charadrius melodus melodus Calidris canutus rufa	Piping Plover melodus ssp Red Knot rufa ssp	Endangered Endangered	Endangered	Endangered Endangered	S2B S3M	1 At Risk 1 At Risk	7 17	81.0 ± 0.0 81.0 ± 0.0

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
4	Pagophila eburnea	Ivory Gull	Endangered	Endangered		SNA	8 Accidental	2	98.3 ± 14.0
4	Protonotaria citrea	Prothonotary Warbler	Endangered	Endangered		SNA	8 Accidental	1	82.4 ± 2.0
4	Rangifer tarandus pop. 2	Woodland Caribou (Atlantic-	Endangered	Endangered	Extirpated	SX	0.1 Extirpated	4	61.6 ± 1.0
	6 11	Gasp -⊢sie pop.)	0	6	Exapatod	e, c	0.1 Exapatod		
4	Colinus virginianus	Northern Bobwhite	Endangered	Endangered				4	50.9 ± 0.0
A	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	1 At Risk	29	9.1 ± 7.0
4	Hylocichla mustelina	Wood Thrush	Threatened		Threatened	S1S2B	2 May Be At Risk	241	2.2 ± 7.0
4	Sturnella magna	Eastern Meadowlark	Threatened		Threatened	S1S2B	2 May Be At Risk	55	16.2 ± 7.0
A	Caprimulgus vociferus	Whip-Poor-Will	Threatened	Threatened	Threatened	S2B	1 At Risk	93	2.2 ± 7.0
Ą	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B	1 At Risk	354	7.2 ± 0.0
A	Catharus bicknelli	Bicknell's Thrush	Threatened	Special Concern	Threatened	S2S3B	1 At Risk	3	84.3 ± 1.0
4	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened		Threatened	S3	4 Secure	1	33.1 ± 1.0
Ą	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S3	1 At Risk	248	1.6 ± 1.0
Ą	Chordeiles minor	Common Nighthawk	Threatened	Threatened	Threatened	S3B	1 At Risk	380	4.6 ± 7.0
Ą	Hirundo rustica	Barn Swallow	Threatened		Threatened	S3B	3 Sensitive	1103	4.6 ± 7.0
Ą	Riparia riparia	Bank Swallow	Threatened			S3B	3 Sensitive	335	4.6 ± 7.0
A	Contopus cooperi	Olive-sided Flycatcher	Threatened	Threatened	Threatened	S3S4B	1 At Risk	520	4.6 ± 7.0
A	Wilsonia canadensis	Canada Warbler	Threatened	Threatened	Threatened	S3S4B	1 At Risk	1103	4.6 ± 7.0
A	Dolichonyx oryzivorus	Bobolink	Threatened		Threatened	S3S4B	3 Sensitive	931	1.9 ± 1.0
A	Anguilla rostrata	American Eel	Threatened		Threatened	S5	4 Secure	39	12.9 ± 0.0
A	Melanerpes erythrocephalus	Red-headed Woodpecker	Threatened	Threatened	Initiationod	SNA	8 Accidental	5	9.9 ± 5.0
		Lake Utopia Smelt large-		Threatened		ONA	0 / tooldelittal		
A	Osmerus mordax pop. 2	bodied pop.	Threatened		Threatened			2	83.2 ± 10.0
4	Coturnicops noveboracensis	Yellow Rail	Special Concern	Special Concern	Special Concern	S1?B	2 May Be At Risk	3	23.8 ± 7.0
4	Columicops novebolacensis	Peregrine Falcon -	Special Concern	Special Concern	Special Concern	31?D	Z IVIAY DE AL RISK	3	23.0 ± 1.0
Ą	Falco peregrinus pop. 1	anatum/tundrius	Special Concern	Special Concern	Endangered	S1B	1 At Risk	93	28.4 ± 7.0
`	Listrianisus histrianisus non 1		Creatial Correspond	Createl Concern	Endangered	S1B,S1N	1 At Risk	59	21.2 ± 0.0
<u>م</u>	Histrionicus histrionicus pop. 1	Harlequin Duck - Eastern pop.	Special Concern	Special Concern					
A	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S2	3 Sensitive	7	22.9 ± 10.0
Ą	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye - Eastern	Special Concern	Special Concern	Special Concern	S2N	3 Sensitive	53	4.8 ± 0.0
•		pop.	0	0		0000		0	00.0 . 4.0
4	Balaenoptera physalus	Fin Whale - Atlantic pop.	Special Concern	Special Concern	Special Concern	S2S3		2	88.3 ± 1.0
A	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	3 Sensitive	24	9.8 ± 1.0
A	Asio flammeus	Short-eared Owl	Special Concern	Special Concern	Special Concern	S3B	3 Sensitive	15	33.9 ± 7.0
4	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S3B	2 May Be At Risk	200	7.6 ± 2.0
A	Phalaropus lobatus	Red-necked Phalarope	Special Concern			S3M	3 Sensitive	4	83.4 ± 0.0
A	Phocoena phocoena (NW Atlantic pop.)	Harbour Porpoise - Northwest	Special Concern	Threatened		S4		47	81.8 ± 0.0
		Atlantic pop.		medicileu					
A	Contopus virens	Eastern Wood-Pewee	Special Concern		Special Concern	S4B	4 Secure	670	4.6 ± 7.0
A	Tryngites subruficollis	Buff-breasted Sandpiper	Special Concern			SNA	8 Accidental	16	83.0 ± 1.0
A	Falco peregrinus	Peregrine Falcon	Special Concern					91	7.3 ± 0.0
Ą	Lynx canadensis	Canadian Lynx	Not At Risk		Endangered	S1	1 At Risk	20	21.4 ± 10.0
4	Sorex dispar	Long-tailed Shrew	Not At Risk	Special Concern	-	S1	3 Sensitive	4	52.3 ± 5.0
Ą	Cistothorus platensis	Sedge Wren	Not At Risk	-		S1B	5 Undetermined	3	25.9 ± 7.0
4	Falco rusticolus	Gyrfalcon	Not At Risk			S1N	5 Undetermined	3	79.1 ± 0.0
A	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B	2 May Be At Risk	17	11.8 ± 1.0
A	Aegolius funereus	Boreal Owl	Not At Risk			S1S2B	2 May Be At Risk	2	95.1 ± 0.0
А	Buteo lineatus	Red-shouldered Hawk	Not At Risk	Special Concern		S2B	2 May Be At Risk	56	12.6 ± 7.0
A	Fulica americana	American Coot	Not At Risk	Special Contoon		S2B	3 Sensitive	4	37.8 ± 7.0
A	Chlidonias niger	Black Tern	Not At Risk			S2B	3 Sensitive	108	7.3 ± 1.0
л А	Globicephala melas	Long-finned Pilot Whale	Not At Risk			S2S3	0 OCHORNE	3	84.8 ± 1.0
		Northern Dusky Salamander -							
4	Desmognathus fuscus (QC/NB pop.)		Not At Risk			S3	3 Sensitive	91	9.4 ± 1.0
A		QC/NB pop.	Net At Diele		Endonword	S3B	1 At Diale	710	11.00
	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered		1 At Risk	719	1.1 ± 0.0
4	Sterna hirundo	Common Tern	Not At Risk			S3B	3 Sensitive	145	7.7 ± 0.0
4	Podiceps grisegena	Red-necked Grebe	Not At Risk			S3M,S2N	3 Sensitive	67	7.7 ± 0.0
A	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4		1	84.7 ± 1.0
Ą	Canis lupus	Gray Wolf	Not At Risk		Extirpated	SX	0.1 Extirpated	4	39.3 ± 1.0

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Α	Lepomis auritus	Redbreast Sunfish	Data Deficient	Special Concern		S3?	4 Secure	28	8.9 ± 1.0
А	Puma concolor pop. 1	Cougar - Eastern pop.	Data Deficient		Endangered	SU,SH	5 Undetermined	70	12.7 ± 1.0
А	Salvelinus alpinus	Arctic Char			•	S1	3 Sensitive	1	87.9 ± 1.0
А	Microtus chrotorrhinus	Rock Vole				S1	5 Undetermined	5	97.6 ± 1.0
А	Lasionycteris noctivagans	Silver-haired Bat				S1?	5 Undetermined	4	56.9 ± 1.0
A	Bartramia longicauda	Upland Sandpiper				S1B	3 Sensitive	39	6.1 ± 7.0
A	Phalaropus tricolor	Wilson's Phalarope				S1B	3 Sensitive	42	2.2 ± 7.0
A	Leucophaeus atricilla	Laughing Gull				S1B	3 Sensitive	9	7.2 ± 1.0
A	Sterna paradisaea	Arctic Tern				S1B	2 May Be At Risk	4	92.2 ± 0.0
A	Troglodytes aedon	House Wren				S1B	5 Undetermined	32	14.8 ± 0.0
A	Aythya marila	Greater Scaup				S1B.S2N	4 Secure	30	14.0 ± 0.0 15.9 ± 7.0
A	Uria aalge	Common Murre				S1B,S3N	4 Secure	4	99.1 ± 0.0
A	Alca torda	Razorbill				S1B,S3N	4 Secure	4	99.1 ± 0.0 91.4 ± 2.0
						S1B,S3N S1B.S4N		4 45	
A	Oxyura jamaicensis	Ruddy Duck				- /-	4 Secure		7.7 ± 0.0
A	Rissa tridactyla	Black-legged Kittiwake				S1B,S4N	4 Secure	2	7.2 ± 1.0
A	Butorides virescens	Green Heron				S1S2B	3 Sensitive	18	1.9 ± 1.0
A	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B	3 Sensitive	9	60.4 ± 0.0
A	Gallinula chloropus	Common Moorhen				S1S2B	3 Sensitive	21	9.1 ± 7.0
A	Fratercula arctica	Atlantic Puffin				S1S2B	3 Sensitive	4	98.6 ± 1.0
A	Empidonax traillii	Willow Flycatcher				S1S2B	3 Sensitive	84	2.2 ± 7.0
A	Progne subis	Purple Martin				S1S2B	2 May Be At Risk	283	2.2 ± 7.0
А	Stalaidantariw aarrinannia	Northern Rough-winged				S1S2B	2 Mov Po At Biok	24	3.1 ± 0.0
А	Stelgidopteryx serripennis	Swallow				5152B	2 May Be At Risk	24	3.1 ± 0.0
А	Prosopium cylindraceum	Round Whitefish				S2	4 Secure	3	21.8 ± 0.0
A	Salmo salar	Atlantic Salmon				S2	2 May Be At Risk	475	23.7 ± 0.0
А	Eptesicus fuscus	Big Brown Bat				S2?	3 Sensitive	46	1.2 ± 1.0
А	Lasiurus borealis	Eastern Red Bat				S2?	5 Undetermined	9	6.2 ± 0.0
A	Lasiurus cinereus	Hoary Bat				S2?	5 Undetermined	9	9.4 ± 1.0
A	Oceanodroma leucorhoa	Leach's Storm-Petrel				S2B	3 Sensitive	2	7.2 ± 1.0
A	Anas clypeata	Northern Shoveler				S2B	4 Secure	72	4.6 ± 0.0
A	Anas strepera	Gadwall				S2B	4 Secure	77	8.5 ± 30.0
A	Eremophila alpestris	Horned Lark				S2B	2 May Be At Risk	27	2.2 ± 7.0
A	Cistothorus palustris	Marsh Wren				S2B	3 Sensitive	71	9.1 ± 7.0
A	Toxostoma rufum	Brown Thrasher				S2B S2B	3 Sensitive	110	5.8 ± 0.0
A	Pooecetes gramineus	Vesper Sparrow				S2B S2B	2 May Be At Risk	82	27.1 ± 7.0
A						S2B S2B,S5M	4 Secure	120	1.9 ± 1.0
	Tringa solitaria Chroicocephalus ridibundus	Solitary Sandpiper							
A	,	Black-headed Gull				S2M,S1N	3 Sensitive	9	7.2 ± 1.0
A	Somateria spectabilis	King Eider				S2N	4 Secure	4	98.3 ± 32.0
A	Asio otus	Long-eared Owl				S2S3	5 Undetermined	15	16.3 ± 7.0
A	Tringa semipalmata	Willet				S2S3B	3 Sensitive	15	5.0 ± 0.0
A	Pinicola enucleator	Pine Grosbeak				S2S3B,S4S5N	3 Sensitive	50	16.6 ± 7.0
A	Branta bernicla	Brant				S2S3M,S2S3N	4 Secure	26	9.0 ± 0.0
A	Uria lomvia	Thick-billed Murre				S2S3N	5 Undetermined	8	95.2 ± 1.0
A	Hyla versicolor	Gray Treefrog				S3	4 Secure	96	5.9 ± 1.0
A	Cepphus grylle	Black Guillemot				S3	4 Secure	54	82.1 ± 7.0
A	Loxia curvirostra	Red Crossbill				S3	4 Secure	111	9.1 ± 7.0
A	Coregonus clupeaformis	Lake Whitefish				S3	4 Secure	17	29.3 ± 10.0
A	Salvelinus namaycush	Lake Trout				S3	3 Sensitive	7	62.3 ± 0.0
A	Sorex maritimensis	Maritime Shrew				S3	4 Secure	1	33.1 ± 1.0
Α	Synaptomys cooperi	Southern Bog Lemming				S3	4 Secure	74	9.8 ± 1.0
•		American Three-toed				000	0.0	00	07.40
A	Picoides dorsalis	Woodpecker				S3?	3 Sensitive	26	8.7 ± 1.0
А	Anas acuta	Northern Pintail				S3B	3 Sensitive	50	7.6 ± 1.0
A	Anas americana	American Wigeon				S3B	4 Secure	373	4.6 ± 7.0
A	Cathartes aura	Turkey Vulture				S3B	4 Secure	286	7.5 ± 0.0
A	Rallus limicola	Virginia Rail				S3B	3 Sensitive	115	4.6 ± 7.0
A	Charadrius vociferus	Killdeer				S3B S3B	3 Sensitive	660	4.0 ± 7.0 1.9 ± 1.0
		KIIUGGI				000	0 OCHORNE	000	1.0 ± 1.0

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
A	Larus delawarensis	Ring-billed Gull	00021110	0/1101	riov Logari rot	S3B	4 Secure	175	1.7 ± 0.0
A	Myiarchus crinitus	Great Crested Flycatcher				S3B	3 Sensitive	277	4.6 ± 7.0
A						S3B	3 Sensitive		
	Mimus polyglottos	Northern Mockingbird						122	4.6 ± 7.0
A	Passerina cyanea	Indigo Bunting				S3B	4 Secure	123	2.2 ± 7.0
A	Molothrus ater	Brown-headed Cowbird				S3B	2 May Be At Risk	284	4.6 ± 7.0
A	Mergus serrator	Red-breasted Merganser				S3B,S4S5N	4 Secure	68	15.9 ± 7.0
Α	Pluvialis dominica	American Golden-Plover				S3M	3 Sensitive	51	3.9 ± 0.0
A	Phalaropus fulicarius	Red Phalarope				S3M	3 Sensitive	2	94.5 ± 0.0
A	Melanitta nigra	Black Scoter				S3M,S2S3N	3 Sensitive	127	7.0 ± 0.0
A	Calidris maritima	Purple Sandpiper				S3M,S3N	4 Secure	95	83.4 ± 0.0
A	Bucephala albeola	Bufflehead				S3N	3 Sensitive	578	4.8 ± 0.0
A	Tyrannus tyrannus	Eastern Kingbird				S3S4B	3 Sensitive	587	4.6 ± 7.0
A	Petrochelidon pyrrhonota	Cliff Swallow				S3S4B	3 Sensitive	536	4.6 ± 7.0
A	Piranga olivacea	Scarlet Tanager				S3S4B	4 Secure	333	8.1 ± 0.0
A	Coccothraustes vespertinus	Evening Grosbeak				S3S4B,S4S5N	3 Sensitive	332	9.9 ± 0.0
A	Podiceps auritus	Horned Grebe			Special Concern	S4M,S4N	4 Secure	84	9.0 ± 0.0
					Opecial Concern				
A	Morus bassanus	Northern Gannet				SHB,S5M,S5N	4 Secure	35	81.3 ± 0.0
	Thuja occidentalis - Picea glauca /	Eastern White Cedar - White							
С	Mitella nuda - Athyrium filix-femina /	Spruce / Naked Bishop's-Cap -				S3		1	91.9 ± 0.0
C		Common Lady Fern /				33		1	91.9 ± 0.0
	Mnium spp. Forest	Calcareous Moss Forest							
	Acer saccharum - Fraxinus americana /	Sugar Maple - White Ash /							
С	Polystichum acrostichoides Forest	Christmas Fern Forest				S3S4		1	73.3 ± 0.0
	Gomphus ventricosus		E a de a se a d		En den mened	S1		50	4.3 ± 0.0
1		Skillet Clubtail	Endangered		Endangered		2 May Be At Risk		
I	Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	Endangered	S1?	1 At Risk	20	35.5 ± 0.0
1	Ophiogomphus howei	Pygmy Snaketail	Special Concern	Special Concern	Special Concern	S1	2 May Be At Risk	13	52.4 ± 0.0
1	Alasmidonta varicosa	Brook Floater	Special Concern		Special Concern	S1S2	3 Sensitive	1	52.4 ± 0.0
1	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S2	3 Sensitive	103	3.6 ± 0.0
I	Danaus plexippus	Monarch	Special Concern	Special Concern	Special Concern	S3B	3 Sensitive	53	6.4 ± 0.0
	Lyogyrus granum	Squat Duskysnail	Data Deficient	opoolal oonooni		S2	0 0011011110	33	63.3 ± 0.0
1			Data Delicient						
1	Erynnis juvenalis	Juvenal's Duskywing				S1	5 Undetermined	1	54.1 ± 1.0
	Lycaena dorcas	Dorcas Copper				S1	2 May Be At Risk	2	98.3 ± 0.0
	Lycaena dorcas claytoni	Clayton's Copper				S1	2 May Be At Risk	12	82.2 ± 0.0
1	Somatochlora septentrionalis	Muskeg Emerald				S1	2 May Be At Risk	1	44.3 ± 1.0
1	Celithemis martha	Martha's Pennant				S1	5 Undetermined	1	74.1 ± 0.0
	Pachydiplax longipennis	Blue Dasher				S1	5 Undetermined	2	21.2 ± 0.0
1									
1	Coccinella transversoguttata richardsoni	Transverse Lady Beetle				S1S2	2 May Be At Risk	2	70.7 ± 0.0
I	Boloria eunomia	Bog Fritillary				S1S2	5 Undetermined	2	43.4 ± 0.0
	Ophiogomphus colubrinus	Boreal Snaketail				S1S2	2 May Be At Risk	35	4.3 ± 0.0
I	Satyrium calanus	Banded Hairstreak				S2	3 Sensitive	13	3.6 ± 0.0
1	Satyrium calanus falacer	Banded Hairstreak				S2	4 Secure	6	5.9 ± 1.0
1	Callophrys henrici	Henry's Elfin				S2	4 Secure	12	9.3 ± 10.0
	Strymon melinus	Grey Hairstreak				S2	4 Secure	3	28.0 ± 1.0
1									
1	Cupido comyntas	Eastern Tailed Blue				S2	4 Secure	9	17.5 ± 0.0
	Gomphus vastus	Cobra Clubtail				S2	3 Sensitive	58	3.3 ± 1.0
1	Aeshna clepsydra	Mottled Darner				S2	3 Sensitive	12	51.2 ± 0.0
I	Somatochlora tenebrosa	Clamp-Tipped Emerald				S2	5 Undetermined	5	7.3 ± 1.0
1	Ladona exusta	White Corporal				S2	5 Undetermined	8	55.2 ± 0.0
	Hetaerina americana	American Rubyspot				S2	3 Sensitive	15	53.2 ± 0.0 51.0 ± 0.0
1		Subarctic Bluet				S2 S2			51.0 ± 0.0 82.8 ± 0.0
1	Coenagrion interrogatum						3 Sensitive	1	
I	Enallagma vesperum	Vesper Bluet				S2	5 Undetermined	6	86.0 ± 0.0
I	Ischnura posita	Fragile Forktail				S2	2 May Be At Risk	5	7.8 ± 0.0
I	Arigomphus furcifer	Lilypad Clubtail				S2	5 Undetermined	6	10.6 ± 0.0
I	Alasmidonta undulata	Triangle Floater				S2	3 Sensitive	53	11.4 ± 0.0
i	Anatis labiculata	Fifteen-spotted Lady Beetle				S2S3	3 Sensitive	1	71.4 ± 0.0 71.1 ± 0.0
1	Andus Iduicuidid								
I	Chrysops indus Gomphus abbreviatus	a Tabanid Fly Spine-crowned Clubtail				S2S3 S2S3	3 Sensitive 4 Secure	23 51	84.2 ± 0.0 6.0 ± 0.0

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
	Lestes vigilax	Swamp Spreadwing			2	S2S3	3 Sensitive	34	21.2 ± 0.0
1	Hesperia sassacus	Indian Skipper				S3	4 Secure	5	14.0 ± 2.0
I	Euphyes bimacula	Two-spotted Skipper				S3	4 Secure	11	23.5 ± 1.0
I	Lycaena hyllus	Bronze Copper				S3	3 Sensitive	5	37.8 ± 0.0
I	Satyrium acadica	Acadian Hairstreak				S3	4 Secure	22	20.1 ± 1.0
I	Callophrys polios	Hoary Elfin				S3	4 Secure	4	13.2 ± 0.0
	Plebejus idas	Northern Blue				S3	4 Secure	6	80.0 ± 0.0
	Plebejus idas empetri	Crowberry Blue				S3	4 Secure	8	81.4 ± 10.0
1	Plebejus saepiolus	Greenish Blue				S3	4 Secure	3	2.2 ± 1.0
						S3	4 Secure	18	2.2 ± 1.0 2.0 ± 1.0
	Speyeria aphrodite	Aphrodite Fritillary							
	Boloria bellona	Meadow Fritillary				S3	4 Secure	38	2.0 ± 1.0
	Chlosyne nycteis	Silvery Checkerspot				S3	4 Secure	5	9.1 ± 1.0
	Polygonia satyrus	Satyr Comma				S3	4 Secure	15	2.0 ± 1.0
	Polygonia gracilis	Hoary Comma				S3	4 Secure	4	9.4 ± 1.0
	Nymphalis I-album	Compton Tortoiseshell				S3	4 Secure	14	9.1 ± 1.0
	Oeneis jutta	Jutta Arctic				S3	4 Secure	22	8.5 ± 1.0
	Gomphaeschna furcillata	Harlequin Darner				S3	5 Undetermined	11	7.3 ± 1.0
	Dorocordulia lepida	Petite Emerald				S3	4 Secure	29	1.2 ± 1.0
	Somatochlora albicincta	Ringed Emerald				S3	4 Secure	2	85.2 ± 1.0
	Somatochlora cingulata	Lake Emerald				S3	4 Secure	11	33.0 ± 1.0
	Somatochlora forcipata	Forcipate Emerald				S3	4 Secure	16	8.9 ± 1.0
	Williamsonia fletcheri	Ebony Boghaunter				S3	4 Secure	22	8.9 ± 1.0
	Lestes eurinus	Amber-Winged Spreadwing				S3	4 Secure	10	39.0 ± 1.0
	Enallagma geminatum	Skimming Bluet				S3	5 Undetermined	13	20.6 ± 0.0
						S3	4 Secure	13	20.0 ± 0.0 23.5 ± 0.0
	Enallagma signatum	Orange Bluet							
	Stylurus scudderi	Zebra Clubtail				S3	4 Secure	72	4.3 ± 0.0
	Leptodea ochracea	Tidewater Mucket				S3	4 Secure	67	3.1 ± 0.0
	Pantala hymenaea	Spot-Winged Glider				S3B	4 Secure	4	82.9 ± 0.0
	Satyrium liparops	Striped Hairstreak				S3S4	4 Secure	2	3.6 ± 0.0
	Satyrium liparops strigosum	Striped Hairstreak				S3S4	4 Secure	1	9.3 ± 10.0
l	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk			S3	5 Undetermined	12	52.0 ± 0.0
٨	Anomodon minor	Blunt-leaved Anomodon Moss				S1	2 May Be At Risk	2	95.8 ± 1.0
1	Anomodon viticulosus	a Moss				S1	2 May Be At Risk	6	73.7 ± 0.0
٨	Atrichum angustatum	Lesser Smoothcap Moss				S1	2 May Be At Risk	1	83.6 ± 2.0
N	Bryum muehlenbeckii	Muehlenbeck's Bryum Moss				S1	2 May Be At Risk	1	71.1 ± 1.0
1	Calliergon trifarium	Three-ranked Moss				S1	2 May Be At Risk	1	77.3 ± 0.0
J	Dichelyma falcatum	a Moss				S1	2 May Be At Risk	2	10.7 ± 10.0
1	Dicranum bonjeanii	Bonjean's Broom Moss				S1	2 May Be At Risk	1	8.2 ± 1.0
4									
	Ditrichum pallidum	Pale Cow-hair Moss				S1	2 May Be At Risk	4	37.2 ± 1.0
	Drummondia prorepens	a Moss				S1	2 May Be At Risk	1	94.3 ± 1.0
1	Entodon brevisetus	a Moss				S1	2 May Be At Risk	1	80.0 ± 10.0
1	Eurhynchium hians	Light Beaked Moss				S1	2 May Be At Risk	2	9.4 ± 1.0
l	Fissidens taxifolius	Yew-leaved Pocket Moss				S1	2 May Be At Risk	4	82.7 ± 0.0
l	Homomallium adnatum	Adnate Hairy-gray Moss				S1	2 May Be At Risk	2	80.0 ± 10.0
1	Meesia triquetra	Three-ranked Cold Moss				S1	2 May Be At Risk	2	48.0 ± 100.0
	Plagiothecium latebricola	Alder Silk Moss				S1	2 May Be At Risk	1	85.4 ± 0.0
J	Racomitrium ericoides	a Moss				S1	2 May Be At Risk	1	44.0 ± 3.0
1	Rhytidium rugosum	Wrinkle-leaved Moss				S1	2 May Be At Risk	1	95.1 ± 0.0
l I	Seligeria brevifolia	a Moss				S1	3 Sensitive	1	86.6 ± 1.0
1	Sphagnum macrophyllum	Sphagnum				S1	2 May Be At Risk	2	55.8 ± 0.0
4	Sphagnum subfulvum	a Peatmoss				S1	2 May Be At Risk	4	87.2 ± 1.0
	1 0								
1	Splachnum pennsylvanicum	Southern Dung Moss				S1	2 May Be At Risk	2	22.4 ± 1.0
N	Timmia norvegica	a moss				S1	2 May Be At Risk	1	82.7 ± 0.0
N	Tomentypnum falcifolium	Sickle-leaved Golden Moss				S1	2 May Be At Risk	1	87.2 ± 1.0
N	Syntrichia ruralis	a Moss				S1	2 May Be At Risk	1	88.3 ± 0.0
1	Pseudotaxiphyllum distichaceum	a Moss				S1	2 May Be At Risk	1	9.7 ± 1.0
٨	Hamatocaulis vernicosus	a Moss				S1	2 May Be At Risk	1	88.6 ± 100.0

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
N	Coscinodon cribrosus	Sieve-Toothed Moss				S1	2 May Be At Risk	1	82.3 ± 0.0
Ν	Pohlia filum	a Moss				S1?	5 Undetermined	2	38.2 ± 3.0
Ν	Sphagnum platyphyllum	Flat-leaved Peat Moss				S1?	5 Undetermined	3	37.2 ± 1.0
Ν	Anomobryum filiforme	a moss				S1?	5 Undetermined	1	9.4 ± 1.0
N	Platylomella lescurii	a Moss				S1?	5 Undetermined	1	80.7 ± 1.0
N	Andreaea rothii	a Moss				S1S2	3 Sensitive	1	92.1 ± 0.0
N	Brachythecium digastrum	a Moss				S1S2	3 Sensitive	2	9.4 ± 1.0
N	Bryum pallescens	Pale Bryum Moss				S1S2 S1S2	5 Undetermined	2	9.4 ± 1.0 45.6 ± 1.0
N	, , , , , , , , , , , , , , , , , , ,	,				S1S2 S1S2	5 Undetermined	1	9.4 ± 1.0
	Campylium radicale	Long-stalked Fine Wet Moss						1	
N	Cynodontium strumiferum	Strumose Dogtooth Moss				S1S2	3 Sensitive	•	93.1 ± 8.0
N	Dichelyma capillaceum	Hairlike Dichelyma Moss				S1S2	3 Sensitive	2	52.2 ± 4.0
N	Dicranum spurium	Spurred Broom Moss				S1S2	3 Sensitive	1	91.9 ± 0.0
N	Didymodon ferrugineus	a moss				S1S2	3 Sensitive	3	74.8 ± 1.0
N	Anomodon tristis	a Moss				S1S2	2 May Be At Risk	1	46.9 ± 1.0
N	Hygrohypnum bestii	Best's Brook Moss				S1S2	3 Sensitive	3	98.0 ± 0.0
N	Schistostega pennata	Luminous Moss				S1S2	3 Sensitive	3	9.4 ± 1.0
N	Seligeria campylopoda	a Moss				S1S2	3 Sensitive	2	85.9 ± 0.0
N	Seligeria diversifolia	a Moss				S1S2	3 Sensitive	1	36.5 ± 0.0
Ν	Sphagnum angermanicum	a Peatmoss				S1S2	3 Sensitive	3	58.7 ± 1.0
Ν	Tortula mucronifolia	Mucronate Screw Moss				S1S2	3 Sensitive	1	81.2 ± 0.0
N	Plagiomnium rostratum	Long-beaked Leafy Moss				S1S2	3 Sensitive	1	83.0 ± 0.0
N	Calypogeia neesiana	Nees' Pouchwort				S1S3	6 Not Assessed	1	73.5 ± 1.0
N	Cephaloziella elachista	Spurred Threadwort				S1S3	6 Not Assessed	1	77.7 ± 5.0
N	Cephaloziella spinigera	Spiny Threadwort				S1S3	6 Not Assessed	2	91.8 ± 0.0
N	Jungermannia obovata	Egg Flapwort				S1S3	6 Not Assessed	1	70.4 ± 0.0
N	Porella pinnata	Pinnate Scalewort				S1S3	6 Not Assessed	2	69.6 ± 1.0
N	Reboulia hemisphaerica	Purple-margined Liverwort				S1S3	6 Not Assessed	1	97.2 ± 1.0
N	Amphidium mougeotii	a Moss				S2	3 Sensitive	1	93.1 ± 8.0
N	Bryum uliginosum	a Moss				S2	3 Sensitive	1	90.0 ± 4.0
N	Buxbaumia aphylla	Brown Shield Moss				S2	3 Sensitive	2	85.0 ± 15.0
N	Campylium polygamum	a Moss				S2	3 Sensitive	1	74.1 ± 1.0
Ν	Cirriphyllum piliferum	Hair-pointed Moss				S2	3 Sensitive	2	80.0 ± 1.0
Ν	Cynodontium tenellum	Delicate Dogtooth Moss				S2	3 Sensitive	1	87.6 ± 1.0
Ν	Dicranella palustris	Drooping-Leaved Fork Moss				S2	3 Sensitive	2	48.0 ± 100.0
N	Fissidens bushii	Bush's Pocket Moss				S2	3 Sensitive	3	86.7 ± 1.0
N	Hypnum pratense	Meadow Plait Moss				S2	3 Sensitive	2	77.8 ± 0.0
N	Isopterygiopsis pulchella	Neat Silk Moss				S2	3 Sensitive	1	92.8 ± 1.0
N	Orthotrichum speciosum	Showy Bristle Moss				S2 S2	4 Secure	3	32.0 ± 1.0 38.2 ± 3.0
N						S2		6	9.4 ± 1.0
	Physcomitrium immersum	a Moss					3 Sensitive		
N	Physcomitrium pyriforme	Pear-shaped Urn Moss				S2	3 Sensitive	5	9.4 ± 10.0
N	Racomitrium fasciculare	a Moss				S2	3 Sensitive	1	90.6 ± 0.0
N	Scorpidium scorpioides	Hooked Scorpion Moss				S2	3 Sensitive	5	76.1 ± 0.0
N	Sphagnum centrale	Central Peat Moss				S2	3 Sensitive	1	91.6 ± 0.0
N	Sphagnum lindbergii	Lindberg's Peat Moss				S2	3 Sensitive	6	77.5 ± 1.0
N	Sphagnum flexuosum	Flexuous Peatmoss				S2	3 Sensitive	1	95.5 ± 0.0
N	Taxiphyllum deplanatum	Imbricate Yew-leaved Moss				S2	3 Sensitive	2	85.8 ± 0.0
Ν	Tayloria serrata	Serrate Trumpet Moss				S2	3 Sensitive	2	93.3 ± 1.0
N	Tetraplodon mnioides	Entire-leaved Nitrogen Moss				S2	3 Sensitive	3	82.7 ± 0.0
N	Thamnobryum alleghaniense	a Moss				S2	3 Sensitive	2	82.8 ± 0.0
N	Ulota phyllantha	a Moss				S2	3 Sensitive	1	87.6 ± 1.0
N	Zygodon viridissimus	a Moss				S2	2 May Be At Risk	1	86.0 ± 5.0
N		Elf Bloom Moss				S2 S2		2	82.7 ± 2.0
	Schistidium agassizii						3 Sensitive		
N	Loeskeobryum brevirostre	a Moss				S2	3 Sensitive	1	100.0 ± 2.0
Ν	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	3 Sensitive	4	76.1 ± 0.0
Ν	Didymodon rigidulus	Rigid Screw Moss				S2S3	3 Sensitive	1	35.7 ± 8.0
	Didymodon rigidulus Ephemerum serratum Cephaloziella divaricata	Rigid Screw Moss a Moss Common Threadwort				S2S3 S2S3 S2S4	3 Sensitive 3 Sensitive 6 Not Assessed	2	35.7 ± 8.0 88.4 ± 0.0 97.2 ± 1.0

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
N	Riccia fluitans	Floating Crystalwort	00021110	0/1101	1107 Logari Tot	S2S4	6 Not Assessed	4	26.9 ± 0.0
N	Anomodon rugelii	Rugel's Anomodon Moss				S3	3 Sensitive	2	95.1 ± 0.0
N	Aulacomnium androgynum	Little Groove Moss				S3	4 Secure	2	84.8 ± 1.0
N	Dicranella cerviculata	a Moss				S3	3 Sensitive	2	87.6 ± 1.0
N		Greater Broom Moss				S3	4 Secure	2	82.7 ± 0.0
	Dicranum majus							3	
N	Helodium blandowii	Wetland-plume Moss				S3	4 Secure	1	92.8 ± 1.0
N	Heterocladium dimorphum	Dimorphous Tangle Moss				S3	4 Secure	1	82.7 ± 2.0
N	Hypnum curvifolium	Curved-leaved Plait Moss				S3	3 Sensitive	1	86.0 ± 5.0
N	Pleuridium subulatum	a Moss				S3	3 Sensitive	3	8.4 ± 1.0
N	Pogonatum dentatum	Mountain Hair Moss				S3	4 Secure	1	87.6 ± 1.0
N	Sphagnum torreyanum	a Peatmoss				S3	4 Secure	4	84.1 ± 0.0
N	Sphagnum austinii	Austin's Peat Moss				S3	4 Secure	1	82.8 ± 1.0
N	Splachnum rubrum	Red Collar Moss				S3	4 Secure	1	97.2 ± 1.0
Ν	Tetraphis geniculata	Geniculate Four-tooth Moss				S3	4 Secure	4	76.3 ± 0.0
N	Trichostomum tenuirostre	Acid-Soil Moss				S3	4 Secure	3	85.8 ± 0.0
N	Schistidium maritimum	a Moss				S3	4 Secure	1	87.6 ± 1.0
Ν	Rauiella scita	Smaller Fern Moss				S3	3 Sensitive	2	90.2 ± 3.0
N	Dicranella rufescens	Red Forklet Moss				S3?	5 Undetermined	2	8.7 ± 4.0
N	Sphagnum contortum	Twisted Peat Moss				S3?	4 Secure	1	75.6 ± 0.0
N	Sphagnum lescurii	a Peatmoss				S3?	5 Undetermined	2	74.5 ± 0.0
N	Atrichum tenellum	Slender Smoothcap Moss				S3S4	4 Secure	3	38.2 ± 3.0
N	Barbula convoluta	Lesser Bird's-claw Beard Moss				S3S4 S3S4	4 Secure	1	35.7 ± 8.0
						S3S4 S3S4		2	
N	Brachythecium campestre	Field Ragged Moss					4 Secure		38.2 ± 3.0
N	Brachythecium velutinum	Velvet Ragged Moss				S3S4	4 Secure	5	40.8 ± 4.0
N	Dicranella schreberiana	Schreber's Forklet Moss				S3S4	4 Secure	1	9.4 ± 1.0
N	Dicranella subulata	Awl-leaved Forklet Moss				S3S4	4 Secure	1	36.5 ± 2.0
N	Distichium capillaceum	Erect-fruited Iris Moss				S3S4	4 Secure	1	45.3 ± 0.0
N	Fissidens bryoides	Lesser Pocket Moss				S3S4	4 Secure	3	48.5 ± 4.0
N	Hypnum fauriei	a Moss				S3S4	4 Secure	3	82.7 ± 0.0
N	Isopterygiopsis muelleriana	a Moss				S3S4	4 Secure	6	40.8 ± 4.0
N	Myurella julacea	Small Mouse-tail Moss				S3S4	4 Secure	1	93.1 ± 8.0
N	Pohlia annotina	a Moss				S3S4	4 Secure	2	36.5 ± 2.0
N	Tortula truncata	a Moss				S3S4	4 Secure	4	26.3 ± 1.0
Ν	Racomitrium microcarpon	a Moss				S3S4	4 Secure	1	87.2 ± 0.0
Ν	, Sphagnum majus	Olive Peat Moss				S3S4	4 Secure	1	86.7 ± 5.0
N	Tetraplodon angustatus	Toothed-leaved Nitrogen Moss				S3S4	4 Secure	1	87.6 ± 1.0
N	Tomentypnum nitens	Golden Fuzzy Fen Moss				S3S4	4 Secure	1	81.8 ± 3.0
N	Limprichtia revolvens	a Moss				S3S4	4 Secure	2	86.2 ± 0.0
N	Grimmia anodon	Toothless Grimmia Moss				SH	5 Undetermined	2	80.4 ± 10.0
N	Leucodon brachypus	a Moss				SH	2 May Be At Risk	2	38.8 ± 10.0
N	Orthotrichum gymnostomum	a Moss				SH	2 May Be At Risk	1	40.5 ± 10.0
N	Thelia hirtella	a Moss				SH	2 May Be At Risk	1	40.5 ± 10.0 48.0 ± 100.0
N	Cyrto-hypnum minutulum	Tiny Cedar Moss				SH	2 May Be At Risk	3	74.5 ± 10.0
P	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	1 At Risk	294	6.2 ± 0.0
Р	Polemonium vanbruntiae	Van Brunt's Jacob's-ladder	Threatened	Threatened	Threatened	S1	1 At Risk	72	82.2 ± 1.0
Р	Symphyotrichum anticostense	Anticosti Aster	Threatened	Threatened	Endangered	S1S3	1 At Risk	24	23.5 ± 1.0
Р	Symphyotrichum praealtum	Willow-leaved Aster	Threatened	Threatened		SNA	7 Exotic	1	97.3 ± 1.0
Р	Isoetes prototypus	Prototype Quillwort	Special Concern	Special Concern	Endangered	S2	1 At Risk	23	12.4 ± 0.0
Р	Pterospora andromedea	Woodland Pinedrops			Endangered	S1	1 At Risk	24	17.2 ± 0.0
Р	Cryptotaenia canadensis	Canada Honewort			-	S1	2 May Be At Risk	5	80.3 ± 1.0
Р	Sanicula trifoliata	Large-Fruited Sanicle				S1	2 May Be At Risk	21	69.5 ± 5.0
P	Antennaria parlinii	a Pussytoes				S1	2 May Be At Risk	7	45.5 ± 1.0
P	Antennaria howellii ssp. petaloidea	Pussy-Toes				S1	2 May Be At Risk	2	70.0 ± 1.0
P	Bidens discoidea	Swamp Beggarticks				S1	2 May Be At Risk	3	21.4 ± 0.0
						S1	2 May Be At Risk	2	21.4 ± 0.0 46.0 ± 0.0
	Pseudoananhalium ohtusifolium								
P	Pseudognaphalium obtusifolium	Eastern Cudweed							
	Pseudognaphalium obtusifolium Helianthus decapetalus Hieracium kalmii	Eastern Cudweed Ten-rayed Sunflower Kalm's Hawkweed				S1 S1	2 May Be At Risk 2 May Be At Risk 2 May Be At Risk	20 4	40.0 ± 0.0 21.0 ± 0.0 8.5 ± 6.0

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
P	Hieracium kalmii var. kalmii	Kalm's Hawkweed				S1	2 May Be At Risk	4	8.6 ± 1.0
c	Hieracium paniculatum	Panicled Hawkweed				S1	2 May Be At Risk	4	26.1 ± 0.0
þ	Hieracium robinsonii	Robinson's Hawkweed				S1	3 Sensitive	1	75.8 ± 0.0
0	Solidago simplex var. monticola	Sticky Goldenrod				S1	2 May Be At Risk	1	20.8 ± 0.0
0	Symphyotrichum laeve	Smooth Aster				S1	5 Undetermined	6	65.8 ± 5.0
5						S1		1	98.4 ± 0.0
5	Canadanthus modestus	Great Northern Aster					2 May Be At Risk		
	Cynoglossum virginianum var. boreale	Wild Comfrey				S1	2 May Be At Risk	14	88.7 ± 0.0
	Cardamine parviflora var. arenicola	Small-flowered Bittercress				S1	2 May Be At Risk	3	59.8 ± 0.0
	Draba arabisans	Rock Whitlow-Grass				S1	2 May Be At Risk	3	68.6 ± 1.0
0	Draba breweri var. cana	Brewer's Whitlow-grass				S1	2 May Be At Risk	10	16.1 ± 0.0
0	Draba glabella	Rock Whitlow-Grass				S1	2 May Be At Risk	7	38.6 ± 1.0
)	Minuartia groenlandica	Greenland Stitchwort				S1	2 May Be At Risk	1	65.8 ± 0.0
b	Chenopodium capitatum	Strawberry-blite				S1	2 May Be At Risk	5	8.4 ± 6.0
0	Chenopodium simplex	Maple-leaved Goosefoot				S1	2 May Be At Risk	8	8.9 ± 5.0
0	Callitriche terrestris	Terrestrial Water-Starwort				S1	5 Undetermined	1	95.4 ± 0.0
2	Triadenum virginicum	Virginia St John's-wort				S1	2 May Be At Risk	7	58.3 ± 0.0
2	Cuscuta pentagona	Five-angled Dodder				S1	2 May Be At Risk	3	37.5 ± 10.0
b	Drosera anglica	English Sundew				S1	2 May Be At Risk	1	80.8 ± 0.0
b	Drosera linearis	Slender-Leaved Sundew				S1	2 May Be At Risk	1	80.8 ± 0.0
)									
,)	Corema conradii	Broom Crowberry				S1	2 May Be At Risk	1	82.3 ± 10.0
	Vaccinium boreale	Northern Blueberry				S1	2 May Be At Risk	1	72.9 ± 0.0
b	Vaccinium corymbosum	Highbush Blueberry				S1	3 Sensitive	9	80.6 ± 0.0
0	Desmodium glutinosum	Large Tick-Trefoil				S1	2 May Be At Risk	6	72.0 ± 0.0
)	Lespedeza capitata	Round-headed Bush-clover				S1	2 May Be At Risk	5	34.8 ± 0.0
)	Gentiana rubricaulis	Purple-stemmed Gentian				S1	2 May Be At Risk	14	62.5 ± 0.0
	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1	2 May Be At Risk	1	76.3 ± 0.0
)	Pycnanthemum virginianum	Virginia Mountain Mint				S1	2 May Be At Risk	4	58.9 ± 0.0
)	Decodon verticillatus	Swamp Loosestrife				S1	2 May Be At Risk	3	59.7 ± 0.0
)	Polygala verticillata var. verticillata	Whorled Milkwort				S1	5 Undetermined	2	88.6 ± 0.0
b	Lysimachia hybrida	Lowland Yellow Loosestrife				S1	2 May Be At Risk	2	92.4 ± 0.0
)		Whorled Yellow Loosestrife				S1		14	57.9 ± 0.0
	Lysimachia quadrifolia						2 May Be At Risk		
	Ranunculus lapponicus	Lapland Buttercup				S1	2 May Be At Risk	1	97.7 ± 1.0
	Ranunculus sceleratus	Cursed Buttercup				S1	2 May Be At Risk	6	8.2 ± 0.0
0	Crataegus jonesiae	Jones' Hawthorn				S1	2 May Be At Risk	5	7.0 ± 1.0
0	Potentilla canadensis	Canada Cinquefoil				S1	5 Undetermined	1	59.6 ± 0.0
0	Rosa acicularis ssp. sayi	Prickly Rose				S1	2 May Be At Risk	34	71.9 ± 0.0
>	Waldsteinia fragarioides	Barren Strawberry				S1	2 May Be At Risk	27	73.4 ± 0.0
)	Galium brevipes	Limestone Swamp Bedstraw				S1	2 May Be At Risk	3	55.8 ± 5.0
)	Saxifraga paniculata ssp. neogaea	White Mountain Saxifrage				S1	2 May Be At Risk	12	70.7 ± 0.0
)	Agalinis paupercula var. borealis	Small-flowered Agalinis				S1	2 May Be At Risk	7	7.7 ± 0.0
0	Agalinis tenuifolia	Slender Agalinis				S1	2 May Be At Risk	6	2.9 ± 0.0
)	Gratiola aurea	Golden Hedge-Hyssop				S1	3 Sensitive	2	70.4 ± 0.0
0	Pedicularis canadensis	Canada Lousewort				S1	2 May Be At Risk	3	17.2 ± 0.0
)	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	2 May Be At Risk	10	12.2 ± 0.0
))	Alisma subcordatum	Southern Water Plantain				S1	5 Undetermined	8	4.3 ± 0.0
	Carex backii	Rocky Mountain Sedge				S1	2 May Be At Risk	6	15.7 ± 1.0
•	Carex cephaloidea	Thin-leaved Sedge				S1	2 May Be At Risk	14	36.1 ± 0.0
•	Carex comosa	Bearded Sedge				S1	2 May Be At Risk	5	95.9 ± 0.0
	Carex merritt-fernaldii	Merritt Fernald's Sedge				S1	2 May Be At Risk	2	96.4 ± 0.0
	Carex saxatilis	Russet Sedge				S1	2 May Be At Risk	13	68.7 ± 10.0
•	Carex sterilis	Sterile Sedge				S1	2 May Be At Risk	3	26.2 ± 0.0
	Carex viridula var. elatior	Greenish Sedge				S1	2 May Be At Risk	4	98.4 ± 0.0
	Carex grisea	Inflated Narrow-leaved Sedge				S1	2 May Be At Risk	11	16.1 ± 1.0
	Cyperus diandrus	Low Flatsedge				S1	2 May Be At Risk	7	2.9 ± 1.0
))		Hop Flatsedge				S1		2	
	Cyperus lupulinus						2 May Be At Risk		30.0 ± 0.0
0	Cyperus lupulinus ssp. macilentus	Hop Flatsedge				S1 S1	2 May Be At Risk	16	29.8 ± 1.0
D	Eleocharis olivacea	Yellow Spikerush					2 May Be At Risk	3	94.1 ± 1.0

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Р	Rhynchospora capillacea	Slender Beakrush				S1	2 May Be At Risk	3	22.7 ± 0.0
Р	Scirpus pendulus	Hanging Bulrush				S1	2 May Be At Risk	5	99.4 ± 0.0
Ρ	Sisyrinchium angustifolium	Narrow-leaved Blue-eyed- grass				S1	2 May Be At Risk	3	73.9 ± 0.0
Р	Juncus greenei	Greene's Rush				S1	2 May Be At Risk	1	88.0 ± 0.0
Р	Juncus subtilis	Creeping Rush				S1	2 May Be At Risk	1	42.8 ± 5.0
Р	Allium canadense	Canada Garlic				S1	2 May Be At Risk	11	21.1 ± 1.0
Р	Goodyera pubescens	Downy Rattlesnake-Plantain				S1	2 May Be At Risk	2	9.7 ± 0.0
Р	Malaxis brachypoda	White Adder's-Mouth				S1	2 May Be At Risk	12	42.2 ± 0.0
Р	Platanthera flava var. herbiola	Pale Green Orchid				S1	2 May Be At Risk	13	7.6 ± 10.0
Р	Platanthera macrophylla	Large Round-Leaved Orchid				S1	2 May Be At Risk	4	9.8 ± 1.0
Р	Spiranthes casei	Case's Ladies'-Tresses				S1	2 May Be At Risk	6	17.3 ± 0.0
Р	Spiranthes ochroleuca	Yellow Ladies'-tresses				S1	2 May Be At Risk	2	62.5 ± 5.0
Р	Cinna arundinacea	Sweet Wood Reed Grass				S1	2 May Be At Risk	6	28.6 ± 0.0
Р	Danthonia compressa	Flattened Oat Grass				S1	2 May Be At Risk	3	58.0 ± 0.0
Р	Dichanthelium dichotomum	Forked Panic Grass				S1	2 May Be At Risk	5	64.2 ± 1.0
Р	Dichanthelium xanthophysum	Slender Panic Grass				S1	2 May Be At Risk	6	76.3 ± 0.0
Р	Elymus wiegandii	Wiegand's Wild Rye				S1	2 May Be At Risk	1	82.3 ± 0.0
Р	Elymus hystrix var. bigeloviana	Spreading Wild Rye				S1	2 May Be At Risk	22	73.6 ± 0.0
Р	Festuca subverticillata	Nodding Fescue				S1	2 May Be At Risk	3	96.3 ± 0.0
Р	Glyceria obtusa	Atlantic Manna Grass				S1	2 May Be At Risk	6	62.1 ± 0.0
Р	Sporobolus compositus	Rough Dropseed				S1	2 May Be At Risk	17	20.8 ± 0.0
Р	Potamogeton friesii	Fries' Pondweed				S1	2 May Be At Risk	6	9.2 ± 5.0
Р	Potamogeton nodosus	Long-leaved Pondweed				S1	2 May Be At Risk	11	1.7 ± 1.0
Р	Potamogeton strictifolius	Straight-leaved Pondweed				S1	2 May Be At Risk	2	68.8 ± 0.0
Р	Xyris difformis	Bog Yellow-eyed-grass				S1	5 Undetermined	3	64.2 ± 0.0
Р	Asplenium ruta-muraria var. cryptolepis	Wallrue Spleenwort				S1	2 May Be At Risk	3	70.7 ± 0.0
Р	Cystopteris laurentiana	Laurentian Bladder Fern				S1	2 May Be At Risk	1	95.1 ± 1.0
Р	Dryopteris clintoniana	Clinton's Wood Fern				S1	2 May Be At Risk	1	96.1 ± 0.0
Р	Botrychium oneidense	Blunt-lobed Moonwort				S1	2 May Be At Risk	8	9.0 ± 0.0
Р	Botrychium rugulosum	Rugulose Moonwort				S1	2 May Be At Risk	5	66.1 ± 1.0
Р	Schizaea pusilla	Little Curlygrass Fern				S1	2 May Be At Risk	16	83.0 ± 0.0
Р	Hieracium kalmii var. fasciculatum	Kalm's Hawkweed				S1?	5 Undetermined	2	6.7 ± 1.0
Р	Cuscuta cephalanthi	Buttonbush Dodder				S1?	2 May Be At Risk	2	69.4 ± 0.0
Р	Galium trifidum ssp. subbiflorum	Three-petaled Bedstraw				S1?	5 Undetermined	1	92.4 ± 1.0
Р	Wolffia columbiana	Columbian Watermeal				S1?	2 May Be At Risk	5	2.2 ± 0.0
Р	Humulus lupulus var. lupuloides	Common Hop				S1S2	3 Sensitive	6	8.0 ± 0.0
Р	Rumex aquaticus var. fenestratus	Western Dock				S1S2	2 May Be At Risk	1	9.9 ± 1.0
Р	Anemone multifida var. richardsiana	Cut-leaved Anemone				S1S2	5 Undetermined	1	88.6 ± 5.0
Р	Saxifraga virginiensis	Early Saxifrage				S1S2	2 May Be At Risk	14	17.2 ± 0.0
Р	Viola canadensis	Canada Violet				S1S2	2 May Be At Risk	72	86.1 ± 0.0
Р	Carex rostrata	Narrow-leaved Beaked Sedge				S1S2	3 Sensitive	4	92.1 ± 0.0
Р	Potamogeton bicupulatus	Snailseed Pondweed				S1S2	2 May Be At Risk	5	52.5 ± 0.0
Р	Selaginella rupestris	Rock Spikemoss				S1S2	2 May Be At Risk	14	22.8 ± 1.0
Р	Thelypteris simulata	Bog Fern				S1S2	2 May Be At Risk	7	20.8 ± 0.0
Р	Listera australis	Southern Twayblade			Endangered	S2	1 At Risk	15	24.4 ± 0.0
Р	Sanicula odorata	Clustered Sanicle				S2	2 May Be At Risk	21	27.1 ± 0.0
Р	Pseudognaphalium macounii	Macoun's Cudweed				S2	3 Sensitive	12	14.5 ± 1.0
Р	Solidago altissima	Tall Goldenrod				S2	4 Secure	11	8.3 ± 1.0
Р	Solidago simplex var. racemosa	Sticky Goldenrod				S2	2 May Be At Risk	16	20.8 ± 1.0
Р	Solidago simplex ssp. randii	Sticky Goldenrod				S2	2 May Be At Risk	2	19.8 ± 0.0
Р	Solidago simplex	Sticky Goldenrod				S2	2 May Be At Risk	2	20.0 ± 0.0
Р	Ionactis linariifolius	Stiff Aster				S2	3 Sensitive	25	13.9 ± 0.0
Р	Symphyotrichum racemosum	Small White Aster				S2	3 Sensitive	9	10.4 ± 0.0
Р	Impatiens pallida	Pale Jewelweed				S2	2 May Be At Risk	4	83.6 ± 0.0
Р	Alnus serrulata	Smooth Alder				S2	3 Sensitive	35	30.3 ± 0.0
Р	Arabis drummondii	Drummond's Rockcress				S2	3 Sensitive	13	16.1 ± 0.0

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
P	Cardamine concatenata	Cut-leaved Toothwort	COOLINIC	UAIA	110V Legar Fot	S2	2 May Be At Risk	11	29.8 ± 1.0
P	Sagina nodosa	Knotted Pearlwort				S2	3 Sensitive	3	86.8 ± 1.0
P	Sagina nodosa ssp. borealis	Knotted Pearlwort				S2	3 Sensitive	1	88.3 ± 0.0
P	Stellaria longifolia	Long-leaved Starwort				S2	3 Sensitive	9	8.4 ± 10.0
P	0	5				S2	4 Secure	9	
	Atriplex franktonii	Frankton's Saltbush							97.3 ± 1.0
P	Chenopodium rubrum	Red Pigweed				S2	3 Sensitive	4	72.1 ± 1.0
P	Callitriche hermaphroditica	Northern Water-starwort				S2	4 Secure	6	40.7 ± 0.0
Р	Hypericum dissimulatum	Disguised St John's-wort				S2	3 Sensitive	3	15.8 ± 0.0
Р	Lonicera oblongifolia	Swamp Fly Honeysuckle				S2	3 Sensitive	106	69.0 ± 0.0
Р	Triosteum aurantiacum	Orange-fruited Tinker's Weed				S2	3 Sensitive	68	22.9 ± 1.0
Р	Viburnum lentago	Nannyberry				S2	4 Secure	38	53.0 ± 0.0
Р	Viburnum recognitum	Northern Arrow-Wood				S2	4 Secure	40	64.5 ± 0.0
Р	Astragalus eucosmus	Elegant Milk-vetch				S2	2 May Be At Risk	11	22.5 ± 1.0
Р	Oxytropis campestris var. johannensis	Field Locoweed				S2	3 Sensitive	11	20.8 ± 0.0
Р	Quercus macrocarpa	Bur Oak				S2	2 May Be At Risk	39	7.2 ± 0.0
Р	Gentiana linearis	Narrow-Leaved Gentian				S2	3 Sensitive	18	8.8 ± 5.0
P	Myriophyllum humile	Low Water Milfoil				S2	3 Sensitive	10	15.8 ± 1.0
P	Hedeoma pulegioides	American False Pennyroyal				S2	4 Secure	14	32.9 ± 0.0
P	Nuphar lutea ssp. rubrodisca	Red-disked Yellow Pond-lily				S2	3 Sensitive	13	11.2 ± 10.0
P	Orobanche uniflora	One-Flowered Broomrape				S2	3 Sensitive	15	38.2 ± 1.0
P	Polygala paucifolia	Fringed Milkwort				S2 S2	3 Sensitive	16	8.4 ± 1.0
P									
	Polygala sanguinea	Blood Milkwort				S2	3 Sensitive	22	5.8 ± 0.0
P	Polygala senega	Seneca Snakeroot				S2	3 Sensitive	22	35.7 ± 1.0
Р	Polygonum amphibium var. emersum	Water Smartweed				S2	3 Sensitive	20	6.0 ± 1.0
Р	Polygonum careyi	Carey's Smartweed				S2	3 Sensitive	15	8.5 ± 1.0
Р	Podostemum ceratophyllum	Horn-leaved Riverweed				S2	3 Sensitive	31	27.4 ± 0.0
Р	Anemone multifida	Cut-leaved Anemone				S2	3 Sensitive	3	24.0 ± 0.0
Р	Hepatica nobilis var. obtusa	Round-lobed Hepatica				S2	3 Sensitive	53	17.2 ± 0.0
Р	Ranunculus flabellaris	Yellow Water Buttercup				S2	4 Secure	17	8.8 ± 1.0
Р	Ranunculus longirostris	Eastern White Water-Crowfoot				S2	5 Undetermined	8	16.6 ± 1.0
Р	Crataegus scabrida	Rough Hawthorn				S2	3 Sensitive	9	39.2 ± 1.0
P	Crataegus succulenta	Fleshy Hawthorn				S2	3 Sensitive	1	9.4 ± 5.0
P	Cephalanthus occidentalis	Common Buttonbush				S2	3 Sensitive	51	25.3 ± 0.0
P	Salix candida	Sage Willow				S2	3 Sensitive	6	35.8 ± 1.0
P	Castilleja septentrionalis	Northeastern Paintbrush				S2	3 Sensitive	9	75.7 ± 0.0
P						S2 S2		2	88.4 ± 0.0
	Euphrasia randii	Rand's Eyebright					2 May Be At Risk		
P	Scrophularia lanceolata	Lance-leaved Figwort				S2	3 Sensitive	11	21.0 ± 100.0
P	Dirca palustris	Eastern Leatherwood				S2	2 May Be At Risk	25	17.3 ± 0.0
Р	Phryma leptostachya	American Lopseed				S2	3 Sensitive	56	23.4 ± 1.0
Р	Verbena urticifolia	White Vervain				S2	2 May Be At Risk	21	17.9 ± 1.0
Р	Viola novae-angliae	New England Violet				S2	3 Sensitive	7	59.5 ± 0.0
Р	Symplocarpus foetidus	Eastern Skunk Cabbage				S2	3 Sensitive	70	49.9 ± 0.0
Р	Carex granularis	Limestone Meadow Sedge				S2	3 Sensitive	8	7.2 ± 0.0
Р	Carex gynocrates	Northern Bog Sedge				S2	3 Sensitive	32	79.0 ± 0.0
P	Carex hirtifolia	Pubescent Sedge				S2	3 Sensitive	55	25.5 ± 0.0
P	Carex livida var. radicaulis	Livid Sedge				S2	3 Sensitive	5	82.3 ± 2.0
P	Carex prairea	Prairie Sedge				S2	3 Sensitive	20	94.6 ± 0.0
P	Carex salina	Saltmarsh Sedge				S2	3 Sensitive	2	81.7 ± 1.0
P	Carex sprengelii	Longbeak Sedge				S2 S2	3 Sensitive	39	17.9 ± 0.0
P	Carex sprengeni Carex tenuiflora	Sparse-Flowered Sedge				S2 S2	2 May Be At Risk	39 18	17.9 ± 0.0 61.2 ± 0.0
P						S2 S2		6	
	Carex albicans var. emmonsii	White-tinged Sedge					3 Sensitive		35.6 ± 0.0
P	Carex vacillans	Estuarine Sedge				S2	3 Sensitive	2	91.0 ± 1.0
P	Cyperus squarrosus	Awned Flatsedge				S2	3 Sensitive	25	3.8 ± 10.0
Р	Eriophorum gracile	Slender Cottongrass				S2	2 May Be At Risk	11	25.5 ± 0.0
Р	Elodea nuttallii	Nuttall's Waterweed				S2	3 Sensitive	7	1.9 ± 0.0
	Juncus vasevi	Vasey Rush				S2	3 Sensitive	10	75.0 ± 0.0
P P	buncus vuscyn	Star Duckweed				S2	0 0011011110	17	42.4 ± 0.0

Taxonomic	

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Р	Allium tricoccum	Wild Leek				S2	2 May Be At Risk	22	73.5 ± 0.0
Р	Najas gracillima	Thread-Like Naiad				S2	3 Sensitive	11	21.6 ± 0.0
Р	Calypso bulbosa var. americana	Calypso				S2	2 May Be At Risk	39	9.8 ± 1.0
Р	Coeloglossum viride var. virescens	Long-bracted Frog Orchid				S2	2 May Be At Risk	8	12.3 ± 5.0
Р	Cypripedium parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	2 May Be At Risk	10	19.0 ± 1.0
Р	Galearis spectabilis	Showy Orchis				S2	2 May Be At Risk	54	73.5 ± 0.0
P	Goodyera oblongifolia	Menzies' Rattlesnake-plantain				S2	3 Sensitive	1	49.1 ± 0.0
P	Spiranthes cernua	Nodding Ladies'-Tresses				S2	3 Sensitive	13	5.3 ± 0.0
P	Spiranthes lucida	Shining Ladies'-Tresses				S2	3 Sensitive	22	12.6 ± 50.0
P	Agrostis mertensii	Northern Bent Grass				S2	2 May Be At Risk	1	75.9 ± 0.0
P	Dichanthelium linearifolium	Narrow-leaved Panic Grass				S2	3 Sensitive	13	25.5 ± 0.0
P	Elymus canadensis	Canada Wild Rye				S2 S2	2 May Be At Risk	13	7.9 ± 5.0
P						S2 S2			7.9 ± 5.0 3.8 ± 1.0
	Leersia virginica	White Cut Grass					2 May Be At Risk	41	
P	Piptatherum canadense	Canada Rice Grass				S2	3 Sensitive	5	27.7 ± 0.0
P	Puccinellia phryganodes	Creeping Alkali Grass				S2	3 Sensitive	8	87.0 ± 0.0
P	Schizachyrium scoparium	Little Bluestem				S2	3 Sensitive	44	9.2 ± 0.0
Р	Zizania aquatica var. aquatica	Indian Wild Rice				S2	5 Undetermined	6	9.4 ± 5.0
Р	Piptatherum pungens	Slender Rice Grass				S2	2 May Be At Risk	5	75.9 ± 0.0
Р	Stuckenia filiformis ssp. alpina	Thread-leaved Pondweed				S2	3 Sensitive	9	76.2 ± 0.0
Р	Potamogeton richardsonii	Richardson's Pondweed				S2	3 Sensitive	17	8.8 ± 5.0
Р	Potamogeton vaseyi	Vasey's Pondweed				S2	3 Sensitive	10	45.6 ± 0.0
Р	Asplenium trichomanes	Maidenhair Spleenwort				S2	3 Sensitive	9	31.3 ± 0.0
Р	Woodwardia virginica	Virginia Chain Fern				S2	3 Sensitive	19	12.6 ± 0.0
P	Woodsia alpina	Alpine Cliff Fern				S2	3 Sensitive	5	70.8 ± 0.0
P	Selaginella selaginoides	Low Spikemoss				S2	3 Sensitive	4	76.4 ± 6.0
P	Toxicodendron radicans	Poison Ivy				S2?	3 Sensitive	15	9.2 ± 1.0
P	Osmorhiza longistylis	Smooth Sweet Cicely				S2?	3 Sensitive	7	27.2 ± 5.0
-	Symphyotrichum novi-belgii var.	Shooth Sweet Cicely					3 Sensitive	1	21.2 ± 5.0
Р	crenifolium	New York Aster				S2?	5 Undetermined	3	9.7 ± 1.0
Р	Proserpinaca palustris var. crebra	Marsh Mermaidweed				S2?	3 Sensitive	20	55.3 ± 0.0
Р	Epilobium coloratum	Purple-veined Willowherb				S2?	3 Sensitive	10	9.9 ± 1.0
Р	Rubus pensilvanicus	Pennsylvania Blackberry				S2?	4 Secure	13	8.1 ± 0.0
Р	Rubus recurvicaulis	Arching Dewberry				S2?	4 Secure	5	37.1 ± 10.0
Р	Galium obtusum	Blunt-leaved Bedstraw				S2?	4 Secure	6	20.6 ± 1.0
P	Salix myricoides	Bayberry Willow				S2?	3 Sensitive	14	20.8 ± 0.0
P	Platanthera huronensis	Fragrant Green Orchid				S2?	5 Undetermined	3	40.2 ± 0.0
P	Eragrostis pectinacea	Tufted Love Grass				S2?	4 Secure	14	6.0 ± 0.0
P	Ceratophyllum echinatum	Prickly Hornwort				S2S3	3 Sensitive	16	10.9 ± 0.0
P	Elatine americana	American Waterwort				S2S3 S2S3	3 Sensitive	8	22.3 ± 1.0
P		Branched Bartonia				S2S3	3 Sensitive	4	87.2 ± 0.0
P	Bartonia paniculata					S2S3 S2S3		4 12	56.8 ± 0.0
	Bartonia paniculata ssp. iodandra	Branched Bartonia					3 Sensitive		
Р	Geranium robertianum	Herb Robert				S2S3	4 Secure	17	67.2 ± 1.0
Р	Myriophyllum quitense	Andean Water Milfoil				S2S3	4 Secure	71	58.0 ± 0.0
P	Rumex pallidus	Seabeach Dock				S2S3	3 Sensitive	4	35.6 ± 1.0
Р	Galium labradoricum	Labrador Bedstraw				S2S3	3 Sensitive	61	29.5 ± 0.0
Р	Valeriana uliginosa	Swamp Valerian				S2S3	3 Sensitive	40	68.9 ± 0.0
Р	Carex adusta	Lesser Brown Sedge				S2S3	4 Secure	6	21.8 ± 6.0
Р	Carex plantaginea	Plantain-Leaved Sedge				S2S3	3 Sensitive	71	27.5 ± 1.0
Р	Juncus brachycephalus	Small-Head Rush				S2S3	3 Sensitive	6	74.8 ± 0.0
Р	Corallorhiza maculata var. occidentalis	Spotted Coralroot				S2S3	3 Sensitive	7	9.8 ± 1.0
P	Corallorhiza maculata var. maculata	Spotted Coralroot				S2S3	3 Sensitive	3	7.0 ± 1.0
P	Listera auriculata	Auricled Twayblade				S2S3	3 Sensitive	9	23.7 ± 0.0
P	Potamogeton praelongus	White-stemmed Pondweed				S2S3	4 Secure	20	63.0 ± 0.0
P						S2S3	3 Sensitive	10	26.5 ± 1.0
	Isoetes acadiensis	Acadian Quillwort							
	Isoetes acadiensis Ophiodossum pusillum	Acadian Quillwort							
Р	Ophioglossum pusillum	Northern Adder's-tongue				S2S3	3 Sensitive	11	34.4 ± 1.0

•	0 : (C N	a N	000514/10				D 00 D 1	"	
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
Р	Artemisia campestris	Field Wormwood				S3	4 Secure	5	20.0 ± 0.0
Р	Artemisia campestris ssp. caudata	Field Wormwood				S3	4 Secure	80	17.9 ± 1.0
Р	Erigeron hyssopifolius	Hyssop-leaved Fleabane				S3	4 Secure	15	42.1 ± 0.0
Р	Prenanthes racemosa	Glaucous Rattlesnakeroot				S3	4 Secure	59	9.1 ± 100.0
Р	Tanacetum bipinnatum ssp. huronense	Lake Huron Tansy				S3	4 Secure	29	17.4 ± 5.0
Р	Symphyotrichum boreale	Boreal Aster				S3	3 Sensitive	109	23.0 ± 10.0
Р	Betula pumila	Bog Birch				S3	4 Secure	35	15.0 ± 0.0
Р	Arabis glabra	Tower Mustard				S3	5 Undetermined	11	72.0 ± 0.0
Р	Arabis hirsuta var. pycnocarpa	Western Hairy Rockcress				S3	4 Secure	20	15.9 ± 0.0
Р	Cardamine maxima	Large Toothwort				S3	4 Secure	112	9.8 ± 0.0
P	Subularia aquatica var. americana	Water Awlwort				S3	4 Secure	18	41.0 ± 0.0
P	Lobelia cardinalis	Cardinal Flower				S3	4 Secure	306	27.4 ± 0.0
P	Stellaria humifusa	Saltmarsh Starwort				S3	4 Secure	5	83.2 ± 0.0
P	Hudsonia tomentosa	Woolly Beach-heath				S3	4 Secure	3	67.5 ± 0.0
P	Cornus amomum ssp. obliqua	Pale Dogwood				S3	3 Sensitive	124	30.4 ± 0.0
P									
•	Crassula aquatica	Water Pygmyweed				S3	4 Secure	3	22.3 ± 1.0
P	Rhodiola rosea	Roseroot				S3	4 Secure	19	67.6 ± 5.0
Р	Penthorum sedoides	Ditch Stonecrop				S3	4 Secure	50	0.7 ± 0.0
Р	Elatine minima	Small Waterwort				S3	4 Secure	56	40.7 ± 0.0
Р	Astragalus alpinus var. brunetianus	Alpine Milk-Vetch				S3	4 Secure	10	20.0 ± 0.0
Р	Hedysarum alpinum	Alpine Sweet-vetch				S3	4 Secure	16	75.5 ± 0.0
Р	Gentianella amarella ssp. acuta	Northern Gentian				S3	4 Secure	9	55.3 ± 0.0
Р	Geranium bicknellii	Bicknell's Crane's-bill				S3	4 Secure	10	19.9 ± 5.0
Р	Myriophyllum farwellii	Farwell's Water Milfoil				S3	4 Secure	22	30.5 ± 0.0
Р	Myriophyllum heterophyllum	Variable-leaved Water Milfoil				S3	4 Secure	49	18.6 ± 0.0
Р	Myriophyllum verticillatum	Whorled Water Milfoil				S3	4 Secure	22	6.4 ± 0.0
P	Myriophyllum sibiricum	Siberian Water Milfoil				S3	4 Secure	29	30.5 ± 0.0
P	Stachys tenuifolia	Smooth Hedge-Nettle				S3	3 Sensitive	14	17.0 ± 0.0
P	Utricularia radiata	Little Floating Bladderwort				S3	4 Secure	52	52.3 ± 0.0
P	Nuphar lutea ssp. pumila	Small Yellow Pond-lily				S3	4 Secure	20	15.7 ± 0.0
P	Epilobium hornemannii	Hornemann's Willowherb				S3	4 Secure	4	71.9 ± 1.0
P	Epilobium strictum	Downy Willowherb				S3	4 Secure	45	27.0 ± 1.0
P	1	·)							
P	Polygonum arifolium	Halberd-leaved Tearthumb				S3	4 Secure	23	23.9 ± 0.0
Р	Polygonum punctatum	Dotted Smartweed				S3	4 Secure	2	23.5 ± 0.0
Р	Polygonum punctatum var. confertiflorum	Dotted Smartweed				S3	4 Secure	11	9.4 ± 5.0
Р	Polygonum scandens	Climbing False Buckwheat				S3	4 Secure	44	3.4 ± 1.0
Р	Littorella uniflora	American Shoreweed				S3	4 Secure	30	23.5 ± 0.0
Р	Primula mistassinica	Mistassini Primrose				S3	4 Secure	21	24.5 ± 1.0
Р	Pyrola minor	Lesser Pyrola				S3	4 Secure	3	73.9 ± 0.0
Р	Clematis occidentalis	Purple Clematis				S3	4 Secure	32	10.7 ± 0.0
Р	Ranunculus gmelinii	Gmelin's Water Buttercup				S3	4 Secure	25	19.2 ± 1.0
P	Thalictrum venulosum	Northern Meadow-rue				S3	4 Secure	93	2.8 ± 0.0
P	Agrimonia gryposepala	Hooked Agrimony				S3	4 Secure	125	25.5 ± 0.0
P	Amelanchier canadensis	Canada Serviceberry				S3	4 Secure	17	2.9 ± 1.0
P	Rosa palustris	Swamp Rose				S3	4 Secure	43	29.8 ± 0.0
P	Rubus chamaemorus					S3	4 Secure		29.8 ± 0.0 75.4 ± 0.0
P		Cloudberry						46	
	Rubus occidentalis	Black Raspberry				S3	4 Secure	97	21.8 ± 0.0
P	Salix interior	Sandbar Willow				S3	4 Secure	35	6.0 ± 0.0
P	Salix nigra	Black Willow				S3	3 Sensitive	123	4.8 ± 1.0
Р	Salix pedicellaris	Bog Willow				S3	4 Secure	62	11.8 ± 0.0
Р	Comandra umbellata	Bastard's Toadflax				S3	4 Secure	1	38.2 ± 10.0
Р	Geocaulon lividum	Northern Comandra				S3	4 Secure	8	83.1 ± 0.0
Р	Parnassia glauca	Fen Grass-of-Parnassus				S3	4 Secure	9	28.8 ± 10.0
	Limosella australis	Southern Mudwort				S3	4 Secure	1	98.0 ± 5.0
P									
P P	Veronica serpyllifolia ssp. humifusa	Thyme-Leaved Speedwell				S3	4 Secure	6	8.4 ± 100.0

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
P	Pilea pumila	Dwarf Clearweed				S3	4 Secure	47	9.4 ± 1.0
5	Viola adunca	Hooked Violet				S3	4 Secure	13	48.0 ± 1.0
0	Viola nephrophylla	Northern Bog Violet				S3	4 Secure	18	21.6 ± 0.0
0	Carex arcta	Northern Clustered Sedge				S3	4 Secure	40	7.7 ± 0.0
5	Carex atratiformis	Scabrous Black Sedge				S3	4 Secure	4	76.6 ± 0.0
5		0						4	
	Carex capillaris	Hairlike Sedge				S3	4 Secure		76.4 ± 0.0
	Carex chordorrhiza	Creeping Sedge				S3	4 Secure	62	15.2 ± 5.0
	Carex conoidea	Field Sedge				S3	4 Secure	21	26.9 ± 1.0
P	Carex eburnea	Bristle-leaved Sedge				S3	4 Secure	6	98.4 ± 0.0
P	Carex exilis	Coastal Sedge				S3	4 Secure	99	45.2 ± 0.0
P	Carex garberi	Garber's Sedge				S3	3 Sensitive	14	38.2 ± 1.0
5	Carex haydenii	Hayden's Sedge				S3	4 Secure	31	10.4 ± 1.0
2	Carex lupulina	Hop Sedge				S3	4 Secure	75	7.5 ± 1.0
5	Carex michauxiana	Michaux's Sedge				S3	4 Secure	59	47.6 ± 0.0
2	Carex ormostachya	Necklace Spike Sedge				S3	4 Secure	17	16.1 ± 0.0
5	Carex rosea	Rosy Sedge				S3	4 Secure	137	15.8 ± 0.0
5	Carex tenera	Tender Sedge				S3	4 Secure	42	10.2 ± 0.0
5	Carex tuckermanii	Tuckerman's Sedge				S3	4 Secure	57	7.5 ± 1.0
5						S3	3 Sensitive		7.5 ± 1.0 68.6 ± 0.0
	Carex vaginata	Sheathed Sedge						14	
	Carex wiegandii	Wiegand's Sedge				S3	4 Secure	37	13.1 ± 0.0
0	Carex recta	Estuary Sedge				S3	4 Secure	5	33.8 ± 0.0
5	Cyperus dentatus	Toothed Flatsedge				S3	4 Secure	128	15.8 ± 1.0
>	Cyperus esculentus	Perennial Yellow Nutsedge				S3	4 Secure	45	8.5 ± 5.0
0	Eleocharis intermedia	Matted Spikerush				S3	4 Secure	7	21.0 ± 0.0
b	Eleocharis quinqueflora	Few-flowered Spikerush				S3	4 Secure	8	19.8 ± 0.0
)	Eriophorum chamissonis	Russet Cotton-Grass				S3	4 Secure	9	27.5 ± 2.0
þ	Rhynchospora capitellata	Small-headed Beakrush				S3	4 Secure	38	27.4 ± 0.0
b	Rhynchospora fusca	Brown Beakrush				S3	4 Secure	40	33.6 ± 1.0
5	Trichophorum clintonii	Clinton's Clubrush				S3	4 Secure	93	47.3 ± 1.0
5	,					S3		93 46	47.5 ± 1.0 11.6 ± 0.0
	Schoenoplectus fluviatilis	River Bulrush					3 Sensitive		
	Schoenoplectus torreyi	Torrey's Bulrush				S3	4 Secure	33	17.1 ± 0.0
	Triglochin gaspensis	Gasp ⊢⊢ Arrowgrass				S3	4 Secure	11	83.6 ± 1.0
2	Triantha glutinosa	Sticky False-Asphodel				S3	4 Secure	68	21.8 ± 0.0
0	Cypripedium reginae	Showy Lady's-Slipper				S3	3 Sensitive	74	69.0 ± 0.0
0	Liparis loeselii	Loesel's Twayblade				S3	4 Secure	25	2.7 ± 0.0
0	Platanthera blephariglottis	White Fringed Orchid				S3	4 Secure	24	4.1 ± 0.0
2	Platanthera grandiflora	Large Purple Fringed Orchid				S3	3 Sensitive	35	28.3 ± 1.0
5	Bromus latiglumis	Broad-Glumed Brome				S3	3 Sensitive	16	23.7 ± 0.0
5	Calamagrostis pickeringii	Pickering's Reed Grass				S3	4 Secure	104	56.8 ± 0.0
c	Dichanthelium depauperatum	Starved Panic Grass				S3	4 Secure	16	33.7 ± 0.0
0	Muhlenbergia richardsonis	Mat Muhly				S3	4 Secure	22	21.2 ± 0.0
0	Heteranthera dubia	Water Stargrass				S3	4 Secure	55	6.9 ± 0.0
5	Potamogeton obtusifolius	Blunt-leaved Pondweed				S3	4 Secure	29	45.0 ± 1.0
5									
	Xyris montana	Northern Yellow-Eyed-Grass				S3	4 Secure	28	54.5 ± 0.0
	Zannichellia palustris	Horned Pondweed				S3	4 Secure	5	68.8 ± 0.0
0	Adiantum pedatum	Northern Maidenhair Fern				S3	4 Secure	202	25.5 ± 0.0
0	Cryptogramma stelleri	Steller's Rockbrake				S3	4 Secure	1	80.8 ± 1.0
0	Asplenium trichomanes-ramosum	Green Spleenwort				S3	4 Secure	15	59.1 ± 0.0
)	Dryopteris fragrans var. remotiuscula	Fragrant Wood Fern				S3	4 Secure	20	30.4 ± 0.0
)	Dryopteris goldiana	Goldie's Woodfern				S3	3 Sensitive	166	22.7 ± 5.0
)	Woodsia glabella	Smooth Cliff Fern				S3	4 Secure	1	94.7 ± 1.0
0	Equisetum palustre	Marsh Horsetail				S3	4 Secure	8	3.0 ± 10.0
	Isoetes tuckermanii	Tuckerman's Quillwort				S3	4 Secure	21	37.3 ± 0.0
ס ס	Lycopodium sabinifolium	Ground-Fir				S3	4 Secure	12	19.9 ± 10.0
5									
	Huperzia appalachiana	Appalachian Fir-Clubmoss				S3	3 Sensitive	2	79.1 ± 1.0
	Botrychium dissectum Botrychium lanceolatum var.	Cut-leaved Moonwort				S3 S3	4 Secure 3 Sensitive	50 18	6.9 ± 0.0 9.4 ± 5.0
>		Lance-Leaf Grape-Fern							

Taxonomic	Oniontific Nome	O Norma	000514/10		During Lawyel During	Dury Davity Davis	David CO David	#	
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
	angustisegmentum								
Р	Botrychium simplex	Least Moonwort				S3	4 Secure	12	12.7 ± 0.0
P	Polypodium appalachianum	Appalachian Polypody				S3	4 Secure	22	7.0 ± 10.0
P	Utricularia resupinata	Inverted Bladderwort				S3?	4 Secure	16	45.2 ± 0.0
Р	Crataegus submollis	Quebec Hawthorn				S3?	3 Sensitive	17	10.4 ± 1.0
Р	Lobelia kalmii	Brook Lobelia				S3S4	4 Secure	41	8.8 ± 1.0
Р	Suaeda calceoliformis	Horned Sea-blite				S3S4	4 Secure	3	8.1 ± 0.0
Р	Utricularia gibba	Humped Bladderwort				S3S4	4 Secure	41	27.6 ± 0.0
Р	Potentilla arguta	Tall Cinquefoil				S3S4	4 Secure	46	9.7 ± 1.0
Р	Cladium mariscoides	Smooth Twigrush				S3S4	4 Secure	76	33.9 ± 0.0
Р	Spirodela polyrrhiza	Great Duckweed				S3S4	4 Secure	38	2.0 ± 1.0
Р	Corallorhiza maculata	Spotted Coralroot				S3S4	3 Sensitive	14	31.3 ± 0.0
Р	Distichlis spicata	Salt Grass				S3S4	4 Secure	3	88.9 ± 1.0
Р	Potamogeton oakesianus	Oakes' Pondweed				S3S4	4 Secure	35	4.1 ± 0.0
Р	Stuckenia pectinata	Sago Pondweed				S3S4	4 Secure	62	21.9 ± 0.0
Р	Solidago caesia	Blue-stemmed Goldenrod				SX	0.1 Extirpated	2	81.9 ± 1.0
Р	Oligoneuron album	Upland White Goldenrod				SX	0.1 Extirpated	3	83.1 ± 1.0
P	Celastrus scandens	Climbing Bittersweet				SX	0.1 Extirpated	4	25.1 ± 1.0

5.1 SOURCE BIBLIOGRAPHY (100 km) The recipient of these data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

# recs	CITATION
5628	Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
3248	Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
2697	eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
1659	Pardieck, K.L. & Ziolkowski Jr., D.J.; Hudson, MA.R. 2014. North American Breeding Bird Survey Dataset 1966 - 2013, version 2013.0. U.S. Geological Survey, Patuxent Wildlife Research Center <pre><www.pwrc.usgs.gov bbs="" rawdata=""></www.pwrc.usgs.gov>.</pre>
1151	Sumw.pwc.ssg.sgvnDonrawpata/>. Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.
887	Cowie, F. 2007. Electrofishing Population Estimates 1979-98. Canadian Rivers Institute, 2698 recs.
818	Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
733	Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton, 2003.
657	Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.
519	Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
502	Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
410	Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
405	Brunelle, PM. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
375	Blaney, C.S. & Mazerolle, D.M. 2011. NB WTF Fieldwork on Magaguadavic & Lower St Croix Rivers. Atlantic Canada Conservation Data Centre, 4585 recs.
361	Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.
343	Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs.
331	Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
279	Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2013. Atlantic Canada Conservation Data Centre Fieldwork 2013. Atlantic Canada Conservation Data Centre, 9000+ recs.
256	Sollows, M.C,. 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
253	Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
247	Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
237	Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.
210	Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
192	Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
184	Blaney, C.S. & Mazerolle, D.M. 2011. Field data from NCC properties at Musquash Harbour NB & Goose Lake NS. Atlantic Canada Conservation Data Centre, 1739 recs.
163	Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
148	Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.
145	Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
141	Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
141	Sollows, M.C,. 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).

recs CITATION

- 138 Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.
- 134 Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).
- 128 Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
- 126 Gravel, Mireille. 2010. Coordonnées GPS et suivi des tortues marquées, 2005-07. Kouchibouguac National Park, 480 recs.
- 119 MacDougall, A.; Bishop, G.; et al. 1998. 1997 Appalachian Hardwood Field Data. Nature Trust of New Brunswick, 4473 recs.
- 116 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 114 Bishop, G. & Papoulias, M.; Arnold (Chaplin), M. 2005. Grand Lake Meadows field notes, Summer 2005. New Brunswick Federation of Naturalists, 1638 recs.
- 101 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 85 Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
- 85 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 81 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- 73 Klymko, J.J.D. 2014. Maritimes Butterfly Atlas, 2012 submissions. Atlantic Canada Conservation Data Centre, 8552 records.
- 72 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 70 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 66 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 64 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.
- 59 Spicer, C.D. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 211 recs.
- 55 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 54 Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
- 54 Boyne, A.W. 2000. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 168 recs.
- 46 Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
- 46 Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012.
- 38 Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs.
- 38 Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs.
- 34 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 32 Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- 29 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.
- 28 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- 27 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 26 Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp.
- 25 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2009. New Brunswick Dept Natural Resources, 19 recs (14 active).
- 25 Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).
- 23 Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000
- ²³. Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
- 23 Klymko, J.J.D. 2012. Insect field work & submissions. Atlantic Canada Conservation Data Centre, 852 recs.
- 23 Klymko, J.J.D. 2012. Maritimes Butterfly Atlas, 2010 and 2011 records. Atlantic Canada Conservation Data Centre, 6318 recs.
- 20 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99. , Pers. comm. to K.A. Bredin. 91 recs.
- Klymko, J.J.D.; Robinson, S.L. 2014. 2013 field data. Atlantic Canada Conservation Data Centre.
- Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000.
- Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.
- 15 Houston, J.J. 1990. Status of the Redbreast Sunfish (Lepomis auritus) in Canada. Can. Field-Nat., 104:64-68. 15 recs.
- 15 McAlpine, D.F., Fletcher, T.J., Gorham, S.W. & Gorham, I.T. 1991. Distribution & habitat of the Tetraploid Gray Treefrog, Hyla versicolor, in New Brunswick & Eastern Maine. Can. Field-Nat., 105 (4): 526-529. 17 recs.
- 15 Tingley, S. (compiler). 2001. Butterflies of New Brunswick. . Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.
- 4 Spicer, C.D. 2001. Powerline Corridor Botanical Surveys, Charlotte & Saint John Counties. A M E C International, 1269 recs.
- 13 Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs.
- 12 Webster, R.P. 2006. Survey for Suitable Salt Marshes for the Maritime Ringlet, New Populations of the Cobblestone Tiger Beetle, & New Localities of Three Rare Butterfly Species. New Brunswick WTF Report, 28 recs.
- 10 Noseworthy, J. 2013. Van Brunt's Jacob's-ladder observations along tributary of Dipper Harbour Ck. Nature Conservancy of Canada, 10 recs.
- Wood Turtle (Glyptemys insculpta) Miramichi Watershed Synopsis 2013
- 10 Compiled by: Vladimir King Trajkovic, EPt
- Miramichi River Environmental Assessment Committee
- 9 Clayden, S.R. 2005. Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia). Committee on the Status of Endangered Wildlife in Canada, 27 recs.
- 9 Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013.
- 8 Blaney, C.S.; Mazerolle, D.M. 2011. Fieldwork 2011. Atlantic Canada Conservation Data Centre. Sackville NB.
- 8 Bredin, K.A. 2001. WTF Project: Freshwater Mussel Fieldwork in Freshwater Species data. Atlantic Canada Conservation Data Centere, 101 recs.
- 8 Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.
- 8 Doucet, D.A. & Edsall, J. 2007. Ophiogomphus howei records. Atlantic Canada Conservation Data Centre, Sackville NB, 21 recs.
- 8 Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- 8 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.

# recs	CITATION
7	Goltz, J.P. 1994. In the Footsteps of Our Ancestors. NB Naturalists, 21 (2-4): 20. 8 recs.
7	Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active).
7	Keppie, D.M. 2005. Rare Small Mammal Records in NB, PE. Pers. comm. to K. Bredin; PE 1 rec., NB 24 recs, 23 recs.
7	McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick. New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
7	Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier.
6	Brunelle, PM. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs.
6	Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
6	Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs.
6	Newell, R.E. 2008. Vascular Plants of Muzroll Lake. Pers. comm. to C.S. Blaney, 1 pg. 43 recs.
6	Popma, T.M. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 113 recs.
5	Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
5	Goltz, J.P. 2001. Botany Ramblings April 29-June 30, 2001. N.B. Naturalist, 28 (2): 51-2. 8 recs.
5	Toner, M. 2005. Lynx Records 1996-2005. NB Dept of Natural Resources, 48 recs.
5	Webster, R.P. & Edsall, J. 2007. 2005 New Brunswick Rare Butterfly Survey. Environmental Trust Fund, unpublished report, 232 recs.
4	Bredin, K.A. 2003. NB Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 20 recs.
4	Christie, D.S. 2000. Christmas Bird Count Data, 1997-2000. Nature NB, 54 recs.
4	Doucet, D.A. 2008. Wood Turtle Records 2002-07. Pers. comm. to S. Gerriets, 7 recs, 7 recs.
4	Gravel, Mireille. 2010. Coordonnées des tortues des bois Salmon River Road, 2005. Kouchibouguac National Park, 4 recs.
4	Klymko, J.J.D. 2012. Odonata specimens & observations, 2010. Attantic Canada Conservation Data Centre, 425 recs.
4	Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
4	Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
4 3	Sabine, D.L. 2011. Dorcas Copper records from 2001 Fieldwork. New Brunswick Dept of Natural Resources, 4 recs. Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip. , 135 rec.
3	Bishop, G. Bagnell, B.A. 2004. Site Assessment of Musquash Harbour, Nature Conservancy of Canada Property - Preliminary Botanical Survey. B&B Botanical, 12pp.
3	Blaney, C.S. Miscellaneous specimens received by ACCDC (botany). Various persons. 2001-08.
3	Brunelle, PM. 2005. Wood Turtle observations. Pers. comm. to S.H. Gerriets, 21 Sep. 3 recs.
3	Clayden, S.R. 2006. Pseudevernia clashonia records. NB Museum. Pers. comm. to S. Blaney, Dec. 4 recs.
3	Daucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
3	Edsall, J. 1993. Spring 1993 Report. New Brunswick Bird Info Line, 3 recs.
3	Forbes, G. 2001. Bog Lemming, Phalarope records, NB., Pers. comm. to K.A. Bredin. 6 recs.
3	Klymko, J.J.D. 2012. Insect fieldwork & submissions, 2011. Atlantic Canada Conservation Data Centre. Sackville NB, 760 recs.
3	Lautenschlager, R.A. 2005. Survey for Species at Risk on the Canadian Forest Service's Acadia Research Forest near Fredericton, New Brunswick, Atlantic Canada Conservation Data Centre, 6. 3 recs.
3	Sollows, M.C., 2009. NBM Science Collections databases: Coccinellid & Cerambycid Beetles. New Brunswick Museum, Saint John NB, download Feb. 2009, 569 recs.
2	Bagnell, B.A. 2003. Update to New Brunswick Rare Bryophyte Occurrences. B&B Botanical, Sussex, 5 recs.
2	Chaput, G. 1999. Atlantic Salmon: Miramichi & SFA 16 Rivers. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-05. 6 recs.
2	Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs.
2	Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs.
2	Hay, G.U. 1883. Botany of the Upper St. John. Bulletin of the Natural History Society of New Brunswick, 2:21-31. 2 recs.
2	Hinds, H.R. 1999. A Vascular Plant Survey of the Musquash Estuary in New Brunswick. , 12pp.
2	Holder, M. & Kingsley, A.L. 2000. Peatland Insects in NB & NS: Results of surveys in 10 bogs during summer 2000. Atlantic Canada Conservation Data Centre, Sackville, 118 recs.
2	McAlpine, D.F. 2001. Lepomis auritus, 2 sites in Saint John County. New Brunswick Museum, Pers. comm. to K.A. Bredin. 2 recs.
2	Olsen, R. Herbarium Specimens. Nova Scotia Agricultural College, Truro. 2003.
2	Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs.
2	Walker, E.M. 1942. Additions to the List of Odonates of the Maritime Provinces. Proc. Nova Scotian Inst. Sci., 20. 4: 159-176. 2 recs.
1	Benedict, B. 2006. Argus annotation: Salix pedicellaris. Pers. comm to C.S. Blaney, June 21, 1 rec.
1	Boyne, A.W. 2000. Harlequin Duck Surveys. Canadian Wildlife Service, Sackville, unpublished data. 5 recs.
1	Bredin, K.A. 2001. NB Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 16 recs.
1	Clayden, S.R. 2007. NBM Science Collections. Pers. comm. to D. Mazerolle, 1 rec.
1	Dadswell, MJ. 1979. Status Report on Shortnose Sturgeon (Acipenser brevirostrum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 15 pp.
1	Dept of Eisheries & Oceans, 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces Science Stock Status Report D3-22, 13 recs

- Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces. , Science Stock Status Report D3-22. 13 recs.
- 1 Edsall, J. 1993. Summer 1993 Report. New Brunswick Bird Info Line, 2 recs.
- Hinds, H.R. 2000. Flora of New Brunswick (2nd Ed.). University New Brunswick, 694 pp. 1
- Jessop, B. 2004. Acipenser oxyrinchus locations. Dept of Fisheries & Oceans, Atlantic Region, Pers. comm. to K. Bredin. 1 rec. 1
- Jolicoeur, G. 2008. Anticosti Aster at Chapel Bar, St John River. QC DOE? Pers. comm. to D.M. Mazerolle, 1 rec. 1
- LaFlamme, C. 2008. Disovery of Goodyera pubescens at Springdale, NB. Amec Earth and Environmental. Pers. comm. to D.M. Mazerolle, 1 rec. 1
- Loo, J. & MacDougall, A. 1994. GAP analysis: Summary Report. Fundy Model Forest, 2 recs. 1
- 1 Madden, A. 1998. Wood Turtle records in northern NB. New Brunswick Dept of Natural Resources & Energy, Campbellton, Pers. comm. to S.H. Gerriets. 16 recs.
- 1 McAlpine, D.F. & Cox, S.L., McCabe, D.A., Schnare, J.-L. 2004. Occurrence of the Long-tailed Shrew (Sorex dispar) in the Nerepis Hills NB. Northeastern Naturalist, vol 11 (4) 383-386. 1 rec.

CITATION # recs

- Newell, R. E. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University. 2013. Norton, Barb. 2010. Personal communication concerning Botrychium oneidense near Ayers Lake, NB., One record. Nye, T. 2002. Wood Turtle observations in Westmorland, Queens Cos., Pers. com. to S.H. Gerriets, Dec. 3. 3 recs. Sabine, D.L. & Goltz, J.P. 2006. Discovery of Utricularia resupinata at Little Otter Lake, CFB Gagetown. Pers. comm. to D.M. Mazerolle, 1 rec. Sabine, D.L. 2004. Specimen data: Whittaker Lake & Marysville NB. Pers. comm. to C.S. Blaney, 2pp, 4 recs. Sabine, D.L. 2012. Bronze Copper records, 2003-06. New Brunswick Dept of Natural Resources, 5 recs.
- Sheppard, M. 2000. Annual Report
- . Nature Trust of New Brunswick, September 2000. 1 rec. .
- Singleton, J. 2004. Primula mistassifica record for Nashwaak NB. Pers. comm. to C.S. Blaney, 1 rec. Taylor, Eric B. 1997. Status of the Sympatric Smelt (genus Osmerus) Populations of Lake Utopia, New Brunswick. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
 - Toner, M. 2005. Listera australis population at Bull Pasture Plains. NB Dept of Natural Resources. Pers. comm. to S. Blaney, 8 recs.
 - Toner, M. 2009. Wood Turtle Sightings. NB Dept of Natural Resources. Pers. comm. to S. Gerriets, Jul 13 & Sep 2, 2 recs.
- Toner, M. 2011. Wood Turtle sighting. NB Dept of Natural Resources. Pers. com. to S. Gerriets. Sep 2, photo, 1 rec. Torenvliet, Ed. 2010. Wood Turtle roadkill. NB Dept of Transport. Pers. com. to R. Lautenschlager, Aug. 20, photos, 1 rec. Tremblay, E. 2006. Kouchibouguac National Park Digital Database. Parks Canada, 105 recs.

Appendix D *Bird Survey Report, Jim Wilson, August* 2015

August 26, 2015

Ms Rhonda Dana Dillon Consulting Limited 1149 Smythe Street, Suite 200 Fredericton, N.B. E3B 3H4

Subject - Bird Survey - Maugerville Townhouse Development Site

This is a report on a survey of the bird life within the Maugerville Townhouse construction area, as requested.

Overview

I conducted a survey of the site the morning of Tuesday, August 25, 2015. This information is intended to support a potential environmental impact assessment for the development of townhouses.

The survey area is nearly free of large trees and dense shrubbery as most of it had been cleared by heavy equipment or filled in with gravel or sand in preparation for construction.

No Species at Risk were detected and no stick nests were present in the remaining few trees along the banks of the Saint John River. One distant Bald Eagle was observed out over the river, travelling southeast and was not noted nesting or foraging within the area of the planned development.

The survey involved conducting specific ten-minute periods of listening and observing for bird species at three point count locations within the development area, a search of all large trees for stick nests and general listening and observing bird life within the site for the duration of a two-hour visit.

Weather conditions were heavy overcast with no wind, making for excellent listening conditions.

Twenty bird species were identified during the point counts and are summarized in the attached appendixes. A total of 51 individual birds were noted.

Survey Methods

The coordinates of three point count locations within the survey area were predetermined by Dillon Consulting Limited. The points were plotted to ensure relatively easy access, spread coverage across the survey site, be at least 200 meters apart and be located in a variety of habitat types. I travelled between locations using a handheld GPS. A map showing approximate locations of the point counts is attached as **APPENDIX 1**.

Conducting the point counts involved initial five-minute periods of quietly listening for the songs and calls of all birds in the area of each location as well as observing for the movements of birds within the area or flying overhead.

A second step at each point count involved playing a digital recording of an Eastern Screech Owl being mobbed by a flock of very vocal Black-capped Chickadees for a further period of five minutes. The maternal instincts of songbirds are very strong during the breeding season and into the early fall, and this recording has the potential to draw in most birds within earshot, providing an observer with an idea of what birds are around that might not have been vocalizing during the previous five minute period. Any new species or additional individuals of a previously-recorded species were then added to the point count inventory.

Bird Species Noted

A total of 20 bird species were identified and **APPENDIX 2** – Summary of Species by Relative Abundance presents the list of birds by relative abundance, beginning with the most numerous. Because the visit was well past the peak of the summer nesting season most birds were not singing and had to be detected visually or by hearing their calls (not songs).

The survey area had been largely denuded of trees and shrubbery and some of the species noted were seen or heard calling at the eastern edge, where it meets the adjoining property that is still densely forested with thickets, mature trees and wetland sedges. Birds such as Swamp Sparrow, Veery, Purple Finch and American Goldfinch that responded there would not normally inhabit the open area of the survey footprint.

Similarly, species such as Mallard, Double-crested Cormorant and Bald Eagle would not normally be expected as they tend to feed or forage in and along the waters of the Saint John River.

APPENDIX 4 – Summary of Point Count Surveys provides details of the number and locations of individual bird species detected. A total of 51 individual birds were noted during these counts.

Weather

Weather conditions were heavy overcast with no wind, making for excellent listening conditions between 8 AM and 10 AM. The temperature ranged from +18C at the start to + 23C. With the open topography and no wind, it was a good morning to be doing the survey.

General Habitat

Much of the survey footprint had been cleared with heavy equipment within the recent past with the result that there are large areas of sand or gravel, including the main access roadway and offshoots from it. As part of the earlier site preparation a cement foundation footing had been poured and there are raised and levelled areas of sand and gravel.

The remaining portion of the site is still covered in grass and weeds, including a damp area toward the northern end and a grassy field at the southern (river) end that comprises approximately 20% of the development area.

Along the shore of the Saint John River are scattered mature maples and one large ash. These vary in height between an estimated 15 and 25 meters and are typical riparian trees.

To the east of the survey area and separate from it is a damp property covered with thickets of alder and willow, larger trees of birch and maple as well as abundant wetland sedges. In places there are small clumps of cattail, indicating standing water must be present during much of the year.

Photographs of habitat at various points within the development area are included in APPENDIX 3.

Conclusions

- 1. I did not detect any stick nests or any other birds of prey within the development area during the survey.
- 2. I did not detect any Species at Risk within the development boundaries during the survey.
- 3. I did not identify any habitat within the boundaries that might harbor bird Species at Risk now, or at other seasons of the year.

Future Construction Activity

It's my understanding that future landscape alteration and construction is planned at the site, although the timing of such renewed activity is not clear at this time.

Recommendations

- That, if possible, remaining land clearing and site preparation work be done outside the spring/summer nesting period (April 1 to the end of August), to avoid the possibility of disturbing nesting migratory birds. Birds such as Killdeer, which prefer open sandy or gravel areas such as this one for their ground nests, can lay eggs before the end of April. Ground nesting American Woodcock and at least two duck species would also be possible by then.
- That, if land clearing is required to take place between April 1 and August 31, a thorough check is made for the presence of nests, eggs or young of migratory birds by a person qualified to do such work.

- That should any nest, eggs or young of any migratory bird be detected before land clearing begins, that plans for clearing operations be put on hold until the birds have fledged and moved out of the area and the area is re-checked to ensure other nests, eggs or young are not present.
- 4. That the clearing crew be advised to be vigilant for any indication of migratory bird nesting activity during the land clearing and site preparation work. That would include the consistent presence of a pair of birds in the immediate area showing obvious signs of agitation, birds carrying nesting material or food in their beaks to a location in the development area, or the presence of young birds on the ground or in adjacent shrubs and trees within the development area.
- 5. That should the clearing crew detect the presence of any nest, eggs or young of a migratory bird during the operations, that you contact me immediately. I would be happy do a quick evaluation of the situation, to avoid any problems.

I trust this report and these recommendations are helpful. If you have any questions or need additional information, please contact me by email or telephone at the addresses above.

Sincerely,

Jim Wilson

APPENDIX 1

Maugerville Townhouse Development Point Count Locations

APPENDIX 2

Proposed Townhouse Development Si	ite - Edgar & Anita V	Vay, Maugerv	ille, N.B.
Summary of Bird Spec	ies by Relative Abun	dance	
the second se	August 25, 2015		
	Total Individuals		Relative
Species Name	Counted	<u>% of Total</u>	Abundance
Mallard	11	21.6%	1
American Crow	9	17.6%	2
Song Sparrow	4	7.8%	3
American Goldfinch	4	7.8%	3
Double-crested Cormorant	3	5.9%	4
Black-capped Chickadee	3	5.9%	4
Red-eyed Vireo	2	3.9%	5
White-breasted Nuthatch	2	3.9%	5
Swamp Sparrow	2	3.9%	5
Bald Eagle	1	2.0%	6
Mourning Dove	1	2.0%	6
Belted Kingfisher	1	2.0%	6
Hairy Woodpecker	1	2.0%	6
Northern Flicker	1	2.0%	6
Eastern Phoebe	1	2.0%	6
Common Raven	1	2.0%	6
Veery	1	2.0%	6
Warbler (species?)	1	2.0%	6
Bobolink	1	2.0%	6
Purple Finch	1	2.0%	6
Fotal Counted	51	100.0%	
Notes:			

1. The survey was done well after the peak of the nesting season and as a result there were very few birds actually singing. In fact, only Red-eyed Vireo, a prolific songster of summer, was singing actively.

Maugerville Townhouse Project – Maugerville, N.B.

Figure 1 – Point count location #1, main access road (Edgar & Anita Way), looking southwest.

Figure 2 – Point count location #1, main access road, looking west.

Maugerville Townhouse Project – Maugerville, N.B.

Figure 3 – Point count location #2, looking northwest.

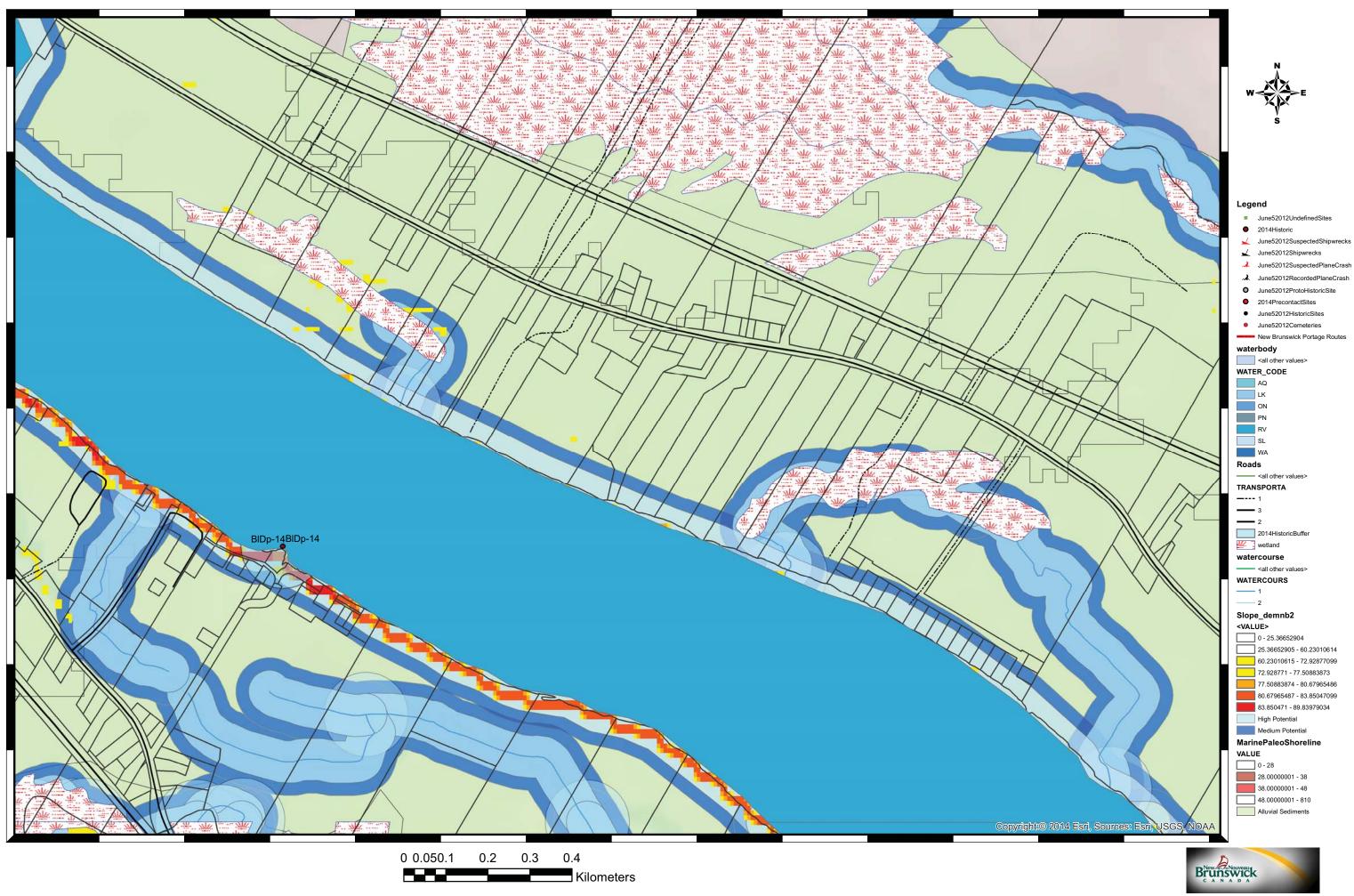
Figure 4 – Main access road, looking south, toward Saint John River.

Maugerville Townhouse Project – Maugerville, N.B.

Figure 5 – Point count location #3, looking southwest, showing mature riparian trees.

Figure 6 – View from near point count #3 at river, looking north.

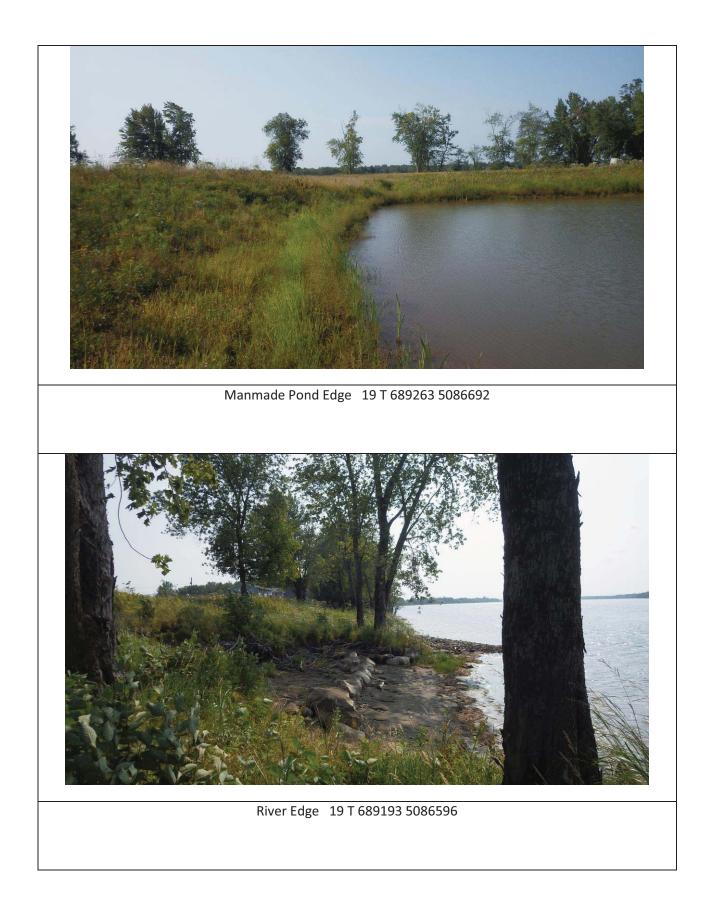
Appendix E *Plant Survey and Wetland Plant Information*

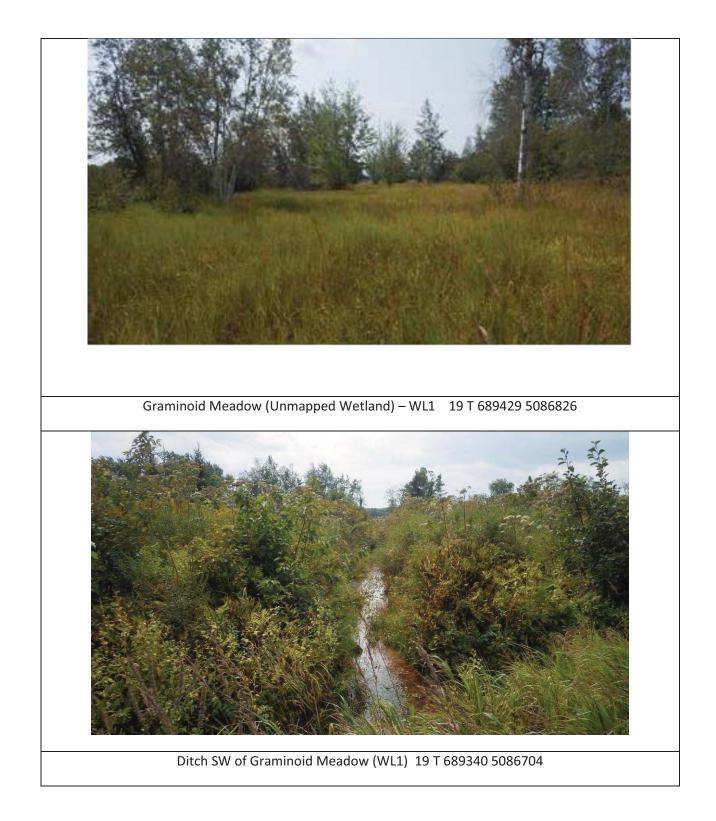


Vaugerville, NB, August 31				Graminoid Meadow (WL1)	Manmade Pond Edge	Unmapped Wetland 2 (WL2)	Riverbank	Tall Shrub Swamp (WL1)	Upland Area
Abies balsamea	Balsam Fir	S5						X	
Acer rubrum	Red Maple	S5						Х	
Acer saccharinum	Silver Maple	S5					х		
Achillea ptarmica	False Sneezewort	S5					х		
Alnus incana	Speckled Alder	S5		x		X		х	
Ambrosia artemisiifolia	Annual Ragweed	SE							Х
Angelica sylvestris	Woodland Angelica	SE		x	x			х	Х
Apios americana	American Groundnut	S5					х		
Arctium minus	Lesser Burdock	SE							Х
Athyrium filix-femina	Lady-Fern	S5		x		X			
Betula populifolia	Gray Birch	S5						Х	
Bidens cernua	Nodding Beggar-Ticks	S5			x	X		Х	
Bidens frondosa	Devil's Beggar-Ticks	S5		x	х	X		Х	
Bidens frondosa	Devil's Beggar-Ticks	S5							
Calamagrostis canadensis	Blue-Joint Reedgrass	S5		х				х	
Carex echinata	Little Prickly Sedge	S5						х	
Carex gynandra	A Sedge	S5		х		x		Х	
Carex limosa	Mud Sedge	S4		x					
Carex lupulina	Hop Sedge	S3	19T 0689449 5086862	x					
Carex Iurida	Shallow Sedge	S5		x	Х	x		х	х
Carex scoparia	Pointed Broom Sedge	S5		x	Х	х		х	x
Carex stipata	Stalk-Grain Sedge	S5		x		x		х	
Carex vesicaria	Inflated Sedge	S5						х	
Chamaedaphne calyculata	Leatherleaf	S5						х	
Chelone glabra	White Turtlehead	S5		x		x		x	
Chenopodium album	White Goosefoot	SE		^		~			x
Cicuta maculata	Spotted Water-Hemlock	S5						х	X
Cirsium arvense	Creeping Thistle	SE			x	x		×	x
Cirsium vulgare	Bull Thistle	SE			^	^		^	x
Clematis virginiana	Virginia Virgin-Bower	S5			x				^
Conyza canadensis	Canada Horseweed	S5			X	~			x
Cuscuta gronovii	Gronovius Dodder		19T 0689317 5086718			X			X
Dichanthelium boreale		S5	191 0089317 2080718	X			Y		
Doellingeria umbellata	Northern Witchgrass Parasol White-Top	S5			~	~	X		X
				X	Х	X		X	X
Dryopteris cristata	Crested Shield-Fern	S5							
Dulichium arundinaceum	Three-Way Sedge	S5		X					
Eleocharis ovata	Ovate Spikerush	S5				X			
pilobium ciliatum	Hairy Willow-Herb	S5		X	X	X		X	
quisetum arvense	Field Horsetail	S5			X				X
Frigeron strigosus	Daisy Fleabane	SE							X
Eupatorium maculatum	Spotted Joe-Pye Weed	S5			Х	X		X	
Eupatorium perfoliatum	Common Boneset	S5		X	Х	X		X	
uthamia graminifolia	Flat-Top Fragrant-Golden-Rod	S5		x	Х	ļ	х	х	x
Frangula alnus	Glossy Buckthorn		Invasive	x	Х	ļ	х	x	
raxinus americana	White Ash	S5		1			х		-
Galium palustre	Marsh Bedstraw	S5		x	х	х		х	
Geum laciniatum	Rough Avens	S5				х			
Glyceria canadensis	Canada Manna-Grass	S5		x		X		Х	
lylotelephium telephium	Live-forever	SE					х		х
lypericum canadense	Canadian St. John's-Wort	S5			Х				х
ex verticillata	Black Holly	S5		х				Х	
npatiens capensis	Spotted Jewel-Weed	S5				x		x	
ris versicolor	Blueflag	S5							
uncus brevicaudatus	Narrow-Panicled Rush	S5							
uncus effusus	Soft Rush	S5		x	х	x		x	
actuca biennis	Tall Blue Lettuce	SE		1		1	х		x
arix laricina	American Larch	\$5		1		1			
eersia oryzoides	Rice Cutgrass	S5 S5		X		x		X	1
Leucanthemum vulgare	Oxeye Daisy	SE		~		~		^	x

Lobelia inflata	Indian-Tobacco	S5							x
		SE					~		
Lupinus polyphyllus	Large-Leaved Lupine						X		X
Lycopus americanus	American Bugleweed	S5		X	X	X		X	
Lysimachia ciliata	Fringed Loosestrife	S5		X		X		Х	
Lysimachia terrestris	Swamp Loosestrife	S5		x	×	x		х	
Lythrum salicaria	Purple Loosestrife	SE		X	×	x		Х	x
Maianthemum trifolium	Three-Leaf Solomon's-Plume	S5						X	
Melilotus altissimus	Tall Yellow Sweetclover	SE							x
Nemopanthus mucronatus	Mountain Holly	S5		X				Х	
Oenothera biennis	Common Evening-Primrose	S5							x
Onoclea sensibilis	Sensitive Fern	S5		х	x	x		Х	x
Osmunda cinnamomea	Cinnamon Fern	S5						Х	
Phalaris arundinacea	Reed Canary Grass	S5			х				х
Phleum pratense	Meadow Timothy	SE							х
Plantago major	Nipple-Seed Plantain	SE			x	x			х
Polygonum hydropiper	Marshpepper Smartweed	SE				x		х	
Polygonum persicaria	Spotted Lady's-thumb	SE		x					x
Polygonum sagittatum	Arrow-Leaved Tearthumb	S5							
Potentilla norvegica	Norwegian Cinquefoil	S5					x		
Ranunculus acris	Tall Butter-Cup	SE					x	Х	
Ranunculus repens	Creeping Butter-Cup	SE					x	х	
Rubus pubescens	Dwarf Red Raspberry	S5			x	x		х	
Rumex crispus	Curly Dock	SE		x	x	x			
Sagittaria latifolia	Broadleaf Arrowhead	S5							
Salix sp	Willow	not a sp at risk							
Sambucus racemosa	Red Elderberry	S5			1	×		x	X
Scirpus cyperinus	Cottongrass Bulrush	S5		x		×		×	^
Scirpus hattorianus	Bulrush	S5		x		^		~	
Scutellaria lateriflora	Mad Dog Skullcap	S5		×					
Silene vulgaris	Maiden's Tears	SE		^		×			
Silene vulguns Sium suave	Hemlock Water-Parsnip	S5							
		S5		X		X	~		
Spartina pectinata	Fresh Water Cordgrass	S5					X		
Spiraea alba	Narrow-Leaved Meadow-Sweet			X	X	X	X	Х	
Stachys palustris	Marsh Hedge-Nettle	SE				X	X		
Symphyotrichum cordifolium	Heart-Leaf Aster	S5					x		X
Symphyotrichum lateriflorum	Farewell-Summer	S5					X		
Symphyotrichum puniceum	Swamp Aster	S5		X				Х	
Thalictrum confine	Northern Meadow-rue	S3	19T 0689194 5086595				×		
Thalictrum pubescens	Tall Meadow-Rue	S5						X	X
Thelypteris noveboracensis	New York Fern	S5		X				Х	
Thelypteris palustris	Marsh Fern	S5		x				х	
Tragopogon pratensis	Meadow Goat's-Beard	SE				x			x
Triadenum fraseri	Marsh St. John's-Wort	S5		x		x		Х	
Trifolium campestre	Low Hop Clover	SE							x
Trifolium pratense	Red Clover	SE							x
Tussilago farfara	Colt's Foot	SE							x
Typha latifolia	Broad-Leaf Cattail	S5		x	Х	x		Х	
Verbascum thapsus	Great Mullein	SE			х				х
Viburnum nudum	Possum-Haw Viburnum	S5		x				Х	
Vicia cracca	Tufted Vetch	SE		x	x	x		х	x
Viola sp	Violet	not a sp at risk				x	x	Х	

Appendix F Archaeological and Cultural Resources Model




Time: 4:02:25 PM Date: 8/26/2015

Appendix G Site Photos

References

Atlantic Canada Conservation data Center (ACCDC). DATA REPORT 5426: Maugerville, NB. August 2015 Data Request.

Atlantic Canada Conservation data Center (ACCDC). Rarity ranks and legal status by province. Accessed at: <u>http://www.accdc.com/en/ranks.html</u>. Last updated December 2014 (accessed January, 2015).

Canadian Council of Ministers of Environment (CCME). 2000. Canada-Wide Standards for Particulate Matter (PM) and Ozone. Quebec. 10pp.

Canadian Council of Ministers of Environment. 1989. Canada-Wide Standards for Nitrogen Dioxide. Quebec.

Canadian Council of Ministers of Environment. 1996. Canada-Wide Standards for Carbon Monoxide. Quebec.

Committee on the Status of Endangered Wildlife in Canada - (COSEWIC), Candidate List, <u>http://www.cosewic.gc.ca/eng/sct3/sct3_1_e.cfm</u>, January, 2015.

Environment Canada. 2015 (accessed). Canadian Climate Normals (1981-2010) – Fredericton A, New Brunswick, Government of Canada Website, <u>http://www.climate.weatheroffice.ec.gc.ca</u>.

Environment Canada, 2015 (accessed). Species at Risk Registry. Available: <u>http://www.sararegistry.gc.ca/sar/index/default_e.cfm</u>

Environment Canada. 2014a. 2011 NPRI Data and Reports, Map Layers for Use in Google Earth™, accessed February 2015: <u>http://www.ec.gc.ca/inrp-</u> <u>npri/default.asp?lang=en&n=0EC58C98-#sommaires</u>

Environment Canada 2014b. 2012 Total Air Pollutants Emissions for New Brunswick, accessed February 2015: <u>http://www.ec.gc.ca/inrp-npri/default.asp?lang=en&n=0EC58C98-</u>

Environment Canada. 2014c. National Inventory Report 1990-2012 – Greenhouse Gas Sources and Sinks in Canada – Part 1. Available: <u>http://publications.gc.ca/collections/collection_2014/ec/En81-4-2012-1-eng.pdf</u>

Environment Canada. 2014d. National Inventory Report 1990-2012 – Greenhouse Gas Sources and Sinks in Canada – Part 2. Available: http://publications.gc.ca/collections/collection_2014/ec/En81-4-2012-2-eng.pdf

Environment Canada. 2014e. National Inventory Report 1990-2012 – Greenhouse Gas Sources and Sinks in Canada – Part 3. Available: http://publications.gc.ca/collections/collection 2014/ec/En81-4-2012-3-eng.pdf

Environment Canada 2013b. 2011 Total Air Pollutants Emissions for New Brunswick, accessed August, 2013: <u>http://www.ec.gc.ca/inrp-npri/default.asp?lang=en&n=0EC58C98-</u>

Environment Canada 2013c. Greenhouse Gas Emissions Reporting Program Online Data Search – Facility Reported Data, accessed February 2015: <u>http://www.ec.gc.ca/ges-ghg/donnees-</u> <u>data/index.cfm?do=search&lang=en</u>

Environment Canada. 2012b. 2010 Total Air Pollutants Emissions for New Brunswick, accessed August, 2013: <u>http://www.ec.gc.ca/inrp-npri/default.asp?lang=en&n=0EC58C98-</u>

Environment Canada 2011a. 2009 Total Air Pollutants Emissions for New Brunswick, accessed August, 2013: <u>http://www.ec.gc.ca/inrp-npri/default.asp?lang=en&n=0EC58C98-</u>

Environment Canada. 2015. Avoidance Guidelines <u>https://www.ec.gc.ca/paom-itmb/default.asp?lang=En&n=AB36A082-1</u>

Environment Canada, Species at Risk Act Public Registry (SARA Public Registry). 2015 Species Search. <u>http://registrelep-sararegistry.gc.ca/sar/index/default_e.cfm</u>

GeoNB Map Viewer. Accessed December 2015. <u>http://www.snb.ca/geonb1/e/index-E.asp</u>

Government of New Brunswick. 2012. Living Healthy, Aging Well A report by the Premier's Panel on Seniors: A report by the Premier's Panel on Seniors

Hanson, A., L. Swanson, D. Ewing, G. Grabas, S. Meyer, L. Ross, M. Watmough and J. Kirkby. 2008. Wetland Ecological Functions Assessment: An Overview of Approaches.

Hinds, H.R. 2000. Flora of New Brunswick, 2nd Edition, University of New Brunswick Press, Fredericton, New Brunswick. 695 pp.

Maritimes Breeding Bird Atlas – Nature Counts Request – May, 2014. http://www.birdscanada.org/birdmon/default/searchquery.jsp?what=saved

New Brunswick Department of Environment, 2012. Watercourse and Wetlands Alterations Technical Guidelines. Sustainable Development, Planning and Impact Evaluation Branch.

New Brunswick Department of Environment and Local Government. 2013. New Brunswick Air Quality Monitoring Results 2011. Available: <u>http://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Air-</u> Lair/AirQualityMonitoringResults2011.pdf

New Brunswick Department of Environment and Local Government. 2012. New Brunswick Air Quality Monitoring Results 2010. Available: <u>http://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Air-</u> Lair/AirQualityMonitoringResults2010.pdf

New Brunswick Department of Environment and Local Government. 2011. New Brunswick Air Quality Monitoring Results Report for 2009. Available: <u>http://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Air-</u> Lair/2009AirQualityReport.pdf

New Brunswick Department of Environment and Local Government. 2010. New Brunswick Air Quality Monitoring Results for 2008. Available: <u>http://www.gNew</u> <u>Brunswick.ca/0009/0355/0022/2008AirQualityReport.pdf</u>

New Brunswick Department of Environment and Local Government. 2009. New Brunswick Air Quality Monitoring Results for 2007. Available: <u>http://www.gNew</u> <u>Brunswick.ca/0009/0355/0022/2007AirQualityReport.pdf</u>

New Brunswick Department of Environment. 2007. Climate Change Action Plan 2007-2012, Summary. Published by: New Brunswick Climate Change Secretariat. Available: http:// www.gnb.ca/0009/0369/0015/0002-e.pdf

New Brunswick Department of Environment and Local Government. 1987. New Brunswick Regulation 87-97 Under the Clean Environment Act. Available: <u>http://www.gNew</u> <u>Brunswick.ca/0062/pdf-regs/87-97.pdf</u>

New Brunswick Department of Environment. 2011a. Guide to Environmental Impact Assessment in New Brunswick. Available: <u>http://www.gnb.ca/0009/0377/0002/0002-e.asp</u>

New Brunswick Register of Historic Places. n.d. <u>http://www.rhp-</u> <u>rlp.gnb.ca/PublicSearch.aspx?blnLanguageEnglish=True</u> Accessed December, 2015

New Brunswick Department of Natural Resources. 1979. Geological Map, Second Edition. Compile by R.R. Potter, J.B. Hamilton, and J.L. Davies.

New Brunswick Department of Natural Resources and Energy (NBDNRE), 2000. "Bedrock Geology of New Brunswick". Minerals and Energy Division.

New Brunswick Department of Natural Resources (NBDNR). n.d. General Status Ranks of Wild Species in New Brunswick . Accessed on December, 11, 2016 from http://www.gnb.ca/0078/WildlifeStatus/index-e.asp.

New Brunswick Department of Natural Resources, 2008. New Brunswick Inventory Forest Database.

New Brunswick Department of Natural Resources, 2007. Our Landscape Heritage: The story of ecological land classification in New Brunswick.

http://www2.gnb.ca/content/gnb/en/departments/natural_resources/CrownLandsForests/co ntent/ProtectedNaturalAreas/OurLandscapeHeritage.html

New Brunswick Department of Tourism, Heritage and Culture (NDTHC). New Brunswick Register of Historic Places. Accessed in December 2015 at: <u>http://www.rhp-rlp.gnb.ca/PublicSearch.aspx?blnLanguageEnglish=True</u>

<u>New Brunswick Species at Risk Act</u> (NB SARA), New Brunswick Regulation 2013-38. Schedule A. List of Species at Risk. 2013. <u>http://laws.gnb.ca/en/showdoc/cr/2013-38</u>

Schexnayder, C.J. and J.J. Ernzen, National Cooperative Highway Research Program. 1999. NCHRP Synthesis Report #218 Mitigation of Nighttime Construction Noise, Vibrations, and other Nuisances.

United States Environmental Protection Agency, 2012. Fine Particle (PM2.5) Designations, accessed on September 20, 2012 at <u>http://www.epa.gov/pmdesignations/faq.htm</u>

United States Environmental Protection Agency. 1971. Community Noise. Prepared by Wyle Laboratories. Available: <u>http://nepis.epa.gov</u>

