

PWGSC PROJECT #R.076190.002 MARINE SEDIMENT SAMPLING PROGRAM LEONARDVILLE DFO-SCH LEONARDVILLE, NEW BRUNSWICK

DRAFT REPORT

Submitted to: **Public Works and Government Services Canada** Saint John, New Brunswick

Submitted by:

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited Saint John, New Brunswick

August 2015

TE131446.3000

11 August 2015

TE131446.3000

Mr. Jason Keys Environmental Specialist Environmental Services Public Works and Government Services Canada 189 Prince William Street Saint John, New Brunswick E2L 2B9

Dear Mr. Keys:

Re: Marine Sediment Sampling Program at the Leonardville Fisheries and Oceans Small Craft Harbour, Leonardville, New Brunswick - Draft Report

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited (Amec Foster Wheeler), is pleased to provide Public Works and Government Services Canada the findings of a Marine Sediment Sampling Program undertaken at the Leonardville Fisheries and Oceans Canada - Small Craft Harbour in New Brunswick.

Amec Foster Wheeler appreciates the opportunity to provide services to your organization. Please do not hesitate to call if you have any questions regarding this, or any other matter.

Respectfully submitted,

DRAFT

Chyann Kirby, B.Sc., PTech, EP Environmental Scientist Direct Tel.: 506.652.4530 (or 506.652.9497 ext. 226) Fax: 506.652.9517

E-mail: chyann.kirby@amecfw.com

CD/tr

TE131446_3000_MSSP_Leonardville_DraftRpt_11August2015_cd_tr.docx

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited 580 Main Street, Suite 105 Hilyard Place Building B Saint John, New Brunswick E2K 1J5 Tel +1 (506) 652-9497 Fax +1 (506) 652-9517

EXECUTIVE SUMMARY

Six sediment samples were collected within the Leonardville Fisheries and Oceans Canada (DFO) - Small Craft Harbour (SCH) in New Brunswick on 15 July 2015. The samples were submitted to AGAT Laboratories for detailed analyses. Results were compared to the *Canadian Environmental Protection Act* (CEPA) Disposal at Sea Lower Level Screening Criteria; Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (SQGs) for the Protection of Environment and Human Health (1999a); Atlantic Risk-Based Corrective Action (RBCA) Tier 1 Version 3.0 Risk-Based Screening Levels (RBSLs) (2012). Table ES1, below, reports the summarized guideline exceedance results of the sediment analysis for the field program. Figure ES1 (below) depicts the summarized substrate composition for the samples collected from the Leonardville DFO-SCH.

Guideline /		,	Samp	ole ID							
Parameter	L-2	L-11	L-12	L-21	L-27	L-33					
CEPA Disposal at Sea	a – Lower Lev	vel Screening	Criteria								
PAHs ¹	•	-	-	-	-	-					
Metals	-	-	-	-	-	-					
PCBs ²	-	-	-	-	-	-					
CCME Soil Quality Guidelines											
PAHs (IACR)	•	-	•	•	-	•					
Metals	•	•	•	•	-	•					
PCBs	-	-	-	-	-	-					
DDT ³	-	-	-	-	-	-					
Atlantic RBCA Tier 1	Version 3.0 R	BSLs and SE	SLs								
BTEX ⁴	-	-	-	-	-	-					
TPH⁵	_	_	•	_	_	_					

Table ES1 Sedim	ent Analysis	Guideline	Exceedance	Table
-----------------	--------------	-----------	------------	-------

Notes:

"-" indicates no exceedance

"•" indicates exceedance

1 – PAH - polycyclic aromatic hydrocarbon

2 – PCB - polychlorinated biphenyl

3 - DDT - dichloro-diphenyl-trichloroethane

 $4-{\sf BTEX}$ - benzene, toluene, ethylbenzene, and xylene $5-{\sf TPH}$ - total petroleum hydrocarbons

Figure ES1 Substrate Composition Averaged from Sampling Locations at the Leonardville DFO-SCH, New Brunswick

Based on the results of the sediment analysis, two samples were selected to undergo Synthetic Precipitation Leachate Procedure (SPLP) for leachable PAHs and metals analysis, which was conducted as a requirement to determine if the material is suitable for disposal at New Brunswick landfills. Results from these samples were compared to the CCME Water Quality Guidelines (WQGs) for the Protection of Aquatic Life (1999b) and Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ, 2014). Table ES2, below, reports the summarized guideline exceedance results for the leachate analyses completed on these two sediment samples.

	Ecacitate Analysis Guideline Ex									
Cuidalina / Paramatar	Sample ID									
Guidenne / Parameter	L-2	L-33								
CCME WQGs for the										
Protection of Aquatic Life										
PAHs	•	•								
Metals	•	•								
Health Canada GCDWQ										
PAHs	•	-								
Metals	•	•								

 Table ES2
 Leachate Analysis Guideline Exceedance Table

Notes:

"•" indicates exceedance

"-"indicates no exceedance

TABLE OF CONTENTS

PAGE

1.0		1
2.0	SCOPE AND METHODOLOGY2.1SITE PLAN2.2SAMPLE COLLECTION AND ANALYSIS	1 1 1
3.0	 ANALYTICAL RESULTS	3 4 5 5 6 6 6 6
4.0	BENTHIC PHOTOGRAPH DESCRIPTION	7
5.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
6.0	CONCLUSION	9
7.0	CLOSING	10
8.0	REFERENCES	11

TABLE OF CONTENTS (cont.)

PAGE

LIST OF TABLES

Table ES1	Sediment Analysis Guideline Exceedance Tablei
Table ES2	Leachate Analysis Guideline Exceedance Tableii
Table 3.1	Dominant Sediment Types at Each Sample Location

LIST OF FIGURES

Figure ES1	Substrate Composition Averaged from Sampling Locations at the	
-	Leonardville DFO-SCH, Nova Scotia	.ii
Figure 2.1	Sampling Locations at the Leonardville DFO-SCH (23 January 2015)	2
Figure 3.1	Substrate Composition Averaged from Sampling Locations at the	
-	Leonardville DFO-SCH, Nova Scotia	6

LIST OF APPENDICES

Appendix A	Photo Log
------------	-----------

- Appendix B Analytical Summary Tables
- Appendix C Quality Assurance/Quality Control (QA/QC), Chain of Custody (COC), and Laboratory Certificates of Analyses
- Appendix D Limitations

1.0 INTRODUCTION

At the request of Public Works and Government Services Canada (PWGSC), six stations were sampled within the footprint of the proposed dredging area at the Leonardville Fisheries and Oceans (DFO) - Small Craft Harbour (SCH), Charlotte County, New Brunswick (NB) on 15 July 2015. The Marine Sediment Sampling Program (MSSP) was required to determine disposal options for the sediment intended to be dredged from this location.

2.0 SCOPE AND METHODOLOGY

2.1 Site Plan

The selection of sample stations followed guidance provided in the Environmental Protection Series: *Users Guide to the Application Form for Ocean Disposal* (Environment Canada, 1995), whereby a random approach was implemented for the location of sampling stations in the proposed dredging area of the SCH. The unstratified area was divided into square blocks where at least five times as many blocks as the number of stations required was used (minimum of 30 blocks). A random number generator software program was used to derive the sampling locations within this dredge area (Figure 2.1).

A detailed program design was prepared by Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited (Amec Foster Wheeler) and submitted to PWGSC on 10 July 2015 for review and approval prior to field program implementation. The field program was scheduled upon acceptance of the design.

Sample collection, preparation, and analyses were conducted in accordance with Environment Canada's publication *Guidance Document on Collection and Preparation of Sediments for Physicochemical Characterization and Biological Testing* (1994). Diversified Divers Inc./Divers Quarters was retained to collect the sediment samples. The sample collection field program was completed in accordance with guidelines defined by provincial Occupational Health and Safety Standards.

2.2 Sample Collection and Analysis

The marine sediment samples were collected by divers at the selected sampling stations. A handheld Global Positioning System (GPS) was used to georeference the sampling location coordinates that were derived prior to field program initiation. Sample station coordinates are listed in Figure 2.1. Appendix A is comprised of a collection of photos taken of the sample locations during the field program.

Duplicate samples were collected from all stations to safeguard against loss or damage during transport. All samples were then stored in the laboratory-supplied jars and kept in a cooler on until the field program was completed. Upon completion of the field program, the samples were chilled and delivered to the laboratory for select chemical analyses. The duplicate sediment samples were refrigerated and stored at the Amec Foster Wheeler office in Saint John, New Brunswick.

Figure 2.1 Sampling Locations at the Leonardville DFO-SCH

H\PROJECTS\TE131446_MSSP_UBHS_6_HARBOURS_NB\DRAWINGS\UBHS_MSSP_LEONARDVILLE_R0.dwg - 7/8/2015 9:23 PM - McCoy, Date

AGAT Laboratories (AGAT) in Dartmouth, Nova Scotia, an accredited laboratory with the Canadian Association for Laboratory Accreditation (CALA) and ISO/IEC 17025 certified for all of the analyses required for this Project, was engaged to conduct the laboratory analyses. At the request of PWGSC, the samples were submitted for the typical ocean and land disposal suite of parameters which includes ICP 23 metals scan plus mercury, hexavalent chromium, tin, and low-level selenium; low-level polycyclic aromatic hydrocarbons (PAHs); total inorganic and total organic carbon (TIC/TOC); total polychlorinated biphenyls (PCBs); total dichloro-diphenyl-trichloroethane (DDT); low-level benzene, toluene, ethylbenzene, and xylene (BTEX); total petroleum hydrocarbons (TPHs), including a qualitative assessment for presence/absence of creosote; and grain size. Silica gel cleanup was completed for all samples analyzed for petroleum hydrocarbons, and a return to baseline at C32 was verified.

Based on the results of the sediment analysis, two samples were selected to undergo Synthetic Precipitation Leachate Procedure (SPLP) for leachable PAHs and metals analysis, which was conducted as a requirement to determine if the material is suitable for disposal at New Brunswick landfills.

3.0 ANALYTICAL RESULTS

The analytical results of the marine sediment samples collected and analyzed from the Leonardville DFO-SCH are summarized in Tables B.1 to B.7 (Appendix B) and discussed below. The complete set of analytical results, including laboratory Quality Assurance/Quality Control (QA/QC) and Certificates of Analyses for all parameters tested, are provided in Appendix C.

In order to facilitate the determination of all disposal options, the tabulated analytical sample results were compared to the following, where applicable:

- *Canadian Environmental Protection Act* (CEPA) Disposal at Sea Regulations (formerly the *Ocean Dumping Control Act*) Lower Level Screening Criteria.
- Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines -Interim Sediment Quality Guidelines (ISQGs) and Marine and Estuarine Probable Effects Levels (PELs) (1999c).
- CCME Soil Quality Guidelines (SQGs) for the Protection of Environment and Human Health in agricultural, residential/parkland, and commercial/industrial applications (1999a).
- Atlantic Risk-Based Corrective Action (RBCA) Tier 1 Version 3.0 Risk-Based Screening Levels (RBSLs) and Sediment Ecological Screening Levels (SESLs) for the Protection of Freshwater and Marine Aquatic Life (2012).
- CCME Water Quality Guidelines (WQGs) (1999b).
- Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ) (2014).

Results as compared to the previously noted Guidelines, with the exception of the CCME Sediment Quality Guidelines (ISQGs and PELs), are discussed further in this Report.

PAH Concentrations 3.1

PAHs were detected in all six samples collected, with the exception of L-27.

CEPA Disposal at Sea Screening Criteria - Lower Level

One sample, L-2, had a total PAH concentration of 11 mg/kg, which exceeded the CEPA Disposal at Sea Lower Level Screening Criteria (Table B.1).

CCME SQGs - Human Health (Potable Water) and (Direct Contact)

Four of the six samples collected (L-2, L-12, L-21 and L-33) exceeded the CCME SQGs for the Protection of Human Health (Potable Water) for all land use scenarios for one to three individual PAH compounds as well as the Index of Additive Cancer Risk (IACR) (Table B.1).

Guidance provided in the CCME SQGs for the Protection of Environmental and Human Health (2008) indicates that for soil contaminated by coal tar or creosote mixtures, the calculated Benzo(a)pyrene total potency equivalent (TPE) concentration for soil samples should be multiplied by an uncertainty factor (UF) of 3 prior to comparison with the SQGs for the protection of human health (direct contact) to account for carcinogenic potential of alkylated and other PAHs present for which a Potency Equivalency Factors (PEF) does not currently exist, but which are likely to contribute to mixture carcinogenic potential.

Analytical review of the results by laboratory staff revealed that the presence of creosote was not observed in any of the six samples analyzed. No exceedances of the CCME SQGs for the Protection of Human Health (Direct Contact) for all land use applications were noted any of the six samples collected (Table B.1).

CCME SQGs - Environmental Health (Soil Contact), (Soil and Food Ingestion), and (Freshwater Life)

Four of the six samples collected (L-2, L-12, L-21 and L-33) had a level of one PAH compound, phenanthrene, which exceeded the CCME SQGs for the Protection of Environmental Health for Freshwater Life. There were no exceedances of the CCME SQGs for Protection of Environmental Health for Soil Contact or Soil and Food Ingestion for any land use scenario (Table B.1).

Leachable PAHs Results

Two samples (L-2 and L-33) were selected for SPLP leachable PAHs analysis based on noted guideline exceedances and discussions with PWGSC.

CCME WQGs for the Protection of Aquatic Life (Freshwater and Marine)

Both samples L-2 and L-33 exceeded CCME WQGs for the Protection of Aquatic Life (Freshwater) for two to four PAH compounds and both samples also exceeded marine water guidelines for pyrene (Table B.2).

<u>Health Canada GCDWQ (Maximum Acceptable Concentration and Aesthetic Objective)</u> One of the two samples selected for leachable PAH analysis (L-2) exceeded Health Canada GCDWQ (Maximum Acceptable Concentration) for six individual PAH compounds (Table B.2).

3.2 Metal Concentrations

CEPA Disposal at Sea Screening Criteria - Lower Level

No exceedances of the CEPA Disposal at Sea Lower Level Screening Criteria were noted in the six samples collected (Table B.3).

CCME SQGs

All but one of the six samples collected (L-27) exceeded the CCME SQGs for agricultural land use applications for either tin or both tin and arsenic (L-2) (Table B.3). One sample (L-2) had a level of arsenic which exceeded the CCME SQGs for all land use applications.

Leachable Metals Results

Two samples (L-2 and L-33) were submitted for SPLP metals leachate analysis based on noted guideline exceedances and discussions with PWGSC.

CCME WQGs for the Protection of Aquatic Life (Freshwater and Marine)

Both samples selected for SPLP analysis had levels of three elements in the leachate which exceeded CCME WQGs for the Protection of Aquatic Life (Freshwater). One of the two samples (L-2) had levels of arsenic and cadmium in the leachate which also exceeded marine water guidelines (Table B.4).

Health Canada GCDWQ (Maximum Acceptable Concentration and Aesthetic Objective)

Both samples selected for SPLP analysis had levels of arsenic in the leachate which exceeded Health Canada GCDWQ (Maximum Acceptable Concentration). One sample (L-2) also had a level of selenium in the leachate that exceeded the GCDWQ (Maximum Acceptable Concentration). Both sample leachates exceeded the GCDWQ (Aesthetic Objective) for sodium (Table B.4).

3.3 Petroleum Hydrocarbon Concentrations

Modified TPH values reflect the sum of the individual carbon fractions that resembles gasoline, diesel #2, and lube oil. BTEX was not detected in any of the six samples collected. All six samples, with the exception of L-27, had detectable amounts of TPH present. All six samples reached baseline at C_{32} (Table B.5).

No exceedances of the Atlantic RBCA Tier 1 Version 3.0 RBSLs or CCME SQGs were noted in any of the six samples collected (Table B.5). One sample (L-12) had a concentration of TPH which exceeded the SESLs for the Protection of Freshwater and Marine Aquatic Life for typical sediment.

3.4 PCB Concentrations

PCBs were not detected in any of the six samples collected at the Leonardville DFO-SCH and no exceedances of the CEPA Disposal at Sea Lower Level Screening Criteria or CCME SQGs for all land use applications were noted (Tables B.6).

3.5 DDT Concentrations

Total DDT refers to the sum of dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD), and DDT. Neither DDE, DDD, nor DDT were detected in any of the six samples collected at the Leonardville DFO-SCH, and no exceedances of the CEPA Disposal at Sea Lower Level Screening Criteria or CCME SQGs for all land use applications were noted in any of the six samples collected (Table B.6).

3.6 Carbon Content

Samples collected from the Leonardville DFO-SCH showed total carbon content ranging from 1.57% to 3.00% (Table B.7). TOC was the predominant type in all six samples, ranging from 0.87% to 2.92%. TIC was not detected in half the samples (L-2, L-12 and L-33) and, where detected, ranged from 0.32% to 0.82%.

3.7 Grain Size Distribution

Sediment composition (Table B.7) is illustrated in Figure 3.1 and Table 3.1 below. Figure 3.1 illustrates the overall sediment composition from the samples collected from within the SCH, expressed as percentages to show the average grain size distributions. Table 3.1 breaks down the sediment composition at each sampling location.

Table 3.1	Dominant S	Dominant Sediment Types at Each Sample Location										
		Sediment I	Distribution									
Sample ID	Primary Substrate	Secondary Substrate	Tertiary Substrate	Quaternary Substrate								
L-2	Silt	Gravel	Clay	Sand								
L-11	Gravel	Sand	Clay	Silt								
L-12	Sand	Silt	Clay	Gravel								
L-21	Sand	Gravel	Silt	Clay								
L-27	Gravel	Sand	Clay	Silt								
L-33	Sand	Gravel	Silt	Clay								

Notes:

"-"indicates none detected. "/" indicates equal amounts of substrate.

BENTHIC PHOTOGRAPH DESCRIPTION 4.0

A series of underwater photographs were collected at each of the sampling locations that show the substrate and any flora and fauna at the site. Photographs are presented in Appendix A and characterization of the photographs collected at each of the sampling locations is provided below.

Sample Station L-2

The substrate appears to be a mix of silt and sand with lesser amounts of gravel and clay. No macroflora was identified but three green urchins (Strongylocentrotus droebachiensis) were observed. Shell hash (scallop shells) was plentiful.

Sample Station L-11

The substrate appears to be predominantly silt and sand however, after being collected, was found to have also have a large percentage of rock, cobble, and gravel. No macrofauna was identified but sugar kelp (Laminaria saccharina) were observed in approximately 20% of the photo. Shell hash was present but minimal.

Sample Station L-12

The substrate appears to be a mix of silt and sand with lesser amounts of gravel and clay. The photo was devoid of any macroflora or macrofauna.

Sample Station L-21

The substrate appears to be predominantly silt with lesser amounts of sand. One periwinkle (Littorina sp.) and a small piece of sea lettuce (Ulva lactuca) were observed.

Sample Station L-27

The substrate appears to be predominantly silt with lesser amounts of sand and gravel. The photos are devoid of fauna but there is approximately 25% cover of sugar kelp (Laminaria saccharina) and sea lettuce (Ulva lactuca).

Sample Station L-33

The substrate appears to be a mix of sand and gravel with lesser amounts of cobble. There is approximately 20% cover of rockweed (Ascophyllum nodosum). No fauna was observed, however there was some shell hash.

5.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

All samples collected were labelled on site using a waterproof marker with the date, sample site identifier, and sample number. The samples were placed upright on ice inside a cooler for safe storage and transport, and were delivered to the laboratory following program completion. A copy of the Chain of Custody (COC) that accompanied the samples is provided in Appendix C. Additional samples were collected to safeguard against loss or damage during transport, and will be stored and refrigerated until the PWGSC Project Manager provides approval to dispose/destroy the samples.

Sample collection, preparation, and analyses followed guidance provided in the previously referenced Environment Canada document. Samples were analyzed by an accredited laboratory with CALA and/or ISO/IEC 17025 and are certified by the Standards Council of Canada (SCC) for each selected chemical analyses of this program. The complete set of analytical results, including laboratory QA/QC and Certificates of Analyses for all parameters tested, are provided in Appendix C.

The laboratory undertakes internal duplicate analyses for QA/QC purposes. Laboratory duplicate analyses were performed on all of the parameters analyzed for this program to meet internal QA/QC objectives for the Leonardville samples submitted. No discrepancies were noted by the laboratory for the analyses performed.

To assess the quality of the analytical data, a review of the internal laboratory QA/QC results was completed and included a review of laboratory duplicate analyses, method blanks, surrogates, spike samples, and QA/QC standards. This review did not reveal any information or discrepancies that may affect the analytical results of the Leonardville samples.

A Senior Amec Foster Wheeler Reviewer has reviewed this Report prior to its release. The limitations of this document are provided in Appendix D.

6.0 CONCLUSION

The analytical results of the six samples collected and analyzed from the Leonardville DFO-SCH indicate the following guideline exceedances:

CEPA

• One sample (L-2) had a total PAH concentration of 11 mg/kg, which exceeded the CEPA Disposal at Sea Lower Level Screening Criteria.

CCME SQGs

- Four of the six samples collected (L-2, L-12, L-21 and L-33) had PAHs in exceedance of the CCME SQGs for the Protection of Human Health (Potable Water) for all land use scenarios as well as the IACR.
- Four of the six samples collected (L-2, L-12, L-21 and L-33) had a level of one PAH compound, phenanthrene, which exceeded the CCME SQGs for the Protection of Environmental Health for Freshwater Life.
- Five of the six samples collected (L-2, L-11, L-12, L21 and L-33) exceeded the CCME SQGs for agricultural land use applications for one to two metals.
- One sample (L-2) had a level of arsenic which exceeded the CCME SQGs for all land use applications.

SESLs

• One sample (L-12) had a concentration of TPH which exceeded the SESLs for the Protection of Freshwater and Marine Aquatic Life for typical sediment.

CCME WQGs for the Protection of Aquatic Life

- Both samples selected for leachable PAHs analysis (L-2 and L-33, had two to four PAH compounds in the leachate which exceeded CCME WQGs for the Protection of Aquatic Life (both freshwater and marine).
- Both samples selected for leachable metals analysis, L-2 and L-33) had levels of three elements which exceeded CCME WQGs for the Protection of Aquatic Life (Freshwater). One of the two samples (L-2) had levels of two elements in the leachate which also exceeded the WQG for marine environment.

Health Canada GCDWQs

- One of the two samples selected for leachable PAH analysis (L-2) exceeded Health Canada GCDWQ (Maximum Acceptable Concentration) for six PAH compounds.
- Both samples selected for leachable metals analysis had levels of arsenic in the leachate which exceeded Health Canada GCDWQ (Maximum Acceptable Concentration) as well as a level of sodium which exceeded the GCDWQ (Aesthetic Objective) for sodium. One sample (L-2) also had a level of selenium in the leachate that exceeded the GCDWQ (Maximum Acceptable Concentration).

7.0 CLOSING

This document has been prepared and reviewed by the following people:

Prepared by:

Reviewed by:

DRAFT

Christa Dubreuil, B.Sc., EP Intermediate Project Professional

DRAFT

Kerry Higgins, B.Sc., EP Senior Project Professional

8.0 **REFERENCES**

- Atlantic Risk-Based Corrective Action (RBCA). 2012. Atlantic RBCA (Risk-Based Corrective Action), for Petroleum Impacted Sites in Atlantic Canada Tier I Version 3, User Guidance. Issued on, July 2012. Available online at: <u>http://www.atlanticrbca.com/data_eng/ATLANTIC_RBCA_User_Guidance_v3_July_201</u> 2doc_final.pdf.
- Canadian Council of Ministers of the Environment (CCME). 1999a (updates). Soil Quality Guidelines (SQGs) for the Protection of Environment and Human Health in agricultural, residential/parkland, and commercial/industrial applications. Available online at: http://cegg-rcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment (CCME). 1999b (updates). Canadian Water Quality Guidelines, 1999 with updates. Available on-line at: http://ceqgrcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment (CCME). 1999c (updates). CCME Sediment Quality Guidelines - Interim Sediment Quality Guidelines and Marine and Estuarine Probable Effects Levels. Available online at: <u>http://ceqgrcqe.ccme.ca/en/index.html#void</u>.
- Canadian Council of Ministers of the Environment (CCME). 2008. Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHS) (Environmental and Human Health Effects) Scientific Supporting Document, PN 1401, ISBN 978-1-896997-79-7 PDF. Available on-line at: www.ccme.ca.
- Environment Canada. 1994. Guidance document on collection and preparation of sediments for physicochemical characterization and biological testing. Environmental Protection Series. Report EPS 1/RM/29, December 1994.
- Environment Canada. 1995. User's Guide to the Application Form for Ocean Disposal. Report EPS 1/MA/1, December 1995.
- Health Canada. 2014. Guidelines for Canadian Drinking Water Quality Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. Available on-line at: <u>http://www.hc-sc.gc.ca/ewhsemt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/sum_guide-res_recomeng.pdf</u>.

APPENDIX A Photo Log

Sample L-2

Sample L-11

Sample L-12

Sample L-21

Sample L-27

Sample L-33

APPENDIX B Analytical Summary Tables

				Sa	mple Identif	ication and	Date			CCME Sediment Quality Guidelines				CCME Soil Quality Guidelines					
			L-2	L-11	L-12	L-21	L-27	L-33	CEPA Disposal at Sea Screening	Interim Sedin	Interim Sediment Quality Guidelines		Probable Effects Levels		Health	Environmental Health			
Parameter	RDL	Units						القتعادي		Guidei					Direct Contact	Soil C	ontact	Soil and Food Ingestion	Freshwater Life
					15-J	ul-15			Criteria - Lower Level	Freshwater	Marine	Freshwater	Marine	Agricultural, Residential/ Parkland, Commercial and Industrial Land Uses	Agricultural, Residential/ Parkland, Commercial and Industrial Land Uses	Agricultural and Residential/ Parkland Land Uses	Commercial and Industrial Land Uses	Agricultural and Residential/ Parkland Land Uses	Agricultural, Residential/ Parkland, Commercial/ Industrial Land Uses
Polycyclic Aromatic Hydro	carbon (PAH)) Results	i																
1-Methylnaphthalene	0.05		< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05											
2-Methylnaphthalene	0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.0202	0.0202	0.201	0.201						
Acenaphthene	0.00671		0.0488	< 0.00671	< 0.00671	0.00683	< 0.00671	< 0.00671		0.00671	0.00671	0.0889	0.0889					21.5	0.28
Acenaphthylene	0.005		0.212	<0.005	0.042	0.037	<0.005	0.019		0.00587	0.00587	0.128	0.128						320
Anthracene	0.04		0.28	<0.04	0.07	0.07	< 0.04	0.05		0.0469	0.0469	0.245	0.245			2.5	3.2	61.5	
Benzo(a)anthracene	0.01		0.47	0.02	0.10	0.11	< 0.01	0.08		0.0371	0.0748	0.385	0.693	0.33				6.2	
Benzo(a)pyrene	0.01		0.34	< 0.01	0.05	0.07	< 0.01	0.05		0.0319	0.0888	0.782	0.763	0.37		20	72	0.6	8800
Benzo(b)fluorantnene	0.05		1.07	<0.05	0.13	-0.13	<0.05	0.07						0.10				6.2	
Benzo(b+j)fluorantnene	0.1		0.1	<0.1	0.3	0.2	<0.1	0.1						0.16					
Benzo(g,n,i)perviene	0.01	ma/ka	0.1	<0.01	<0.01	$-\frac{0.04}{0.08}$	<0.01	0.02						0.8				6.0	
Chrisono	0.01		1.52	<0.01	0.07	0.00	<0.01	0.04	P	0.0571	0.109	0.962	0.946	0.034				6.2	
Dibenzo(a b)anthracene	0.00		0.013	<0.04	<0.28	<0.006	<0.01	<0.006		0.0571	0.108	0.002	0.840	0.23				0.2	
Fluoranthene	0.05		4.52	<0.000	0.19	0.5	<0.000	0.22		0.111	0.113	2 355	1 494	0.20		50	180	15.4	
Fluorene	0.02		0.09	< 0.02	0.02	0.02	< 0.02	< 0.02		0.0212	0.0212	0.144	0.144				100	15.4	0.25
Indeno(1,2,3-cd)pyrene	0.01		0.1	< 0.01	< 0.01	0.03	< 0.01	0.02				-		2.7					
Naphthalene	0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.0346	0.0346	0.391	0.391					8.8	0.013
Perylene	0.05		0.1	< 0.05	< 0.05	< 0.05	<0.05	<0.05											
Phenanthrene	0.04		1.8	< 0.04	0.1	0.28	<0.04	0.17		0.0419	0.0867	0.515	0.544					43	0.046
Pyrene	0.05		2.76	<0.05	0.11	0.35	<0.05	0.17		0.053	0.153	0.875	1.398					7.7	
Total PAH	0.5		11	<0.5	1.1	1.6	<0.5	0.8	2.5										
Index of Additive Cancer Risk (IACR)	Calculation	None	24.3	0.57	4.52	4.28	0.51	2.26						1					
Benzo(a)pyrene TPE (10 ⁻⁵)	Calculation	mg/kg	0.6082	0.01645	0.10335	0.118	0.0146	0.0784							5.3				
Creosote or Coal Tar source suspected/ known?	yes/r	10	No	No	No	No	No	No											
Uncertainty Factor Applied	yes/r	10	No	No	No	No	No	No											
Benzo(a)pyrene TPE (10 ⁻⁵) with UF	Calculation	mg/kg	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable							5.3				

Table B.1 PAH Results for Marine Sediments as Compared to Federal Criteria - Leonardville DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

All results below the laboratory detection limit were divided by 2 prior to further calculations.

Total PAH calculation based on the sum of 16 individual PAH compounds (acenapthylene, anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(b)fluoranthe naphthalene, phenanthrene, and pyrene) as per guidance from Environment Canada, 2009.

Additive Cancer Risk (IACR) = ([Benzo(a)anthracene]/0.33mg/kg) + ([Benzo(b+j)fluoranthene]/0.16mg/kg) + ([Benzo(k)fluoranthene]/0.034mg/kg) + ([Benzo(k)fluoranthene]/0.16mg/kg) + ([Benzo(k)fluoran c,d)pyrene]/2.7mg/kg).

Total Potency Equivalent (TPE) based on an incremental lifetime cancer risk (ILCR) of 1 in 100,000 (10⁻⁵).

Benzo(a)pyrene TPE (10⁻⁵) = Sum of PAH concentration multiplied by their respective Benzo(a)pyrene Potency Equivalency Factors: ([Benzo(a)pyrene]*0.1) + ([Benzo(a)pyrene ([Dibenz(a,h)anthracene]*1) + ([Indeno(1,2,3-c,d)pyrene]*0.1).

Benzo(a)pyrene TPE Uncertainty Factor = 3.

Light values indicate results below detection limit.

Yellow highlight indicates exceedance of CEPA Disposal at Sea Screening Criteria - Lower Level

Italicized values indicate exceedance of CCME Interim Sediment Quality Guideline and/or Probable Effects Levels for Freshwater and/or Marine Sediment.
Interupted border values indicate exceedance of CCME SQG for the Protection of Human Health (Potable Water) for all land use applications.
Right justified values indicate exceedance of CCME Soil Quality Guideline for the Protection of Environmental Health (Freshwater Life) for all land use applications.

Appendix B1

Table B.2 PAH Results for Leachate Samples as Compared to Federal Criteria - Leonardville DFO-SCH, Charlotte County, New Brunswick

	Dranowiok		Sample Ide and	entification Date	CCME Canad	ian Water	Health Canada Guidelines for		
Parameter	RDL	Units	L-2	L-33	the Protection of Aquatic Life		Canadian Drinking Water Quality		
Looohahlo Polyayalia Ara	matic Hudro	15		ul-15	Freshwater	Marine	Maximum Acceptable Concentration	Aesthetic Objective	
1 Mothylpophtholopo			(FARS)	-0.01					
2-Methylnaphthalene	0.01		0.01	0.01					
	0.01		0.03	<0.01	5.8				
Acenaphthylene	0.04		<0.04	<0.04	0.0				
Anthracene	0.012		0 143	0.026	0.012				
Benzo(a)anthracene	0.018		2.69	<0.018	0.018		0.1*		
Benzo(a)pyrene	0.01		0.62	< 0.01	0.015		0.01		
Benzo(b)fluoranthene	0.05		0.74	< 0.05	0.010		0101		
Benzo(b+i)fluoranthene	0.01		1.14	< 0.01			0.01*		
Benzo(g,h,i)perylene	0.02		0.07	< 0.02			1*		
Benzo(k)fluoranthene	0.04	μg/L	0.77	< 0.04			0.1*		
Chrysene	0.04		1.69	< 0.04			1*		
Dibenzo(a,h)anthracene	0.01		0.04	< 0.01			0.01*		
Fluoranthene	0.03		0.36	0.15	0.04				
Fluorene	0.01		0.08	0.02	3				
Indeno(1,2,3-cd)pyrene	0.04		0.09	< 0.04			0.1*		
Naphthalene	0.01		< 0.01	< 0.01	1.1	1.4			
Perylene	0.05		0.09	< 0.05					
Phenanthrene	0.02		0.33	0.06		0.4			
Pyrene	0.01		0.82	0.11		0.025			
Total PAH	2		8	<2					

NOTE(S):

* denotes values based on Source Guidance Values for Groundwater (SGVG) which were obtained from the CCME Scientific

Light values indicate results below detection limit.

Yellow highlight indicates exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Freshwater). Interupted border values indicate exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Marine). Italicized values indicate exceedance of Health Canada Guidelines for Canadian Drinking Water Quality (Maximum Acceptable Concentration and/or Aesthetic Objective).

TE131446.3000

				Sam	ple Identifi	cation and	Date		CEPA	CCME	Sediment	Quality Guide	lines	CCME Soil Quality Guidelines				
			1.2			1 22	Disposal at	Interim Sediment Prol		Probable	Effects							
Parameter	RDL	Units	L-2	L -11	L-12	L-21	L-21	L-33	Sea Screening	Quality Guidelines		Levels			Pasidantial/			
					15-J	ul-15			Criteria - Lower Level	Freshwater	Marine	Freshwater	Marine	Agricultural Land Use	Parkland Land Use	Commercial Land Use	Industrial Land Use	
Aluminum	10		20100	18100	18600	19100	20000	18400										
Antimony	1		<1	<1	<1	<1	<1	<1						20	20	40	40	
Arsenic	1		<u>14</u>	8	12	8	8	7		5.9	7.24	17.0	41.6	12	12	12	12	
Barium	5		52	26	46	40	13	29						750	500	2000	2000	
Beryllium	2		<2	<2	<2	<2	<2	<2						4	4	8	8	
Boron (Total)	2		49	26	51	32	11	23										
Cadmium	0.3		0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.6	0.6	0.7	3.5	4.2	1.4	10	22	22	
Chromium (Hexavalent)	0.4		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4						0.4	0.4	1.4	1.4	
Chromium (Total)	2		26	25	24	23	31	25		37.3	52.3	90.0	160	64	64	87	87	
Cobalt	1		8	8	8	7	10	7						40	50	300	300	
Copper	2		49	14	20	13	16	14	81*	35.7	18.7	197	108	63	63	91	91	
Iron	50		18900	18700	18500	17200	33400	18500										
Lead	0.5	mg/kg	44.5	17.1	32.5	27.3	7.9	25.1	66*	35.0	30.2	91.3	112	70	140	260	600	
Manganese	2		242	260	238	255	359	283										
Mercury (Total)	0.05		< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	0.75	0.17	0.13	0.486	0.7	6.6	6.6	24	50	
Molybdenum	2		2	<2	<2	<2	<2	<2						5	10	40	40	
Nickel	2		19	19	20	18	23	16						50	50	50	50	
Selenium	1		1	<1	1	< 1	<1	<1						1	1	2.9	2.9	
Silver	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5						20	20	40	40	
Strontium	5		41	29	33	30	39	19										
Thallium	0.1		0.1	0.1	<0.1	0.1	0.2	0.1						1	1	1	1	
Tin	2		6	13	7	6	5	6						5	50	300	300	
Uranium	0.1		1.4	1.1	1.4	1.1	1.1	1.0						23	23	33	300	
Vanadium	2]	33	34	34	31	35	32						130	130	130	130	
Zinc	5		88	60	79	59	51	58	160*	123	124	315	271	200	200	360	360	

Table B.3 Metal Results for Marine Sediments as Compared to Federal Criteria - Leonardville DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

*Former Interim Rejection Limits (1991) which are not currently used to screen for ocean based disposal permitting but may be considered in terms of further investigation prior to issuance of an Ocean Disposal Permit (Victor Li, Environment Canada, pers. comm., June 2002).

Light values indicate results below detection limit.

Italicized values indicate exceedance of CCME Interim Sediment Quality Guideline and/or Probable Effects Levels for Freshwater and/or Marine Sediment. Interupted border values indicate exceedance of CCME Soil Quality Guideline for Agricultural land use applications. Left justified values indicate exceedance of CCME Soil Quality Guideline for Residential/Parkland land use applications. ______

Bold values indicate exceedance of CCME Soil Quality Guideline for Commercial land use applications.

Underlined values indicate exceedance of CCME Soil Quality Guideline for Industrial land use applications.

 Table B.4
 Metal Results for Leachate Samples as Compared to Federal Criteria - Leonardville DFO-SCH, Charlotte County, New Brunswick

			Sample Iden Da	tification and ate	CCME Canad	ian Water	Health Canada Guidelines for Canadian Drinking Water Quality		
Parameter	RDL	Units	L-2	L-33	Quality Guideli Protection of A	nes for the quatic Life			
			15-J	ul-15	Freshwater	Marine	Maximum Acceptable Concentration	Aesthetic Objective	
General Chemistry									
pН			7.62	7.95	6.5 - 9.0	7.0 - 8.7		6.5 - 8.5	
Hardness (CaCO ₃)		mg/L	349	126					
Sodium	200000	μg/L	833000	268000				200000	
Leachable Metals									
Aluminum	20		90	180	5 - 100				
Antimony	6		< 6	< 6			6		
Arsenic	5		40	12	5	12.5	10		
Barium	20		< 20	< 20			1000		
Beryllium	50		< 50	< 50					
Boron	50		700	290	1500 - 29000		5000		
Cadmium	0.1		0.3	< 0.1	See Notes	0.12	5		
Chromium (Total)	20		< 20	< 20			50		
Cobalt	10		< 10	< 10					
Copper	2		2	2	See Notes			1000	
Iron	200		< 200	< 200	300			300	
Lead	1	μg/L	< 1	< 1	See Notes		10		
Manganese	20		30	< 20				50	
Molybdenum	20		40	< 20	73				
Nickel	20		< 20	< 20	See Notes				
Selenium	1		69	18	1		50		
Silver	0.1		< 0.1	< 0.1	0.1				
Strontium	20		390	130					
Thallium	0.8		< 0.8	< 0.8	0.8				
Tin	20		< 20	< 20					
Uranium	1		< 1	< 1	15 - 33		20		
Vanadium	20		< 20	20					
Zinc	20		< 20	< 20	30			5000	

NOTE(S):

Aluminum: CCME CWQG for the Protection of Freshwater Aquatic Life= pH < 6.5 = 5 ug/L; $pH \ge 6.5 = 100 \text{ ug/L}$.

Boron: CCME CWQG for the Protection of Freshwater Aquatic Life = 29000 ug/L (short-term); 1500 ug/L (long-term).

Cadmium: CCME CWQG for the Protection of Aquatic Life = 1.0 ug/L (freshwater, short term); 0.09 ug/L (freshwater, long-term); 0.12 ug/L (marine, long-term)

Copper: CCME CWQG for the Protection of Freshwater Aquatic Life = e^{0.8545[In(hardness)]-1.465} x 0.2 ug/L; minimum of 2 ug/L.

Lead: CCME CWQG for the Protection of Freshwater Aquatic Life = e^{1.273[In(hardness)]-4.705} ug/L; minimum of 1 ug/L.

Nickel: CCME CWQG for the Protection of Freshwater Aquatic Life = $e^{0.76[ln(hardness)]+1.06}$ ug/L; minimum of 25 ug/L.

Uranium: CCME CWQG for the Protection of Freshwater Aquatic Life = 33 ug/L (short-term); 15 ug/L (long-term).

Light values indicate results below detection limit.

Yellow highlight indicates exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Freshwater). Interupted border values indicate exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Marine). Italicized values indicate exceedance of Health Canada Guidelines for Canadian Drinking Water Quality (Maximum Acceptable Concentration and/or Aesthetic Objective).

					BTEX Con	centrations		Pet	roleum Hy Cono	drocarbon entrations	Fraction		Reached		
Sample Ide	entification	Date	Units	Benzene	Toluene	Ethylbenzene	Xylene	C ₆ -C ₁₀	C ₁₀ -C ₂₁	C ₂₁ -C ₃₂	Modified TPH (Less BTEX)	МТВЕ	Baseline at C32	Resemblance	FOC
L-2				< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	82	82	< 0.050	Y	Lube Oil Fraction	0.0281
L-11				< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	46	46	< 0.050	Y	Lube Oil Fraction	0.0158
L-12		15 Jul 15	ma/ka	< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	108	108	< 0.050	Y	Lube Oil Fraction	0.0292
L-21		15-501-15	iiig/kg	< 0.005	< 0.04	< 0.01	< 0.05	< 3	16	53	69	< 0.050	Y	Lube Oil Fraction	0.0153
L-27				< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	< 15	< 20	< 0.050	Y	No Resemblance	0.0087
L-33				< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	40	40	< 0.050	Y	Lube Oil Fraction	0.0149
RDL				0.005	0.04	0.01	0.05	3	15	15	20	0.050			
	Guide	elines		Benzene	Toluene	Ethylbenzene	Xylene	Gasoline	Diesel / No. 2 Fuel Oil	No. 6 Oil/ Lube Oil	Modified TPH (Less BTEX)	MTBE			
Atlantic RBCA	Tier I Version	n 3.0													
Risk-Based Sc	creening Leve	Is for Soll											1		
Agricultural/	Potable	Coarse-Graine	ed Soil	0.042	0.35	0.065	8.8	/4	2/0	1100					
Residential		Fine-Grained	I SOII	0.094	0.74	0.13	22	1900	4/00	10000					
Land Use	Non-Potable	Eine-Grained	ed Soll	0.099	10000	30	8.8	2100	270	10000					
		Coarse-Graine	ed Soil	0.042	0.35	0.065	11	870	1800	10000					
Commercial/	Potable	Fine-Grained	I Soil	0.094	0.74	0.13	22	1900	4700	10000					
Industrial	New Detable	Coarse-Graine	ed Soil	2.5	10000	10000	110	870	4000	10000					
Land Use	Non-Polable	Fine-Grained	l Soil	33	10000	10000	10000	10000	10000	10000					
Residential	Saturation	Coarse-Graine	ed Soil	890	450	240	340	TBD	TBD	TBD					
		Fine-Grained	Soil	1000	480	250	360	TBD	TBD	TBD					
Sediment Eco	logical Screei	ning Levels for the	e Protectio	on of Freshwate	er and Marine A	Aquatic Life		I							
Sedimer	nt Type	l ypical		1.2	1.4	1.2	1.3	15	25	43					
(based on stat	ndard FOC =	Utiler		5.4 1.2	0.1 1.4	5 12	5.5 1.3	30	50	190					
(based on Ave 0.0	erage FOC =	Other		5.4	6.1	5	5.5	134	220	380					
CCME Soil Qu	ality Guidelin	es									·				
Agricultural,	Surface	Coarse-Graine	ed Soil	0.03	0.37	0.082	11.0								
Parkland,	Gunade	Fine-Grained	l Soil	0.0068	0.08	0.018	2.4								
Commercial, and Industrial	Subsoil	Coarse-Graine	ed Soil	0.03	0.37	0.082	11.0								
Land Uses		Fine-Grained	l Soil	0.0068	0.08	0.018	2.4								

Table B.5 BTEX/TPH Results for Marine Sediments as Compared to Federal Criteria - Leonardville DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

Fraction of Organic Content (FOC) = g-carbon/g-soil

CCME Soil Quality Guidelines for benzene based on an incremental lifetime cancer risk (ILCR) of 1 in 100,000 (10⁻⁵).

Light values indicate results below detection limit.

Bold values indicate exceedance of Atlantic RBCA Tier 1 Version 3.0 Sediment Ecological Screening Levels for the Protection of Freshwater and Marine Aquatic Life.

				San	nple Identifi	cation and	Date			CCME	Sediment (Quality Guidel	ines	CCME Soil Quality Guidelines		
Parameter	RDL	Units	L-2	L-11	L-12	L-21	L-27	L-33	CEPA Disposal at Sea Screening	Interim Se Quality Gu	diment idelines	Marine and Probable Leve	Estuarine Effects Is	Agricultural	Residential/ Parkland	Commercial/ Industrial
			15-Jul-15 Criteria - Lower Level Freshwater Marine Fre									Freshwater	Marine	Land Use	Land Use	Land Use
Polychlorinated Biphen	yl (PCB)	Results		_										_	-	
Aroclor 1016	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
Aroclor 1221	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
Aroclor 1232	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
Aroclor 1242	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
Aroclor 1248	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				0.040				
Aroclor 1254	0.0633	mg/kg	<0.0633	< 0.0633	<0.0633	<0.0633	<0.0633	<0.0633		0.060	0.0633	0.340	0.709			
Aroclor 1260	0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
Aroclor 1262	0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1								
Dioldrin	0.1		< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007		0.00285	0.00071	0.00667	0.0043			
Total PCB Concentration	0.0007		< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	0.1	0.00200	0.00071	0.00007	0.0040	0.5	13	33
Dichloro-Diphenyl-Trich	loroetha	ne (DDT)	Results	< 0.0215	< 0.0215	< 0.0215	< 0.0215	< 0.0215	0.1	0.0041	0.0215	0.277	0.105	0.5	1.0	
o.p-DDE			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001					1	1		
p.p-DDE			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001								
o,p-DDD			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001								
p,p-DDD			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001								
o,p-DDT		ma/ka	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001								
p,p-DDT		шу/ку	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001								
o,p-DDT + p,p-DDT	1.0]	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.00119	0.00119	0.00477	0.00477			
o,p-DDD +p,p-DDD	1.0		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.00354	0.00122	0.00851	0.00781			
o,p-DDE + p,p-DDE	1.0		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.00142	0.00207	0.00675	0.37400			
Total DDT (calculated)	1.0		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001						0.7	0.7	12

Table B.6 PCB and DDT Results for Marine Sediments as Compared to Federal Criteria - Leonardville DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

Light values indicate results below detection limit.

Parameter RDL Units L-2 L-11 L-12 L-21 L-27 L-33 Grain Size Results Service Size Results CPHI-3 (9.5 mm) 0.1 < PHI-2 (4.75 mm) 0.1 < PHI-2 (4.75 mm) 0.1 < PHI-1 (2 mm) 0.1 < PHI-1 (12 mm) 0.1 < PHI-1 (12 mm) 0.1 < PHI +2 (4.75 mm) 0.1 < PHI +2 (4.75 mm) 0.1 < PHI -2 (1/2 mm) 0.1 < PHI +2 (1/2 mm) 0.1 < PHI +2 (1/2 mm) 0.1 < PHI +3 (1/16 mm) 0.1 < PHI +4 (1/16 mm) 0.1 < PHI +4 (1/16 mm) 0.1 < PHI +5 (1/32 mm) 0.1 < PHI +5 (1/32 mm) 0.1 < PHI +6 (1/26 mm) 0.1				Sample Identification and Date										
Interview of the system Series and the system	Parameter	RDL	Units	L-2	L-11	L-12	L-21	L-27	L-33					
Grain Size Results < PHI 4 (12.5 mm) 0.1 < PHI 4 (12.5 mm) 0.1 < PHI 3 (9.5 mm) 0.1 < PHI 2 (4.75 mm) 0.1 < PHI 1 (2 mm) 0.1 < PHI 1 (2 mm) 0.1 < PHI 2 (1/2 mm) 0.1 < PHI 1 (1/2 mm) 0.1 < PHI + 1 (1/2 mm) 0.1 < PHI + 2 (1/4 mm) 0.1 < PHI + 3 (1/8 mm) 0.1 < PHI + 3 (1/8 mm) 0.1 < PHI + 4 (1/16 mm) 0.1 < PHI + 5 (1/32 mm) 0.1 < PHI + 9 (1/512 mm) 0.1 < PHI + 9 (1/512 mm) 0.1 Gravel 1						15-J	ul-15							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Grain Size Results													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< PHI -4 (12.5 mm)	0.1		100	75.9	100	100	58.7	90.2					
	< PHI -3 (9.5 mm)	0.1		100	64.8	100	100	52	90.2					
	< PHI -2 (4.75 mm)	0.1		87.6	50.7	97.8	79.8	45.4	84.7					
	< PHI -1 (2 mm)	0.1		78.6	37.5	96.7	68.2	22.9	70.3					
	< PHI 0 (1 mm)	0.1		75.5	29.1	95.9	60.3	14.3	58.4					
< PHI +2 (1/4 mm) 0.1 < PHI +3 (1/8 mm)	< PHI +1 (1/2 mm)	0.1		73.4	22.7	94.4	55.4	10.3	49.6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< PHI +2 (1/4 mm)	0.1		71.3	18.3	89.6	50	7	37.6					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< PHI +3 (1/8 mm)	0.1		67	15.6	71.7	39.6	5.5	27.2					
< PHI +5 (1/32 mm) 0.1 < PHI +5 (1/32 mm)	< PHI +4 (1/16 mm)	0.1	0/	59.8	13.3	53.6	31	4.8	21					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< PHI +5 (1/32 mm)	0.1	/0	50.7	12.7	38.6	29.5	4.4	18.7					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< PHI +6 (1/64 mm)	0.1		37.1	10.6	25.4	21.4	4.1	15.4					
< PHI +8 (1/256 mm) 0.1 < PHI +9 (1/512 mm)	< PHI +7 (1/128 mm)	0.1		22.1	8.2	19	16.0	3.8	11.8					
< PHI +9 (1/512 mm) 0.1 Gravel 1 Sand 1 Silt 1 Clay 1 Other 20 Total Organic Carbon (TOC) 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Other Total Organic Carbon (TOC) 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Total Inorganic Carbon (TC) 0.15 % 2.89 1.90 3.00 1.90 3.00	< PHI +8 (1/256 mm)	0.1		19.7	6.8	15.7	12.9	3.2	9.7					
Gravel 1 Sand 1 Silt 1 Clay 1 Other 20 Total Organic Carbon (TOC) 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Other Total Organic Carbon (TOC) 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Total Inorganic Carbon (TIC) 0.15 % 2.89 1.90 3.00 1.90 1.69 1.57	< PHI +9 (1/512 mm)	0.1		11.8	5.1	11.4	9.3	2.3	7.3					
Sand 1 19 24 43 37 18 49 Silt 1 40 6 38 18 2 11 Clay 1 20 7 16 13 3 10 Other Other State 2.81 1.58 2.92 1.53 0.87 1.49 Total Inorganic Carbon (TIC) 0.15 % <0.15	Gravel	1		21	63	3	32	77	30					
Silt 1 40 6 38 18 2 11 Clay 1 20 7 16 13 3 10 Other Other 2.81 1.58 2.92 1.53 0.87 1.49 Total Organic Carbon (TOC) 0.15 % <0.15	Sand	1		19	24	43	37	18	49					
Clay 1 20 7 16 13 3 10 Other Total Organic Carbon (TOC) 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Total Inorganic Carbon (TIC) 0.15 % < 0.15 0.32 < 0.15 0.37 0.82 < 0.15 Total Carbon (TC) % 2.89 1.90 3.00 1.90 1.69 1.57	Silt	1		40	6	38	18	2	11					
Other Control 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Total Organic Carbon (TOC) 0.15 % < 0.15	Clay	1		20	7	16	13	3	10					
Total Organic Carbon (TOC) 0.15 % 2.81 1.58 2.92 1.53 0.87 1.49 Total Inorganic Caron (TIC) 0.15 % < 0.15	Other													
Total Inorganic Caron (TIC) 0.15 % < 0.15 0.32 < 0.15 0.37 0.82 < 0.15 Total Carbon (TC) % 2.89 1.90 3.00 1.90 1.69 1.57	Total Organic Carbon (TOC)	0.15	%	2.81	1.58	2.92	1.53	0.87	1.49					
Total Carbon (TC) % 2.89 1.90 3.00 1.90 1.69 1.57	Total Inorganic Caron (TIC)	0.15	%	< 0.15	0.32	< 0.15	0.37	0.82	< 0.15					
	Total Carbon (TC)		%	2.89	1.90	3.00	1.90	1.69	1.57					

Table B.7 Grain Size and Carbon Content Results for Marine Sediments - Leonardville DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

All results below the laboratory detection limit were divided by 2 prior to further calculations.

Light values indicate results below detection limit.

APPENDIX C QA/QC, COC, and Laboratory Certificates of Analyses

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL 580 MAIN STREET, SUITE 105 SAINT JOHN, NB E2K1J5 (506) 652-9497

ATTENTION TO: Chyann Kirby

PROJECT: TE131446.3000

AGAT WORK ORDER: 15X996778

SOIL ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

TRACE ORGANICS REVIEWED BY: Jennifer Patterson, Organics Supervisor

DATE REPORTED: Aug 06, 2015

PAGES (INCLUDING COVER): 31

VERSION*: 4

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*NOTES

VERSION 4:"Version "4" supersedes work order 15X996778, Version 3.0; Issued Aug 2, 2015" Updated report to include Organic and In-Organic Parameters, issued, August 2, 2015. V2: Partial report for Leachable parameters only, issued, July 27, 2015.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V4)

Page 1 of 31

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Available Metals in Soil												
DATE RECEIVED: 2015-07-17 DATE REPORTED: 2015-08-06												
Parameter	Unit	SAMPLE DES SAM DATE S	CRIPTION: PLE TYPE: SAMPLED:	L-2 Soil 7/15/2015 6747287	L11 Soil 7/15/2015 6747339	L12 Soil 7/15/2015 6747343	L21 Soil 7/15/2015 6747347	L27 Soil 7/15/2015 6747355	L33 Soil 7/15/2015 6747359			
Aluminum	mg/kg	0,0	10	20100	18100	18600	19100	20000	18400			
Antimony	mg/kg		1	<1	<1	<1	<1	<1	<1			
Arsenic	mg/kg		1	14	8	12	8	8	7			
Barium	mg/kg		5	52	26	46	40	13	29			
Beryllium	mg/kg		2	<2	<2	<2	<2	<2	<2			
Boron	mg/kg		2	49	26	51	32	11	23			
Cadmium	mg/kg		0.3	0.3	<0.3	<0.3	<0.3	<0.3	<0.3			
Chromium	mg/kg		2	26	25	24	23	31	25			
Cobalt	mg/kg		1	8	8	8	7	10	7			
Copper	mg/kg		2	49	14	20	13	16	14			
Iron	mg/kg		50	18900	18700	18500	17200	33400	18500			
Lead	mg/kg		0.5	44.5	17.1	32.5	27.3	7.9	25.1			
Lithium	mg/kg		5	40	31	37	36	27	36			
Manganese	mg/kg		2	242	260	238	255	359	283			
Molybdenum	mg/kg		2	2	<2	<2	<2	<2	<2			
Nickel	mg/kg		2	19	19	20	18	23	16			
Selenium	mg/kg		1	1	<1	1	<1	<1	<1			
Silver	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Strontium	mg/kg		5	41	29	33	30	39	19			
Thallium	mg/kg		0.1	0.1	0.1	<0.1	0.1	0.2	0.1			
Tin	mg/kg		2	6	13	7	6	5	6			
Uranium	mg/kg		0.1	1.4	1.1	1.4	1.1	1.1	1.0			
Vanadium	mg/kg		2	33	34	34	31	35	32			
Zinc	mg/kg		5	88	60	79	59	51	58			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6747287-6747359 Results are based on the dry weight of the sample.

Certified By:

Jason CoE

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Hexavalent Chromium in Soil															
DATE RECEIVED: 2015-07-17	17 DATE REPORTED: 2015-08-06														
		SAMPLE DESCRIPTION: L-2 L11 L12 L21 L27 L33													
		SAM	PLE TYPE:	Soil	Soil	Soil									
		DATE	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015							
Parameter	Unit	G/S	RDL	6747287	6747339	6747343	6747347	6747355	6747359						
Chromium, Hexavalent	mg/kg		0.4	<0.4	<0.4	< 0.4	<0.4	<0.4	<0.4						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

SAMPLED BY:

AMEC - NB - SPLP Leachable Metals											
DATE RECEIVED: 2015-07-17					DATE REPORTED: 2015-08-06						
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	L-2 Soil 7/15/2015 6747287	L33 Soil 7/15/2015 6747359							
Aluminum Leachate	mg/L	0.02	0.09	0.18							
Antimony Leachate	mg/L	0.006	<0.006	<0.006							
Arsenic Leachate	mg/L	0.005	0.040	0.012							
Barium Leachate	mg/L	0.02	<0.02	<0.02							
Beryllium Leachate	mg/L	0.05	<0.05	<0.05							
Bismuth Leachate	mg/L	0.02	<0.02	<0.02							
Boron Leachate	mg/L	0.05	0.70	0.29							
Cadmium Leachate	mg/L	0.0001	0.0003	<0.0001							
Chromium Leachate	mg/L	0.02	<0.02	<0.02							
Cobalt Leachate	mg/L	0.01	<0.01	<0.01							
Copper Leachate	mg/L	0.002	0.002	0.002							
Iron Leachate	mg/L	0.2	<0.2	<0.2							
Lead Leachate	mg/L	0.001	<0.001	<0.001							
Lithium Leachate	mg/L	0.02	0.02	<0.02							
Magnesium Leachate	mg/L	0.05	64.8	20.1							
Manganese Leachate	mg/L	0.02	0.03	<0.02							
Molybdenum Leachate	mg/L	0.02	0.04	<0.02							
Nickel Leachate	mg/L	0.02	<0.02	<0.02							
Selenium Leachate	mg/L	0.001	0.069	0.018							
Silver Leachate	mg/L	0.0001	<0.0001	<0.0001							
Sodium Leachate	mg/L	200	833	268							
Strontium Leachate	mg/L	0.02	0.39	0.13							
Thallium Leachate	mg/L	0.0008	<0.0008	<0.0008							
Tin Leachate	mg/L	0.02	<0.02	<0.02							
Uranium Leachate	mg/L	0.001	<0.001	<0.001							
Vanadium Leachate	mg/L	0.02	<0.02	0.02							
Zinc Leachate	mg/L	0.02	<0.02	<0.02							
Initial pH	NA	NA	NA	NA							
Final pH	NA	NA	7.62	7.95							
% Moisture	%		60	35							

Certified By:

Jasan Cotaghi

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.30

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

00	
	ATTENTION TO: Chvann K

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

(irby

SAMPLED BY:

AMEC - NB - SPLP Leachable Metals											
DATE RECEIVED: 2015-07-17						DATE REPORTED: 2015-08-06					
		SAMPLE DES	CRIPTION:	L-2	L33						
		SAM	PLE TYPE:	Soil	Soil						
		DATE	SAMPLED:	7/15/2015	7/15/2015						
Parameter	Unit	G/S	RDL	6747287	6747359						
Total Sample Mass	g			62.51	38.51						
Hardness	mg/L		0.7	349	126						

RDL - Reported Detection Limit; Comments: G / S - Guideline / Standard

Certified By:

Joson Court

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - TOC/TIC													
DATE RECEIVED: 2015-07-17								I	DATE REPORTED	: 2015-08-06			
		SAMPLE DES	CRIPTION:	L-2	L11	L12	L21	L27	L33				
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015				
Parameter	Unit	G/S	RDL	6747287	6747339	6747343	6747347	6747355	6747359				
Total Organic Carbon by Walkley Black	%		0.15	2.81	1.58	2.92	1.53	0.87	1.49				
Total Inorganic Carbon, Calculated	%		0.15	<0.15	0.32	<0.15	0.37	0.82	<0.15				

....

.

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6747287-6747359 Total Carbon analysis performed by AGAT Burnaby.

Certified By:

Joson Cour

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

3000 ATTENTION TO: Churren

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-88718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

Grain Size Analysis (Sieve & Pipette)											
DATE RECEIVED: 2015-07-17							I	DATE REPORTEI	D: 2015-08-06		
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	L-2 Soil 7/15/2015 6747287	L11 Soil 7/15/2015 6747339	L12 Soil 7/15/2015 6747343	L21 Soil 7/15/2015 6747347	L27 Soil 7/15/2015 6747355	L33 Soil 7/15/2015 6747359			
Particle Size Distribution (<12.5mm, -4 PHI)	%	0.1	100	75.9	100	100	58.7	90.2			
Particle Size Distribution (<9.5mm, -3 PHI)	%	0.1	100	64.8	100	100	52.0	90.2			
Particle Size Distribution (<4.75mm, -2 PHI	%	0.1	87.6	50.7	97.8	79.8	45.4	84.7			
Particle Size Distribution (<2mm, -1 PHI)	%	0.1	78.6	37.5	96.7	68.2	22.9	70.3			
Particle Size Distribution (<1mm, 0 PHI)	%	0.1	75.5	29.1	95.9	60.3	14.3	58.4			
Particle Size Distribution (<1/2mm, 1 PHI)	%	0.1	73.4	22.7	94.4	55.4	10.3	49.6			
Particle Size Distribution (<1/4mm, 2 PHI)	%	0.1	71.3	18.3	89.6	50.0	7.0	37.6			
Particle Size Distribution (<1/8mm, 3 PHI)	%	0.1	67.0	15.6	71.7	39.6	5.5	27.2			
Particle Size Distribution (<1/16mm, 4 PHI)	%	0.1	59.8	13.3	53.6	31.0	4.8	21.0			
Particle Size Distribution (<1/32mm, 5 PHI)	%	0.1	50.7	12.7	38.6	29.5	4.4	18.7			
Particle Size Distribution (<1/64mm, 6 PHI)	%	0.1	37.1	10.6	25.4	21.4	4.1	15.4			
Particle Size Distribution (<1/128mm, 7 PHI)	%	0.1	22.1	8.2	19.0	16.0	3.8	11.8			
Particle Size Distribution (<1/256mm, 8 PHI)	%	0.1	19.7	6.8	15.7	12.9	3.2	9.7			
Particle Size Distribution (<1/512mm, 9 PHI)	%	0.1	11.8	5.1	11.4	9.3	2.3	7.3			
Particle Size Distribution (Gravel)	%	1	21	63	3	32	77	30			
Particle Size Distribution (Sand)	%	1	19	24	43	37	18	49			
Particle Size Distribution (Silt)	%	1	40	6	38	18	2	11			
Particle Size Distribution (Clay)	%	1	20	7	16	13	3	10			
Particles >75um	%	1	38	86	42	67	95	77			
Classification	Coarse/Fine	e	Fine	Coarse	Fine	Coarse	Coarse	Coarse			

Certified By:

Jason Cought

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

Grain Size Analysis (Sieve & Pipette)

DATE RECEIVED: 2015-07-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Jason Court

DATE REPORTED: 2015-08-06

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

Mercury Analysis in Soil													
DATE RECEIVED: 2015-07-17 DATE REPORTED: 2015-08-06													
		SAMPLE DES	CRIPTION:	L-2	L11	L12	L21	L27	L33				
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015				
Parameter	Unit	G/S	RDL	6747287	6747339	6747343	6747347	6747355	6747359				
Mercury	mg/kg		0.05	<0.05	0.06	< 0.05	<0.05	<0.05	<0.05				
Parameter Mercury	Unit mg/kg	SAMPLE DES SAM DATE G/S	CRIPTION: IPLE TYPE: SAMPLED: RDL 0.05	L-2 Soil 7/15/2015 6747287 <0.05	L11 Soil 7/15/2015 6747339 0.06	L12 Soil 7/15/2015 6747343 <0.05	L21 Soil 7/15/2015 6747347 <0.05	L27 Soil 7/15/2015 6747355 <0.05	L33 Soil 7/15/2015 6747359 <0.05				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6747287-6747359 Results are based on the dry weight of the soil.

Certified By:

Jason Court

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

DATE REPORTED: 2015-08-06

SAMPLED BY:

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons - SPLP Leachate, EPH only

DATE RECEIVED: 2015-07-17

	5	SAMPLE DESCRIPTION:	L12	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	7/15/2015	
Parameter	Unit	G/S RDL	6747343	
>C10-C16 Hydrocarbons	mg/L	0.1	<0.1	
>C16-C21 Hydrocarbons	mg/L	0.1	<0.1	
>C21-C32 Hydrocarbons	mg/L	0.1	<0.1	
Return to Baseline at C32			Y	
Initial pH	NA	NA	4.01	
Final pH	NA	NA	NA	
% Moisture	%		63	
Total Sample Mass	g		68	
Surrogate	Unit	Acceptable Limits		
Isobutylbenzene - EPH	%	70-130	86	
n-Dotriacontane - EPH	%	70-130	83	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

J. Patterson

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons in Soil + Silica Gel + Creosote

DATE RECEIVED: 2015-07-17							I	DATE REPORTED	: 2015-08-06
		SAMPLE DESCRIPTION:	L-2	L11	L12	L21	L27	L33	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	
Parameter	Unit	G/S RDL	6747287	6747339	6747343	6747347	6747355	6747359	
Methyl-t-Butyl-Ether (MTBE)	mg/Kg	0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Benzene	mg/kg	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Toluene	mg/kg	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	
Ethylbenzene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Xylene (Total)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
C6-C10 (less BTEX)	mg/kg	3	<3	<3	<3	<3	<3	<3	
>C10-C21 Hydrocarbons	mg/kg	15	<15	<15	<15	16	<15	<15	
>C21-C32 Hydrocarbons	mg/kg	15	82	46	108	53	<15	40	
Modified TPH (Tier 1)	mg/kg	20	82	46	108	69	<20	40	
Resemblance Comment			LOF	LOF	LOF	LOF	NR	LOF	
Creosote Comment			NR	NR	NR	NR	NR	NR	
Return to Baseline at C32			Y	Y	Y	Y	Y	Y	
% Moisture	%	1	60	28	63	42	25	35	
Silica Gel Cleanup			У	У	У	У	У	у	
Surrogate	Unit	Acceptable Limits							
Isobutylbenzene - EPH	%	60-140	76	79	63	N/A	103	64	
Isobutylbenzene - VPH	%	60-140	71	74	69	76	69	76	
n-Dotriacontane - EPH	%	60-140	94	95	67	101	121	129	

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons in Soil + Silica Gel + Creosote

DATE RECEIVED: 2015-07-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6747287-6747343 Results are based on the dry weight of the soil.

Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable 6747347 EPH surrogate not available (NA) due to loss during silica gel cleanup. Results are based on the dry weight of the soil. Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable

6747355-6747359 Results are based on the dry weight of the soil.

Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable

Certified By:

J. Patterson

DATE REPORTED: 2015-08-06

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

DATE RECEIVED: 2015-07-17								I	DATE REPORTED): 2015-08-06			
Parameter	Unit	SAMPLE DES SAM DATE G/S	CRIPTION: PLE TYPE: SAMPLED: RDL	L-2 Soil 7/15/2015 6747287	L11 Soil 7/15/2015 6747339	L12 Soil 7/15/2015 6747343	L21 Soil 7/15/2015 6747347	L27 Soil 7/15/2015 6747355	L33 Soil 7/15/2015 6747359				
Dieldrin (Hfx 2012-03)	µg/kg		0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7				
o,p'-DDD (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
o,p'-DDE (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
o,p'-DDT (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
p,p'-DDD (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
p,p'-DDE (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
p,p'-DDT (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
o,p'-DDT + p,p'-DDT	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
o,p'-DDD + p,p'-DDD	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
o,p'-DDE + p,p'-DDE	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
Total DDT	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				

AMEC - NR - DDT in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

DRDER: 15X996778 31446.3000

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - PCB Arochlor													
DATE RECEIVED: 2015-07-17									DATE REPORTE	D: 2015-08-06			
SAMPLE DESCRIPTION: L-2 L11 L12 L21 L27 L33													
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015				
Parameter	Unit	G/S	RDL	6747287	6747339	6747343	6747347	6747355	6747359				
Aroclor 1242	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1248	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1254	mg/kg		0.0633	<0.0633	<0.0633	<0.0633	<0.0633	<0.0633	<0.0633				
Aroclor 1260	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1016	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1221	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1232	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1262	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Aroclor 1268	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6747287-6747359 Results are based on the dry weight of the soil.

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

DATE REPORTED: 2015-08-06

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in SPLP Leachate

DATE RECEIVED: 2015-07-17

5	SAMPLE DESCRIPTION:	L-2	L33
	SAMPLE TYPE:	Soil	Soil
	DATE SAMPLED:	7/15/2015	7/15/2015
Unit	G/S RDL	6747287	6747359
ug/L	0.01	0.01	<0.01
ug/L	0.01	0.03	0.01
ug/L	0.04	0.11	< 0.04
ug/L	0.04	<0.04	<0.04
ug/L	0.012	0.143	0.026
ug/L	0.018	2.69	<0.018
ug/L	0.01	0.62	<0.01
ug/L	0.05	0.74	< 0.05
μg/L	0.01	1.14	<0.01
ug/L	0.06	0.47	<0.06
ug/L	0.02	0.07	<0.02
ug/L	0.04	0.77	<0.04
ug/L	0.04	1.69	< 0.04
ug/L	0.01	0.04	<0.01
ug/L	0.03	0.36	0.15
ug/L	0.01	0.08	0.02
ug/L	0.04	0.09	< 0.04
ug/L	0.01	<0.01	<0.01
ug/L	0.05	0.09	< 0.05
ug/L	0.02	0.33	0.06
ug/L	0.01	0.82	0.11
μg/L	2	8	<2
NA	NA	4.10	4.10
NA	NA	8.01	7.93
g		125	76.0
%		60	35
Unit	Acceptable Limits		
%	50-140	100	77
%	50-140	83	70
%	50-140	57	52
	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G/S RDL ug/L 0.01 0.01 ug/L 0.01 0.04 ug/L 0.04 0.01 ug/L 0.04 0.01 ug/L 0.012 0.01 ug/L 0.012 0.01 ug/L 0.018 0.01 ug/L 0.01 0.05 µg/L 0.01 0.02 ug/L 0.04 0.02 ug/L 0.04 0.02 ug/L 0.04 0.01 ug/L 0.04 0.02 ug/L 0.04 0.01 ug/L 0.01 0.03 ug/L 0.01 0.02 ug/L 0.01 0.02 ug/L 0.01 0.02 ug/L 0.02 0.02 ug/L 0.02 0.02 ug/L 0.01 0.02 ug/L 0.01 0.02	SAMPLE DESCRIPTION: L-2 SAMPLE TYPE: Soil DATE SAMPLED: 7/15/2015 Unit G / S RDL 6747287 ug/L 0.01 0.01 ug/L 0.01 0.03 ug/L 0.04 0.11 ug/L 0.04 0.01 ug/L 0.04 0.01 ug/L 0.012 0.143 ug/L 0.01 0.62 ug/L 0.01 0.62 ug/L 0.01 1.14 ug/L 0.05 0.74 µg/L 0.01 1.14 ug/L 0.02 0.07 ug/L 0.04 0.77 ug/L 0.04 0.77 ug/L 0.04 0.04 ug/L 0.04 0.07 ug/L 0.01 0.04 ug/L 0.01 0.08 ug/L 0.01 0.08 ug/L 0.01 0.82 <t< td=""></t<>

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in SPLP Leachate

DATE RECEIVED: 2015-07-17

DATE REPORTED: 2015-08-06

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

J. Patterson

Certificate of Analysis

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in Soil														
ATE RECEIVED: 2015-07-17 SAMPLE DESCRIPTION: L-2 L11 L12 L21 L27 L33 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil Soil Soil														
Parameter	SUnit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	L-2 Soil 7/15/2015 6747287	L11 Soil 7/15/2015 6747339	L12 Soil 7/15/2015 6747343	L21 Soil 7/15/2015 6747347	L27 Soil 7/15/2015 6747355	L33 Soil 7/15/2015 6747359						
1-Methylnaphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
2-Methylnaphthalene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02						
Acenaphthene	mg/kg	0.00671	0.0488	<0.00671	<0.00671	0.00683	<0.00671	<0.00671						
Acenaphthylene	mg/kg	0.005	0.212	<0.005	0.042	0.037	<0.005	0.019						
Acridine	mg/Kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
Anthracene	mg/kg	0.04	0.28	<0.04	0.07	0.07	< 0.04	0.05						
Benzo(a)anthracene	mg/kg	0.01	0.47	0.02	0.10	0.11	<0.01	0.08						
Benzo(a)pyrene	mg/kg	0.01	0.34	<0.01	0.05	0.07	<0.01	0.05						
Benzo(b)fluoranthene	mg/kg	0.05	1.07	< 0.05	0.13	0.13	<0.05	0.07						
Benzo(b+j)fluoranthene	mg/kg	0.1	1.4	<0.1	0.3	0.2	<0.1	0.1						
Benzo(e)pyrene	mg/kg	0.05	0.62	<0.05	0.11	0.12	<0.05	0.07						
Benzo(ghi)perylene	mg/kg	0.01	0.10	<0.01	<0.01	0.04	<0.01	0.02						
Benzo(k)fluoranthene	mg/kg	0.01	0.42	<0.01	0.07	0.08	<0.01	0.04						
Chrysene	mg/kg	0.01	1.52	0.04	0.28	0.26	<0.01	0.12						
Dibenzo(a,h)anthracene	mg/kg	0.006	0.013	<0.006	<0.006	<0.006	<0.006	<0.006						
Fluoranthene	mg/kg	0.05	4.52	<0.05	0.19	0.50	<0.05	0.22						
Fluorene	mg/kg	0.02	0.09	<0.02	0.02	0.02	<0.02	<0.02						
Indeno(1,2,3)pyrene	mg/kg	0.01	0.10	<0.01	<0.01	0.03	<0.01	0.02						
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01						
Perylene	mg/kg	0.05	0.10	<0.05	<0.05	<0.05	<0.05	<0.05						
Phenanthrene	mg/kg	0.04	1.80	<0.04	0.10	0.28	<0.04	0.17						
Pyrene	mg/kg	0.05	2.76	<0.05	0.11	0.35	<0.05	0.17						
Quinoline	mg/Kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
Total PAH	mg/Kg	0.5	11.0	<0.5	1.1	1.6	<0.5	0.8						
% Moisture	%		60	28	63	42	25	35						
Surrogate	Unit	Acceptable Limits												
Nitrobenzene-d5	%	50-140	84	87	73	78	84	78						
2-Fluorobiphenyl	%	50-140	86	90	75	79	86	79						
Terphenyl-d14	%	50-140	75	75	57	64	78	64						

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in Soil

DATE RECEIVED: 2015-07-17

 Comments:
 RDL - Reported Detection Limit;
 G / S - Guideline / Standard

 6747287-6747359
 Results are based on the dry weight of the soil.

DATE REPORTED: 2015-08-06

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996778 PROJECT: TE131446.3000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Total Polychlorinated Biphenyls														
DATE RECEIVED: 2015-07-17 DATE REPORTED: 2015-08-06														
SAMPLE DESCRIPTION: L-2 L11 L12 L21 L27 L33														
		Soil	Soil	Soil										
		DATE	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015					
Parameter	Unit	G/S	RDL	6747287	6747339	6747343	6747347	6747355	6747359					
Total Polychlorinated Biphenyls	mg/kg		0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6747287-6747359 Results are based on the dry weight of the soil.

Certified By:

J. Patterson

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

SAMPLING SITE:

AGAT WORK ORDER: 15X996778 **ATTENTION TO: Chyann Kirby**

SAMPLED BY:

Soil Analysis RPT Date: Aug 06, 2015 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															
RPT Date: Aug 06, 2015			C	UPLICATI	E		REFERE		TERIAL	METHOD	BLANK		МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
AMEC - NB - Available Metals in	Soil														
Aluminum	7202015		18400	19100	3.7%	< 10	120%	80%	120%	120%	80%	120%	105%	70%	130%
Antimony	7202015		< 1	< 1	0.0%	< 1	88%	80%	120%	103%	80%	120%	NA	70%	130%
Arsenic	7202015		7	7	0.0%	< 1	98%	80%	120%	96%	80%	120%	89%	70%	130%
Barium	7202015		29	34	15.9%	< 5	97%	80%	120%	101%	80%	120%	109%	70%	130%
Beryllium	7202015		< 2	< 2	0.0%	< 2	113%	80%	120%	114%	80%	120%	98%	70%	130%
Boron	7202015		23	24	4.3%	< 2	104%	80%	120%	101%	80%	120%	98%	70%	130%
Cadmium	7202015		< 0.3	< 0.3	0.0%	< 0.3	100%	80%	120%	99%	80%	120%	86%	70%	130%
Chromium	7202015		25	25	0.0%	< 2	110%	80%	120%	107%	80%	120%	81%	70%	130%
Cobalt	7202015		7	7	0.0%	< 1	108%	80%	120%	108%	80%	120%	71%	70%	130%
Copper	7202015		14	14	0.0%	< 2	111%	80%	120%	107%	80%	120%	74%	70%	130%
Iron	7202015		18500	18000	2.7%	< 50	109%	80%	120%	108%	80%	120%	89%	70%	130%
Lead	7202015		25.1	14.5	0.0%	< 0.5	107%	80%	120%	106%	80%	120%	92%	70%	130%
Lithium	7202015		36	35	2.8%	< 5	106%	70%	130%	107%	70%	130%	103%	70%	130%
Manganese	7202015		283	271	4.3%	< 2	115%	80%	120%	108%	80%	120%	86%	70%	130%
Molybdenum	7202015		< 2	< 2	0.0%	< 2	93%	80%	120%	94%	80%	120%	89%	70%	130%
Nickel	7202015		16	16	0.0%	< 2	109%	80%	120%	106%	80%	120%	74%	70%	130%
Selenium	7202015		< 1	< 1	0.0%	< 1	94%	80%	120%	81%	80%	120%	89%	70%	130%
Silver	7202015		< 0.5	< 0.5	0.0%	< 0.5	100%	80%	120%	104%	80%	120%	85%	70%	130%
Strontium	7202015		19	21	10.0%	< 5	101%	80%	120%	98%	80%	120%	95%	70%	130%
Thallium	7202015		0.1	< 0.1	0.0%	< 0.1	107%	80%	120%	103%	80%	120%	NA	70%	130%
Tin	7202015		6	7	15.4%	< 2	103%	80%	120%	100%	80%	120%	127%	70%	130%
Uranium	7202015		0.98	1.07	8.8%	< 0.1	101%	80%	120%	100%	80%	120%	92%	70%	130%
Vanadium	7202015		32	32	0.0%	< 2	107%	80%	120%	105%	80%	120%	93%	70%	130%
Zinc	7202015		58	57	1.7%	< 5	106%	80%	120%	108%	80%	120%	75%	70%	130%
AMEC - NB - TOC/TIC															
Total Organic Carbon by Walkley Black	7060	3402	5.24	5.27	0.6%	< 0.15	91%	80%	120%	NA	80%	120%	100%	80%	120%
Mercury Analysis in Soil															
Mercury	1	6743415	< 0.05	< 0.05	0.0%	< 0.05	102%	70%	130%		70%	130%	91%	70%	130%
Soil Analysis - Total Organic Car	bon (W-B	Wet Oxida	tion)												
Total Organic Carbon	7060	3402	5.24	5.27	0.6%	< 0.15	91%	80%	120%				100%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

MEC - NB - SPLP Leachable Metals														
Aluminum Leachate	7312015	0.054	0.055	1.8%	< 0.02	120%	80%	120%	120%	80%	120%	114%	70%	130%
Antimony Leachate	7312015	< 0.006	< 0.006	0.0%	< 0.006	80%	80%	120%	89%	80%	120%	89%	70%	130%
Arsenic Leachate	7312015	0.060	0.061	1.7%	< 0.005	86%	80%	120%	85%	80%	120%	93%	70%	130%
IGAT QUALITY ASSURANCE REPORT (V4) Page 20 of 31														

AGAT QUALITY ASSURANCE REPORT (V4)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

SAMPLING SITE:

AGAT WORK ORDER: 15X996778 ATTENTION TO: Chyann Kirby SAMPLED BY:

Soil Analysis (Continued)

RPT Date: Aug 06, 2015			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
							value	Lower	Upper		Lower Uppe			Lower	Upper
Barium Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	97%	80%	120%	92%	80%	120%	101%	70%	130%
Beryllium Leachate	7312015		< 0.05	< 0.05	0.0%	< 0.05	104%	80%	120%	107%	80%	120%	111%	70%	130%
Bismuth Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	108%	80%	120%	106%	80%	120%	83%	70%	130%
Boron Leachate	7312015		0.99	0.97	2.0%	< 0.05	101%	80%	120%	104%	80%	120%	108%	70%	130%
Cadmium Leachate	7312015		0.0002	0.0002	0.0%	< 0.0001	93%	80%	120%	86%	80%	120%	100%	70%	130%
Chromium Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	115%	80%	120%	112%	80%	120%	103%	70%	130%
Cobalt Leachate	7312015		< 0.01	< 0.01	0.0%	< 0.01	113%	80%	120%	109%	80%	120%	100%	70%	130%
Copper Leachate	7312015		0.002	0.002	0.0%	< 0.002	120%	80%	120%	116%	80%	120%	98%	70%	130%
Iron Leachate	7312015		< 0.2	< 0.2	0.0%	< 0.2	111%	80%	120%	114%	80%	120%	100%	70%	130%
Lead Leachate	7312015		< 0.001	< 0.001	0.0%	< 0.001	104%	80%	120%	104%	80%	120%	90%	70%	130%
Lithium Leachate	7312015		0.03	0.03	0.0%	< 0.02	109%	80%	120%	109%	80%	120%	109%	70%	130%
Magnesium Leachate	7312015		80.4	77.3	3.9%	< 0.05	119%	80%	120%	116%	70%	130%	92%	70%	130%
Manganese Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	117%	80%	120%	116%	80%	120%	99%	70%	130%
Molybdenum Leachate	7312015		0.04	0.04	0.0%	< 0.02	99%	80%	120%	93%	80%	120%	101%	70%	130%
Nickel Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	115%	80%	120%	113%	80%	120%	98%	70%	130%
Selenium Leachate	7312015		0.0729	0.0787	7.7%	< 0.001	108%	80%	120%	99%	80%	120%	88%	70%	130%
Silver Leachate	7312015		< 0.0001	< 0.0001	0.0%	< 0.0001	103%	80%	120%	98%	80%	120%	87%	70%	130%
Sodium Leachate	7312015		986	966	2.0%	< 200	113%	80%	120%	110%	80%	120%	93%	70%	130%
Strontium Leachate	7312015		0.561	0.571	1.8%	< 0.02	96%	80%	120%	95%	80%	120%	96%	70%	130%
Thallium Leachate	7312015		< 0.0008	< 0.0008	0.0%	< 0.0008	101%	80%	120%	100%	80%	120%	96%	70%	130%
Tin Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	97%	80%	120%	94%	80%	120%	97%	70%	130%
Uranium Leachate	7312015		< 0.001	< 0.001	0.0%	< 0.001	83%	80%	120%	83%	80%	120%	90%	70%	130%
Vanadium Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	109%	80%	120%	107%	80%	120%	97%	70%	130%
Zinc Leachate	7312015		< 0.02	< 0.02	0.0%	< 0.02	102%	80%	120%	100%	80%	120%	99%	70%	130%

Certified By:

Jason Cought w

AGAT QUALITY ASSURANCE REPORT (V4)

Page 21 of 31

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

SAMPLING SITE:

AGAT WORK ORDER: 15X996778 ATTENTION TO: Chyann Kirby SAMPLED BY:

Trace Organics Analysis

					0071	laryo									
RPT Date: Aug 06, 2015			C	DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
		Sample				Method Blank	Measured	Acce	ptable nits	_	Acce	ptable nits	_	Acce	ptable
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
AMEC - NB - Atlantic RBCA Tier 1	Hydroca	rbons in §	Soil + Silic	a Gel + Cre	osote	1		1			1	1	1		1
Methyl-t-Butyl-Ether (MTBE)	1	6723371	< 0.050	< 0.050	0.0%	< 0.050	72%	60%	140%	75%	60%	140%	69%	60%	140%
Benzene	1	6723371	< 0.005	< 0.005	0.0%	< 0.005	86%	60%	140%	82%	60%	140%	72%	30%	130%
Toluene	1	6723371	< 0.04	< 0.04	0.0%	< 0.04	80%	60%	140%	79%	60%	140%	68%	30%	130%
Ethylbenzene	1	6723371	< 0.01	< 0.01	0.0%	< 0.01	81%	60%	140%	81%	60%	140%	69%	30%	130%
Xylene (Total)	1	6723371	< 0.05	< 0.05	0.0%	< 0.05	94%	60%	140%	94%	60%	140%	81%	30%	130%
C6-C10 (less BTEX)	1	6723371	< 3	< 3	0.0%	< 3	98%	60%	140%	117%	60%	140%	116%	30%	130%
>C21-C32 Hydrocarbons	1	6749721	<15	<15	0.0%	< 15	100%	60%	140%	92%	60%	140%	99%	30%	130%
AMEC - NB - PCB Arochlor															
Aroclor 1242	92	6743388	< 0.1	< 0.1	NA	< 0.1	128%	70%	130%	85%	70%	130%	80%	60%	140%
Aroclor 1254	92	6743388	< 0.0633	< 0.0633	NA	< 0.0633	113%	70%	130%	84%	70%	130%	80%	60%	140%
Aroclor 1260	92	6743388	< 0.1	< 0.1	NA	< 0.1	96%	70%	130%	74%	70%	130%	71%	60%	140%
Comments: If the RPD value is NA, th	ne results o	of the dupli	cates are u	nder 5X the	RDL an	ıd will not b	e calculate	ed.							
AMEC - NB - DDT in Soil															
Dieldrin (Hfx 2012-03)	1	6743371	< 0.7	< 0.7	0.0%	< 0.7	93%	60%	130%	97%	70%	130%	NA	60%	130%
o,p'-DDD (Hfx 2012-03)	1	6743371	< 1.0	< 1.0	0.0%	< 1.0	98%	60%	130%	105%	70%	130%	NA	60%	130%
o,p'-DDE (Hfx 2012-03)	1	6743371	< 1.0	< 1.0	0.0%	< 1.0	97%	60%	130%	99%	70%	130%	NA	60%	130%
o,p'-DDT (Hfx 2012-03)	1	6743371	< 1.0	< 1.0	0.0%	< 1.0	93%	60%	130%	93%	70%	130%	NA	60%	130%
p,p'-DDD (Hfx 2012-03)	1	6743371	< 1.0	< 1.0	0.0%	< 1.0	93%	60%	130%	91%	70%	130%	NA	60%	130%
p,p'-DDE (Hfx 2012-03)	1	6743371	< 1.0	< 1.0	0.0%	< 1.0	89%	60%	130%	93%	70%	130%	NA	60%	130%
p,p'-DDT (Hfx 2012-03)	1	6743371	< 1.0	< 1.0	0.0%	< 1.0	98%	60%	130%	96%	70%	130%	NA	60%	130%
AMEC - NB - Polycyclic Aromatic	Hydrocar	bons in S	oil												
1-Methylnaphthalene	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	53%	50%	140%	90%	50%	140%	73%	50%	140%
2-Methylnaphthalene	1	6743380	< 0.02	< 0.02	0.0%	< 0.02	95%	50%	140%	91%	50%	140%	74%	50%	140%
Acenaphthene	1	6743380	< 0.00671	< 0.00671	0.0%	< 0.0067	1 92%	50%	140%	85%	50%	140%	70%	50%	140%
Acenaphthylene	1	6743380	< 0.005	< 0.005	0.0%	< 0.005	83%	50%	140%	77%	50%	140%	58%	50%	140%
Acridine	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	53%	50%	140%	56%	50%	140%	55%	50%	140%
Anthracene	1	6743380	< 0.04	< 0.04	0.0%	< 0.04	79%	50%	140%	69%	50%	140%	70%	50%	140%
Benzo(a)anthracene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	79%	50%	140%	68%	50%	140%	55%	50%	140%
Benzo(a)pyrene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	75%	50%	140%	105%	50%	140%	63%	50%	140%
Benzo(b)fluoranthene	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	106%	50%	140%	89%	50%	140%	72%	50%	140%
Benzo(b+j)fluoranthene	1	6743380	< 0.1	< 0.1	0.0%	< 0.1	108%	50%	140%	93%	50%	140%	86%	50%	140%
Benzo(e)pyrene	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	114%	50%	140%	97%	50%	140%	97%	50%	140%
Benzo(ghi)perylene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	71%	50%	140%	52%	50%	140%	81%	50%	140%
Benzo(k)fluoranthene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	74%	50%	140%	74%	50%	140%	72%	50%	140%
Chrysene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	85%	50%	140%	79%	50%	140%	75%	50%	140%
Dibenzo(a,h)anthracene	1	6743380	< 0.006	< 0.006	0.0%	< 0.006	76%	50%	140%	52%	50%	140%	80%	50%	140%
Fluoranthene	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	87%	50%	140%	78%	50%	140%	59%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V4)

Page 22 of 31

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

SAMPLING SITE:

AGAT WORK ORDER: 15X996778 ATTENTION TO: Chyann Kirby SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Aug 06, 2015		DUPLICATE				REFERENCE MATERIAL			AL METHOD BLANK SPIKI			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
Fluorene	1	6743380	< 0.02	< 0.02	0.0%	< 0.02	85%	50%	140%	76%	50%	140%	58%	50%	140%
Indeno(1,2,3)pyrene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	70%	50%	140%	68%	50%	140%	61%	50%	140%
Naphthalene	1	6743380	< 0.01	< 0.01	0.0%	< 0.01	95%	50%	140%	90%	50%	140%	75%	50%	140%
Perylene	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%
Phenanthrene	1	6743380	< 0.04	< 0.04	0.0%	< 0.04	95%	50%	140%	82%	50%	140%	69%	50%	140%
Pyrene	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	85%	50%	140%	77%	50%	140%	58%	50%	140%
Quinoline	1	6743380	< 0.05	< 0.05	0.0%	< 0.05	76%	50%	140%	94%	50%	140%	66%	50%	140%
Terphenyl-d14	1	6743380	<	<	0.0%	<									

AMEC - NB - Total Polychlorinated Biphenyls

Total Polychlorinated Biphenyls	1	6743371	< 0.0215	< 0.0215	0.0%	< 0.0215	99%	70%	130%	100%	60%	130%	NA	60%	130%
---------------------------------	---	---------	----------	----------	------	----------	-----	-----	------	------	-----	------	----	-----	------

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

AMEC NWT Polychlorinated Biphenyls Analysis in Soil

Aroclor 1242	92	6743388	< 0.03	< 0.03	NA	< 0.03	128%	70%	130%	85%	70%	130%	80%	50%	150%
Aroclor 1254	92	6743388	< 0.03	< 0.03	NA	< 0.03	113%	70%	130%	84%	70%	130%	80%	50%	150%
Aroclor 1260	92	6743388	< 0.03	< 0.03	NA	< 0.03	96%	70%	130%	74%	70%	130%	71%	50%	150%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

AMEC - NB - Polycyclic Aromatic Hydrocarbons in SPLP Leachate

Acenaphinene	I	6711559	< 0.04	< 0.04	0.0%	< 0.04	94%	50%	140%	104%	50%	140%	94%	50%	14070
Acenaphthylene	1	6711559	< 0.04	< 0.04	0.0%	< 0.04	87%	50%	140%	98%	50%	140%	86%	50%	140%
Anthracene	1	6711559	< 0.012	< 0.012	0.0%	< 0.012	75%	50%	140%	76%	50%	140%	81%	50%	140%
Benzo(a)anthracene	1	6711559	< 0.018	< 0.018	0.0%	< 0.018	81%	50%	140%	85%	50%	140%	78%	50%	140%
Benzo(a)pyrene	1	6711559	< 0.01	< 0.01	0.0%	< 0.01	118%	50%	140%	79%	50%	140%	125%	50%	140%
Benzo(b)fluoranthene	1	6711559	< 0.05	< 0.05	0.0%	< 0.05	118%	50%	140%	107%	50%	140%	101%	50%	140%
Benzo(b+j)fluoranthene	1	6711559	< 0.01	< 0.01	0.0%	< 0.01	101%	50%	140%	125%	50%	140%	130%	50%	140%
Benzo(e)pyrene	1	6711559	< 0.06	< 0.06	0.0%	< 0.06	108%	50%	140%	116%	50%	140%	115%	50%	140%
Benzo(ghi)perylene	1	6711559	< 0.02	< 0.02	0.0%	< 0.02	74%	50%	140%	125%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	1	6711559	< 0.04	< 0.04	0.0%	< 0.04	94%	50%	140%	95%	50%	140%	93%	50%	140%
Chrysene	1	6711559	< 0.04	< 0.04	0.0%	< 0.04	88%	50%	140%	99%	50%	140%	95%	50%	140%
Dibenzo(a,h)anthracene	1	6711559	< 0.01	< 0.01	0.0%	< 0.01	54%	50%	140%	65%	50%	140%	65%	50%	140%
Fluoranthene	1	6711559	< 0.03	< 0.03	0.0%	< 0.03	85%	50%	140%	94%	50%	140%	89%	50%	140%
Fluorene	1	6711559	< 0.01	< 0.01	0.0%	< 0.01	81%	50%	140%	80%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	1	6711559	< 0.04	< 0.04	0.0%	< 0.04	114%	50%	140%	78%	50%	140%	69%	50%	140%
Naphthalene	1	6711559	< 0.01	< 0.01	0.0%	< 0.01	99%	50%	140%	110%	50%	140%	98%	50%	140%
Perylene	1	6711559	< 0.05	< 0.05	0.0%	< 0.05	81%	50%	140%	89%	50%	140%	85%	50%	140%
Phenanthrene	1	6711559	< 0.02	< 0.02	0.0%	< 0.02	97%	50%	140%	102%	50%	140%	98%	50%	140%
Pyrene	1	6711559	< 0.01	< 0.01	0.0%	< 0.01	83%	50%	140%	93%	50%	140%	88%	50%	140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

SAMPLING SITE:

AGAT WORK ORDER: 15X996778

ATTENTION TO: Chyann Kirby

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Aug 06, 2015			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons - SPLP Leachate, EPH only

>C10-C16 Hydrocarbons	1	6801680	<0.05	<0.05	0	< 0.1	99%	70%	130%	114%	70%	130%	97%	70%	130%
>C16-C21 Hydrocarbons	1	6801680	<0.05	<0.05	0	< 0.1	105%	70%	130%	114%	70%	130%	97%	70%	130%
>C21-C32 Hydrocarbons	1	6801680	<0.01	<0.01	0	< 0.1	103%	70%	130%	114%	70%	130%	97%	70%	130%

Certified By:

J. Patterson

AGAT QUALITY ASSURANCE REPORT (V4)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 24 of 31

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

AGAT WORK ORDER: 15X996778

ATTENTION TO: Chyann Kirby

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		·	L
Aluminum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Antimony	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Arsenic	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Barium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Beryllium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Boron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cadmium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cobalt	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Copper	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Iron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Lead	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Lithium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Manganese	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Molybdenum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Nickel	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Selenium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Silver	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Strontium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Thallium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Tin	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Uranium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Vanadium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Zinc	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium, Hexavalent	INOR-121-6029	SSSA 5;25 p. 683	SPECTROPHOTOMETER
Aluminum Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Antimony Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Arsenic Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

AGAT WORK ORDER: 15X996778 **ATTENTION TO: Chyann Kirby**

SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Barium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Beryllium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Bismuth Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Boron Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Cadmium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Chromium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Cobalt Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Copper Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Iron Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Lead Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Lithium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Magnesium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Manganese Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Molybdenum Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Nickel Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Selenium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Silver Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Sodium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Strontium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Thallium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Tin Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Uranium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Vanadium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Zinc Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Initial pH	MET-121-6108		pH METER
Final pH	MET-121-6108		pH METER
% Moisture			GRAVIMETRIC
Total Sample Mass			
Hardness		SM 2340B	CALCULATION
Total Organic Carbon by Walkley Black	SOIL 0480; SOIL 0110; SOIL 0120	NELSON 1996; SHEPPARD 2007	SPECTROPHOTOMETER
I otal Inorganic Carbon, Calculated			CALCULATION

AGAT METHOD SUMMARY (V4)

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

AGAT WORK ORDER: 15X996778 ATTENTION TO: Chyann Kirby

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Particle Size Distribution (<12.5mm, -4 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<9.5mm, -3 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<4.75mm, -2 PHI	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<2mm, -1 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1mm, 0 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/2mm, 1 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/4mm, 2 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/8mm, 3 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/16mm, 4 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/32mm, 5 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/64mm, 6 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/128mm, 7 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/256mm, 8 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/512mm, 9 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Gravel)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Sand)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Silt)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Clay)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particles >75um	INOR-121-6031, INOR-121-6034	ASTM D-422-63	CALCULATED
Classification	INOR-121-6031, INOR-121-6031	Atlantic RBCA	CALCULATED
Mercury	INOR-121-6101 & INOR-121-6107	Based on EPA 245.5 & SM 3112B	CV/AA
Total Organic Carbon	SOIL 0480; SOIL 0110; SOIL 0120	NELSON 1996; SHEPPARD 2007	SPECTROPHOTOMETER

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

SAMPLING SITE:

AGAT WORK ORDER: 15X996778

ATTENTION TO: Chyann Kirby SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		1	
>C10-C16 Hydrocarbons	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C16-C21 Hydrocarbons	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C21-C32 Hydrocarbons	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Return to Baseline at C32	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
n-Dotriacontane - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Initial pH	MET-121-6108		
Final pH	MET-121-6108		
% Moisture			GRAVIMETRIC
Total Sample Mass			
Methyl-t-Butyl-Ether (MTBE)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Benzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Toluene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Ethylbenzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Xylene (Total)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
C6-C10 (less BTEX)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
>C10-C21 Hydrocarbons	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
>C21-C32 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Modified TPH (Tier 1)	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Resemblance Comment	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Creosote Comment			GC/FID
Return to Baseline at C32	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
% Moisture	LAB-131-4024	Topp, G.C. 1993. Soil Water Content. CSSS	GRAVIMETRIC
Silica Gel Cleanup			GC/FID
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Dieldrin (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDD (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDE (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDT (Hfx 2012-03)	ORG-120-5108		GC/ECD
p,p'-DDD (Hfx 2012-03)	ORG-120-5108		GC/ECD
p,p'-DDE (Hfx 2012-03)	ORG-120-5108		GC/ECD
p,p'-DDT (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDT + p,p'-DDT	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

AGAT WORK ORDER: 15X996778 **ATTENTION TO: Chyann Kirby**

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
o,p'-DDD + p,p'-DDD	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD
o,p'-DDE + p,p'-DDE	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD
Total DDT	Calculation	Calculation	GC/FID
Aroclor 1242	TO 0400	EPA 8082	GC/ECD
Aroclor 1248	TO 0400	EPA 8082	GC/ECD
Aroclor 1254	TO 0400	EPA 8082	GC/ECD
Aroclor 1260	TO 0400	EPA 8082	GC/ECD
Aroclor 1016	TO 0400	EPA 8082	GC/ECD
Aroclor 1221	TO 0400	EPA 8082	GC/ECD
Aroclor 1232	TO 0400	EPA 8082	GC/ECD
Aroclor 1262	TO 0400	EPA 8082	GC/ECD
Aroclor 1268	TO 0400	EPA 8082	GC/ECD
1-Methylnaphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
2-Methylnaphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Acenaphthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Acenaphthylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(a)anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(a)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(b)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(b+j)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(e)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(ghi)perylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(k)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Chrysene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Fluorene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Naphthalene	OKG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Perylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Phenanthrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.3000

AGAT WORK ORDER: 15X996778 **ATTENTION TO: Chyann Kirby**

SAMPLING SITE: SAMPLED BY: AGAT S.O.P PARAMETER LITERATURE REFERENCE ANALYTICAL TECHNIQUE ORG-120-5104/INOR-121-CGSB 164-GP-IMP/EPA Pyrene GC/MS SW846/3510/8270D/354 6040 CALCULATION Total PAH EPA SW846/3510/8270C Nitrobenzene-d5 ORG-120-5104 GC/MS 2-Fluorobiphenyl ORG-120-5104 EPA SW846/3510/8270C GC/MS Terphenyl-d14 ORG-120-5104 EPA SW846/3510/8270C GC/MS Initial pH MET-121-6108-TCLP Final pH MET-121-6108-TCLP 1-Methylnaphthalene EPA SW846/3541/3510/8270C GC/MS ORG-120-5104 2-Methylnaphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS GC/MS Acenaphthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Acenaphthylene ORG-120-5104 EPA SW846/3541/3510/8270C Acridine ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Anthracene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Benzo(a)anthracene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS GC/MS Benzo(a)pyrene ORG-120-5104 EPA SW846/3541/3510/8270C Benzo(b)fluoranthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Benzo(b+j)fluoranthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS GC/MS Benzo(e)pyrene ORG-120-5104 EPA SW846/3541/3510/8270C Benzo(ghi)perylene EPA SW846/3541/3510/8270C GC/MS ORG-120-5104 Benzo(k)fluoranthene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Chrysene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Dibenzo(a,h)anthracene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS GC/MS Fluoranthene ORG-120-5104 EPA SW846/3541/3510/8270C Fluorene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Indeno(1,2,3)pyrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Naphthalene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Perylene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS Phenanthrene ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS GC/MS Pyrene ORG-120-5104 EPA SW846/3541/3510/8270C Quinoline EPA SW846/3541/3510/8270C GC/MS ORG-120-5104 Total PAH GC/MS Nitrobenzene-d5 ORG-120-5104 EPA SW846/3541/3510/8270C 2-Fluorobiphenvl ORG-120-5104 EPA SW846/3541/3510/8270C GC/MS EPA SW846/3541/3510/8270C GC/MS Terphenyl-d14 ORG-120-5104 Total Polychlorinated Biphenyls ORG-120-5106 EPA SW846/8081/8080 GC/ECD Aroclor 1242 TO 0410 EPA 8082 GC/ECD Aroclor 1254 EPA 8082 TO 0410 GC/ECD Aroclor 1260 TO 0410 EPA 8082 GC/ECD Total Polychlorinated Biphenyls TO 0410 EPA 8082 GC/ECD Decachlorobiphenyl TO 0410 EPA 8082 GC/ECD

🦄 aga'	T Laboratories
Unit 122 - 11 Morris Dr. Dartmouth, Nova Scotia B3B IM2 http://webearth.agatlabs.com	Phone: 902-468-8718 Fax: 902-468-8924 www.agatlabs.com

10

8

Arrival Condition: Arrival Temperature: 30	☐ Good	Poor (complete 'notes') AGAT Job Number:	15× 996778
Notes:			

Drinking Water Sample (y/n): _____ Reg. No.___

Waterworks Number:

Report To:			Report Information						Ren	ort For	mat Turnaround Time (TAT) Business Days														
Company: Amec Foster Wheeler			1. Name: Chyann Kirby					- 1				Turner ound Time (TAT) Dusiness Days													
Contact: Chyann Kirby			Email:	Email: chyann.kirby@amecfw.com						Single	PDF	¹⁵ Regular TAT:													
Building B, Saint John, New Brunswick, E2K 115			Email: Christa Dubreull@amecfw.com							page	PCI	Rush TAT: PDF													
Phone: 506-652-4530 FAX: 506-652-9517			Regulatory Requirements (Check):						Multiple	PDF															
PO#:			List Guidelines on Benort Do Not List Guidelines on Benort					ort		samples	; per	^{ier} 3 - 4 davs													
AGAT Quotation: 15-1771			PIRI Site Info (check all that apply):						_	Excel Format		Date Required:													
Client Project #: TE131446.3000				Tier 1 🔲 Res. 🛄 Pol. 🔲 Coarse						Include	d	Time Required:													
Invoice to: Same (Y/N) - Circle			1 0	Tier 2 🔲 Com 🔲	- 1				Conservation of the second			-		_											
Company:				Gas 🔲 Fuel 🗖 Lube				1																	
Contact:			CCME	CDWQ						-					-										
Address:				Ind DINSDFOSP	P	.92	× I		_		-	-	-	_	-	-	12	07	8 .º +		-				
Dharas				Com HRM 101	PV6	syle	'us	Ę		2						- Fo	N	128	ity 2	(P					
Phone:Fax:		Res/P Storm Water	ese	Ane	3	mit		Bet				Ler L		lati	260	262	extra An D Ju	6 1		Lab					
PO#/Cradit Card #+			I-	ter	tais	H I		E D						alci	1 2	32,1	hate ct o	(I)	uii)	Sample					
		FWAL Waste water	red	Na Na	Me	¥		e l				Cles		000	12%	123	spa eac xtra			#					
		Seaiment	iite	ard	ble	ale	2	Sie					H	8	248	221	mE								
L DATE / TIME I SAMPLE			Other	COMMENTS Standards for Emola	문	SU	alla	vex	srcu	' A	<u>и</u>		片	H/B			12.1 42.1	16,1	tenti arfor 15)						
SAMPLE IDENTIFICATION	SAMPLED	MATRIX	CONTAINERS	Containment	Ш.	the st	ΕŞ	Ŧ	Ϋ́	S S	P	Ĕ	a	iii H	P	P P	12	299	20. 20. 20. 20. 20.						
L-2	15-Jul-15	sed./so	4 x 500 ml	Sediment			x	x	х	X	х	x	х	x ×	×	x x	X	X	×						
L-11	15-Jul-15	sed./sol	4 x 500 ml	Sediment			х	x	х	x	x	x	x	x ×	×	x	x	X	×						
L-12	15-Jul-15	sed./soi	4 x 500 ml	Sediment		i i.	х	x	х	x	x	x	x	xx	X	x	x	X	x						
L-21	15-Jul-15	sed./soi	4 x 500 ml	Sediment			x	x	x	x	x	x	x	xx	X	x	x	X	x						
L-27	15-Jul-15	sed./soi	4 x 500 ml	SedIment			x	x	х	x	x	x	x	x x	X	x	x	x	x						
L-33	15-Jul-15	sed./soi	4 x 500 ml	Sediment			x	x	x	x	x	x	x	xx	x	x	x	X	x						
										1.1.1					-						1.5				
							-	-		2	-						-								
					-			-			-				1	-	-	-							
					<u> </u>		_				-		-	_	-	-	-	-		-+					
		-			-		-	-						_			-			-+					
					-		-	-			_	-		_	-	-	-			-	-				
							_	_			_		_		-	_									
										1															
				2		li t							1												
Sample Relinquished By (print name & sign)			Date/Time	Samples Received By (print name and sign)								Date/Time Special Instructions													
Chyann Kirby (Amec Foster Wheeler)			16-Jul-15	The all						17-16					Please include a qualitative comment regarding										
Cample Dellaculated Du (antate same B alar)			1:00pm	anne Voicet							17 July					It ne presence of creosote in samples as well as									
Sample Kellinguished By (print name & si		Date/Time	Samples Received By (print name and sign)								Date/Time provide the results in GIS-ready format.														
			multure								La Page 1 of 1														

APPENDIX D Limitations

LIMITATIONS

- 1. The work performed in the preparation of this report and the conclusions presented are subject to the following:
 - 1. The Standard Terms and Conditions which form a part of our Professional Services Contract.
 - 2. The Scope of Services.
 - 3. Time and Budgetary limitations as described in our Contract.
 - 4. The Limitations stated herein.
- 2. No other warranties or representations, either expressed or implied, are made as to the professional services provided under the terms of our Contract, or the conclusions presented.
- 3. The information presented in this report is based on sampling techniques which are considered industry-standard for this type of assessment (i.e., samples collected by divers using standard procedures commonly accepted by PWGSC).
- 4. The sediment characteristics at the Site were assessed, within the limitations set out above, having due regard for applicable environmental regulations as of the date of the analytical reporting.
- 5. No request for information about the site history or operating practices within the site boundaries has been included in the scope of work for this project.
- 6. Sample collection and testing was carried out in accordance with the terms of our contract. Other substances, or different quantities of substances testing for, may be present on Site and may be revealed by different or other testing not provided for in our contract.
- 7. This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or contract. Any use which any third party makes of the report, in whole or the part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. Amec Foster Wheeler accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on the report or anything set out therein.