

PWGSC PROJECT #R.076185.002 MARINE SEDIMENT SAMPLING PROGRAM BACK BAY DFO-SCH BACK BAY, DEER ISLAND, NEW BRUNSWICK

FINAL REPORT

Submitted to: **Public Works and Government Services Canada** Saint John, New Brunswick

Submitted by:

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited Saint John, New Brunswick

August 2015

TE131446.2000

amec foster wheeler

18 August 2015

TE131446.2000

Mr. Jason Keys Environmental Specialist Environmental Services Public Works and Government Services Canada 189 Prince William Street Saint John, New Brunswick E2L 2B9

Dear Mr. Keys:

Re: Marine Sediment Sampling Program at the Back Bay Fisheries and Oceans Small Craft Harbour, Back Bay, New Brunswick - Final Report

Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited (Amec Foster Wheeler), is pleased to provide Public Works and Government Services Canada the findings of a Marine Sediment Sampling Program undertaken at the Back Bay Fisheries and Oceans Canada - Small Craft Harbour in New Brunswick.

Amec Foster Wheeler appreciates the opportunity to provide services to your organization. Please do not hesitate to call if you have any questions regarding this, or any other matter.

Respectfully submitted,

Chyarr Kirby

Chyann Kirby, B.Sc., PTech, EP Environmental Scientist Direct Tel.: 506.652.4530 (or 506.652.9497 ext. 226) Fax: 506.652.9517 E-mail: chyann.kirby@amecfw.com

CD/tr

EXECUTIVE SUMMARY

Seven (7) sediment samples were collected within the Back Bay Fisheries and Oceans Canada (DFO) - Small Craft Harbour (SCH) in New Brunswick on 15 July 2015. The samples were submitted to AGAT Laboratories for detailed analyses. Results were compared to the Canadian Environmental Protection Act (CEPA) Disposal at Sea Lower Level Screening Criteria; Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (SQGs) for the Protection of Environment and Human Health (1999a) and Atlantic Risk-Based Corrective Action (RBCA) Tier 1 Version 3.0 Risk-Based Screening Levels (RBSLs) and Sediment Ecological Screening Levels (SESLs) for the Protection of Freshwater and Marine Life (2012). Table ES1, below, reports the summarized guideline exceedance results of the sediment analysis for the field program. Figure ES1 (below) depicts the summarized substrate composition for the samples collected from the Back Bay DFO-SCH.

Table	ES1 Se	diment An	alysis Gu	ideline Ex	ceedance	Table	
Guideline /				Sample ID			
Parameter	BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48
CEPA Disposal at Sea	a – Lower L	evel Screer	ning Criteri	а			
PAHs ¹	-	-	-	-	-	-	-
Metals	•	•		•	٠		
PCBs ²							
CCME Soil Quality Gu	idelines	•					
PAHs (IACR ³)	-	-	•	•	-	•	•
Metals	•	•	•	•	٠	٠	•
PCBs	-	-	-	-	-	-	-
DDT ⁴	-	-	-	-	-	-	-
Atlantic RBCA Tier 1	Version 3.0	RBSLs and	dSESLs				
BTEX⁵	-	-	-	-	-	-	-
TPH ⁶	-	-	-	-	٠	•	•
Notoo:			•			•	

Notes:

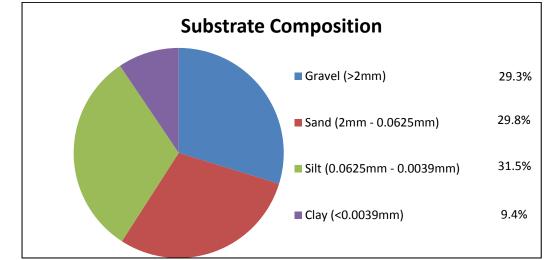
"-" indicates no exceedance

"

 "indicates exceedance

1 – PAH - polycyclic aromatic hydrocarbon

2 – PCB - polychlorinated biphenyl


3 – IACR - Index of Additive Cancer Risk

4 - DDT - dichloro-diphenyl-trichloroethane

5 – BTEX - benzene, toluene, ethylbenzene, and xylene

6 – TPH - total petroleum hydrocarbons

Substrate Composition Averaged from Sampling Locations at the Back Bay Figure ES1 **DFO-SCH**, New Brunswick

Based on the results of the sediment analysis, samples were selected to undergo Synthetic Precipitation Leachate Procedure (SPLP) for leachable PAHs and metals, as well as extractable petroleum hydrocarbons (EPH) analysis. SPLP was conducted as a requirement to determine if the material is suitable for disposal at New Brunswick landfills. Results from these samples were compared to the CCME Water Quality Guidelines (WQGs) for the Protection of Aquatic Life (1999b) and Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ, 2014). Table ES2, below, reports the summarized guideline exceedance results for the leachate analyses completed on these sediment samples.

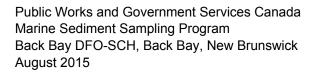

Table ES2	Leachate Analysis Gul	aeiine Exceedance	<i>i adle</i>									
Guideline / Parameter	Sample ID											
Guidenne / Parameter	BB-11	BB-25	BB-48									
CCME WQGs for the Protection of Aquatic Life												
PAHs		•	•									
Metals	•	•										
Health Canada GCDWQ												
PAHs		-	-									
Metals	-	•										
Atlantic RBCA Tier 1 Version	3.0 RBSLs and SESLs											
TPH			-									
Notes:												

Table FOO Lanchata Analysis Guidalina Excoadance Table

Indicates exceedance

Indicates no exceedance

Grey box indicates no analysis

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION	1
2.0	SCOPE AND METHODOLOGY 2.1 SITE PLAN	1
	2.2 SAMPLE COLLECTION AND ANALYSIS	
3.0	ANALYTICAL RESULTS	3
	3.1 PAH CONCENTRATIONS	
	3.2 METAL CONCENTRATIONS	
	3.3 PETROLEUM HYDROCARBON CONCENTRATIONS	5
	3.4 PCBS CONCENTRATIONS	6
	3.5 DDT CONCENTRATIONS	6
	3.6 CARBON CONTENT	6
	3.7 GRAIN SIZE DISTRIBUTION	6
4.0	BENTHIC PHOTOGRAPH DESCRIPTION	7
5.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
6.0	CONCLUSION	9
7.0	CLOSING	10
8.0	REFERENCES	11

TABLE OF CONTENTS (cont.)

PAGE

LIST OF TABLES

Table ES1	Sediment Analysis Guideline Exceedance Tablei	
Table ES2	Leachate Analysis Guideline Exceedance Tableii	
Table 3.1	Dominant Sediment Types at Each Sample Location7	

LIST OF FIGURES

Figure ES1	Substrate Composition Averaged from Sampling Locations at the Back	
	Bay DFO-SCH, New Brunswick	ii
Figure 2.1	Sampling Locations at the Back Bay DFO-SCH, New Brunswick	2
Figure 3.1	Substrate Composition Averaged from Sampling Locations at the Back	
	Bay DFO-SCH, New Brunswick	7

LIST OF APPENDICES

- Appendix B Analytical Summary Tables
- Appendix C Quality Assurance/Quality Control (QA/QC), Chain of Custody (COC), and Laboratory Certificates of Analyses
- Appendix D Limitations

1.0 INTRODUCTION

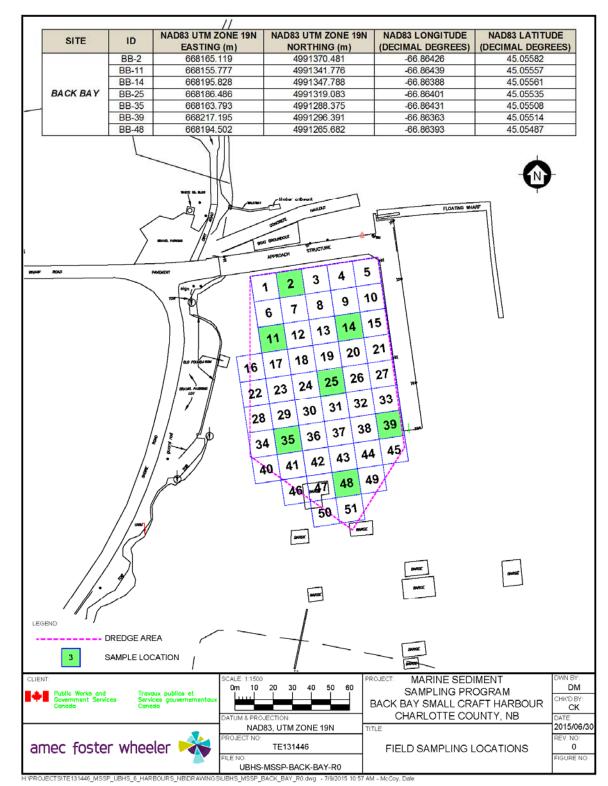
At the request of Public Works and Government Services Canada (PWGSC), seven (7) stations were sampled within the footprint of the proposed dredging area at the Back Bay Fisheries and Oceans (DFO) - Small Craft Harbour (SCH), Charlotte County, New Brunswick on 15 July 2015. The Marine Sediment Sampling Program (MSSP) was required to determine disposal options for the sediment intended to be dredged from this location.

2.0 SCOPE AND METHODOLOGY

2.1 Site Plan

The selection of sample stations followed guidance provided in the Environmental Protection Series: *Users Guide to the Application Form for Ocean Disposal* (Environment Canada, 1995), whereby a random approach was implemented for the location of sampling stations in the proposed dredging area of the SCH. The unstratified area was divided into square blocks where at least five times as many blocks as the number of stations required was used (minimum of 30 blocks). A random number generator software program was used to derive the sampling locations within this dredge area (Figure 2.1).

A detailed program design was prepared by Amec Foster Wheeler Environment & Infrastructure, a Division of Amec Foster Wheeler Americas Limited (Amec Foster Wheeler) and submitted to PWGSC on 10 July 2015 for review and approval prior to field program implementation. The field program was scheduled upon acceptance of the design.


Sample collection, preparation, and analyses were conducted in accordance with Environment Canada's publication *Guidance Document on Collection and Preparation of Sediments for Physicochemical Characterization and Biological Testing* (1994). Diversified Divers Inc./Divers Quarters was retained to collect the sediment samples. The sample collection field program was completed in accordance with guidelines defined by provincial Occupational Health and Safety Standards.

2.2 Sample Collection and Analysis

The marine sediment samples were collected by divers at the selected sampling stations. A handheld Global Positioning System (GPS) was used to georeference the sampling location coordinates that were derived prior to field program initiation. Sample station coordinates are listed in Figure 2.1. Appendix A is comprised of a collection of photos taken of the sample locations during the field program.

Duplicate samples were collected from all stations to safeguard against loss or damage during transport. All samples were then stored in the laboratory-supplied jars and kept in a cooler on until the field program was completed. Upon completion of the field program, the samples were chilled and delivered to the laboratory for select chemical analyses. The duplicate sediment samples were refrigerated and stored at the Amec Foster Wheeler office in Saint John, New Brunswick.

Figure 2.1	Sampling Locations at the Back Bay DFO-SCH, New Brunswick
------------	---

AGAT Laboratories (AGAT) in Dartmouth, Nova Scotia, an accredited laboratory with the Canadian Association for Laboratory Accreditation (CALA) and ISO/IEC 17025 certified for all of the analyses required for this Project, was engaged to conduct the laboratory analyses. At the request of PWGSC, the samples were submitted for the typical ocean and land disposal suite of parameters which includes ICP 23 metals scan plus mercury, hexavalent chromium, tin, and lowlevel selenium; low-level polycyclic aromatic hydrocarbons (PAHs); total inorganic and total organic carbon (TIC/TOC); total polychlorinated biphenyls (PCBs); total dichloro-diphenyltrichloroethane (DDT); low-level benzene, toluene, ethylbenzene, and xylene (BTEX); total petroleum hydrocarbons (TPHs), including a qualitative assessment for presence/absence of creosote; and grain size. Silica gel cleanup was completed for all samples analyzed for petroleum hydrocarbons, and a return to baseline at C32 was verified.

Based on the results of the sediment analysis, samples were selected to undergo Synthetic Precipitation Leachate Procedure (SPLP) as a requirement to determine if the material is suitable for disposal at New Brunswick landfills. Samples were selected for analyses as follows:

- two samples (BB-25 and BB-48) were selected for leachable PAHs analysis;
- two samples (BB-11 and BB-25) were selected for leachable metals analysis; and
- one sample (BB-48) was selected for extractable petroleum hydrocarbons (EPH) analysis.

ANALYTICAL RESULTS 3.0

The analytical results of the marine sediment samples collected and analyzed from the Back Bay DFO-SCH are summarized in Tables B.1 to B.8 (Appendix B) and discussed below. The complete set of analytical results, including laboratory Quality Assurance/Quality Control (QA/QC) and Certificates of Analyses for all parameters tested, are provided in Appendix C.

In order to facilitate the determination of all disposal options, the tabulated analytical sample results were compared to the following, where applicable:

- Canadian Environmental Protection Act (CEPA) Disposal at Sea Regulations (formerly the Ocean Dumping Control Act) – Lower Level Screening Criteria.
- Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines -Interim Sediment Quality Guidelines (ISQGs) and Marine and Estuarine Probable Effects Levels (PELs) (1999c).
- CCME Soil Quality Guidelines (SQGs) for the Protection of Environment and Human Health in agricultural, residential/parkland, and commercial/industrial applications (1999a).
- Atlantic Risk-Based Corrective Action (RBCA) Tier 1 Version 3.0 Risk-Based Screening Levels (RBSLs) and Sediment Ecological Screening Levels (SESLs) for the Protection of Freshwater and Marine Aquatic Life (2012).
- CCME Water Quality Guidelines (WQGs) (1999b).
- Health Canada's Guidelines for Canadian Drinking Water Quality (GCDWQ) (2014).

Results as compared to the previously noted Guidelines, with the exception of the CCME Sediment Quality Guidelines (ISQGs and PELs), are discussed further in this Report.

3.1 PAH Concentrations

PAHs were detected in all but one (BB-35) of the seven samples collected.

CEPA Disposal at Sea Screening Criteria - Lower Level

There were no exceedances to the CEPA Disposal at Sea Lower Level Screening Criteria for any of the seven samples collected (Table B.1).

CCME SQGs - Human Health (Potable Water) and (Direct Contact)

Four of the seven samples collected (BB-14, BB-25, BB-39 and BB-48) exceeded the Index of Additive Cancer Risk (IACR) under the CCME SQGs for the Protection of Human Health (Potable Water) for all land use scenarios (Table B.1). In addition, one of these samples (BB-25) exceeded the CCME SQGs for the Protection of Human Health (Potable Water) for all land use scenarios for two individual PAHs, benzo(b+j)fluoranthene and benzo(k)fluoranthene.

Guidance provided in the CCME SQGs for the Protection of Environmental and Human Health (2008) indicates that for soil contaminated by coal tar or creosote mixtures, the calculated Benzo(a)pyrene total potency equivalent (TPE) concentration for soil samples should be multiplied by an uncertainty factor (UF) of 3 prior to comparison with the SQGs for the protection of human health (direct contact) to account for carcinogenic potential of alkylated and other PAHs present for which a Potency Equivalency Factors (PEF) does not currently exist, but which are likely to contribute to mixture carcinogenic potential.

Analytical review of the results by laboratory staff revealed that the presence of creosote was not observed in any of the seven samples analyzed. No exceedances of the CCME SQGs for the Protection of Human Health (Direct Contact) for all land use applications were noted in the seven samples collected (Table B.1).

<u>CCME SQGs - Environmental Health (Soil Contact), (Soil and Food Ingestion), and (Freshwater Life)</u>

Four of the seven samples (BB-14, BB-25, BB-39 and BB-48) collected showed exceedances of the CCME SQGs for the Protection of Environmental Health for Freshwater Life for all land use scenarios for phenanthrene (Table B.1). There were no exceedances of the CCME SQGs for the Protection of Environmental Health for Soil Contact or Soil and Food Ingestion for any land use scenario.

Leachable PAHs Results

Two samples (BB-25 and BB-48) were selected for SPLP leachable PAHs analysis based on noted guideline exceedances and discussions with PWGSC.

<u>CCME WQGs for the Protection of Aquatic Life (Freshwater and Marine)</u> Both samples selected for SPLP analysis had levels of pyrene in the leachate which exceeded CCME WQGs for the Protection of Aquatic Life (Marine Water) (Table B.2).

<u>Health Canada GCDWQ (Maximum Acceptable Concentration and Aesthetic Objective)</u> Neither of the two samples selected for SPLP had any PAH compounds in the leachate at levels that exceeded Health Canada GCDWQs (Table B.2).

3.2 Metal Concentrations

CEPA Disposal at Sea Screening Criteria - Lower Level

Four of the seven samples collected had one (BB-2, BB-11 and BB-35) to three (BB-25) elements at levels which exceeded the CEPA Disposal at Sea Lower Level Screening Criteria (Table B.3).

CCME SQGs

All seven samples collected exceeded the CCME SQGs for agricultural land use applications for one to six elements (Table B.3). In addition:

- Six of the samples (BB-2, BB-11, BB-14, BB-25, BB-35 and BB-39) also exceeded the CCME SQGs for residential/parkland land use for one to three metals.
- Five of these samples (BB-2, BB-11, BB-14, BB-25 and BB-39) exceeded commercial land use applications for one to two metals.
- Four of these samples (BB-11, BB-14, BB-25 and BB-39) exceeded the CCME SQGs for industrial land use applications as well for one to two metals.

Leachable Metals Results

Two samples (BB-11 and BB-25) were submitted for SPLP metals leachate analysis based on noted guideline exceedances and discussions with PWGSC.

CCME WQGs for the Protection of Aquatic Life (Freshwater and Marine)

Both samples selected for SPLP analysis had levels of two to three elements in the leachate which exceeded CCME WQGs for the Protection of Aquatic Life (Freshwater). One of the two samples, BB-25, had levels of arsenic and cadmium in the leachate which also exceeded marine water guidelines (Table B.4).

Health Canada GCDWQ (Maximum Acceptable Concentration and Aesthetic Objective)

One sample selected for SPLP analysis, BB-25, had levels of arsenic and selenium in the leachate which exceeded Health Canada GCDWQs (Maximum Acceptable Concentrations) as well as a level of sodium which exceeded the GCDWQ Aesthetic Objective (Table B.4).

3.3 Petroleum Hydrocarbon Concentrations

Modified TPH values reflect the sum of the individual carbon fractions that resembles gasoline, diesel #2, and lube oil. BTEX was not detected in any of the seven samples collected (Table B.5). TPH was, however, detected in all seven samples collected at the Back Bay DFO-SCH. All seven samples reached baseline at C_{32} (Table B.5).

There were no exceedances of the Atlantic RBCA Tier 1 Version 3.0 RBSLs. Three of the seven samples (BB-35, BB-39 and BB-48) had a TPH fraction resembling lube oil which exceeded the SESLs for the Protection of Freshwater and Marine Aquatic Life for typical sediment (Table B.5).

Leachable Petroleum Hydrocarbon Results

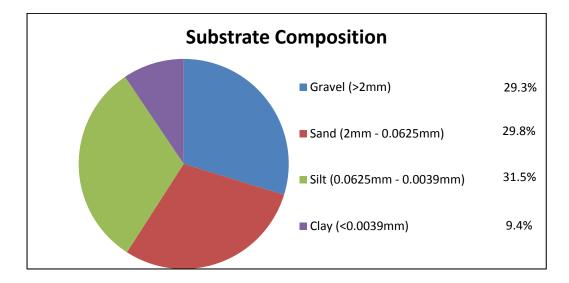
One sample, BB-48, was submitted for SPLP extractable petroleum hydrocarbons (EPH) based on noted guideline exceedances and discussions with PWGSC. All three fractions were below the detection limit of 100 μ g/L and did not exceed the RBSLs for groundwater or the SESLs for the Protection of Freshwater and Marine Aquatic Life (Table B.6).

3.4 PCBs Concentrations

PCBs were not detected in any of the seven samples collected at the Back Bay DFO-SCH and no exceedances of the CEPA Disposal at Sea Lower Level Screening Criteria, CCME SQGs for all land use applications were noted in any of the seven samples collected (Table B.7).

3.5 DDT Concentrations

Total DDT refers to the sum of dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD), and DDT. Neither DDE, DDD, nor DDT were detected in any of the seven samples collected at the Back Bay DFO-SCH, and no exceedances of the CEPA Disposal at Sea Lower Level Screening Criteria, CCME SQGs for all land use applications were noted in any of the seven samples collected (Table B.7).


3.6 Carbon Content

Samples collected from the Back Bay DFO-SCH showed total carbon content ranging from 2.45% to 9.32% (Table B.8). TOC was the predominant type in all of the samples (with the exception of B-2), ranging from 1.01% to 5.24%. TIC ranged from 1.44% (sample B-2) to 4.08% (sample BB-25).

3.7 Grain Size Distribution

Sediment composition (Table B.8) is illustrated in Figure 3.1 and Table 3.1 below. Figure 3.1 illustrates the overall sediment composition from the samples collected from within the SCH, expressed as percentages to show the average grain size distributions. Table 3.1 breaks down the sediment composition at each sampling location.

Figure 3.1 Substrate Composition Averaged from Sampling Locations at the Back Bay DFO-SCH, New Brunswick

	Sediment Distribution										
Sample ID	Primary Substrate	Secondary Substrate	Tertiary Substrate	Quaternary Substrate							
BB-2	Gravel	Sand	Silt/Clay	-							
BB-11	Gravel	Sand	Silt	Clay							
BB-14	Silt	Sand	Clay	-							
BB-25	Sand	Silt	Clay	Gravel							
BB-35	Gravel	Sand	Silt	Clay							
BB-39	Silt	Sand	Clay	Gravel							
BB-48	Silt	Clay	Sand	-							

Table 3.1 Dominant Sediment Types at Each Sample Location

"-"indicates none detected.

4.0 BENTHIC PHOTOGRAPH DESCRIPTION

A series of underwater photographs were collected at each of the sampling locations that show the substrate and any flora and fauna at the site. Photographs are presented in Appendix A and characterization of the photographs collected at each of the sampling locations is provided below.

Sample Station BB-2

The substrate was predominantly cobble with lesser amounts of gravel and black silt. No observations of macroflora or macrofauna were made.

Sample Station BB-11

The substrate was predominantly cobble with lesser amounts of gravel and black silt. No observations of macroflora or macrofauna were made.

Sample Station BB-14

TE131446.2000

The substrate appears to be predominantly silt with lesser amounts of sand and cobble. The photos are devoid of flora or fauna.

Sample Station BB-25

The substrate appears to be predominantly silt with lesser amounts of sand and cobble. The photos are devoid of flora or fauna.

Sample Station BB-35

The substrate appears to be predominantly silt with lesser amounts of sand and cobble. The photos are devoid of flora or fauna.

Sample Station BB-39

The substrate appears to be predominantly silt with lesser amounts of sand. The photo shows an abundant occurrence of periwinkles (*Littorina* sp.) and two green sea urchins (*Strongylocentrotus droebachiensis*).

Sample Station BB-48

The substrate appears to be a mix of silt and cobble with lesser amounts of sand and gravel. The photo shows an abundant occurrence of Northern rock barnacles (*Semibalanus balanoides*) and one green crab (*Carcinus maenas*). A small amount of bladderwrack (*Fucus vesiculosus*) was observed.

5.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

All samples collected were labelled on site using a waterproof marker with the date, sample site identifier, and sample number. The samples were placed upright on ice inside a cooler for safe storage and transport, and were delivered to the laboratory following program completion. A copy of the Chain of Custody (COC) that accompanied the samples is provided in Appendix C. Additional samples were collected to safeguard against loss or damage during transport, and will be stored and refrigerated until the PWGSC Project Manager provides approval to dispose/destroy the samples.

Sample collection, preparation, and analyses followed guidance provided in the previously referenced Environment Canada document. Samples were analyzed by an accredited laboratory with CALA and/or ISO/IEC 17025 and are certified by the Standards Council of Canada (SCC) for each selected chemical analyses of this program. The complete set of analytical results, including laboratory QA/QC and Certificates of Analyses for all parameters tested, are provided in Appendix C.

The laboratory undertakes internal duplicate analyses for QA/QC purposes. Laboratory duplicate analyses were performed on all of the parameters analyzed for this program to meet internal QA/QC objectives for the Back Bay samples submitted. No discrepancies were noted by the laboratory for the analyses performed.

To assess the quality of the analytical data, a review of the internal laboratory QA/QC results was completed and included a review of laboratory duplicate analyses, method blanks, surrogates,

spike samples, and QA/QC standards. This review did not reveal any information or discrepancies that may affect the analytical results of the Back Bay samples.

A Senior Amec Foster Wheeler Reviewer has reviewed this Report prior to its release. The limitations of this document are provided in Appendix D.

6.0 CONCLUSION

The analytical results of the seven samples collected and analyzed from the Back Bay DFO-SCH indicate the following guideline exceedances:

CEPA

• Four of the seven samples collected (BB-2, BB-11, BB-25 and BB-35) had one to three metals at levels which exceeded the CEPA Disposal at Sea Lower Level Screening Criteria.

CCME SQGs

- Four of the seven samples collected (BB-14, BB-25, BB-39 and BB-48) exceeded the Index of Additive Cancer Risk (IACR) for PAHs under the CCME SQGs for the Protection of Human Health (Potable Water) for all land use scenarios.
- One sample (BB-25) exceeded the CCME SQGs for the Protection of Human Health (Potable Water) for all land use scenarios for two individual PAH compounds.
- Four of the seven samples (BB-14, BB-25, BB-39 and BB-48) collected showed PAHs in exceedance of the CCME SQGs for the Protection of Environmental Health for Freshwater Life for all land use scenarios.
- All seven samples collected exceeded the CCME SQGs for agricultural land use applications for one to six metals.
- Six of the seven samples collected (BB-2, BB-11, BB-14, BB-25, BB-35 and BB-39) exceeded the CCME SQGs for residential/parkland land use applications for one to three metals.
- Five of the seven samples collected (BB-2, BB-11, BB-14, BB-25 and BB-39) exceeded the CCME SQGs for both residential/parkland and commercial land use applications for one to two metals.
- Four of the seven samples collected (BB-11, BB-14, BB-25 and BB-39) exceeded the CCME SQGs for industrial land use applications for one to two metals.

SESLs

• Three of the seven samples (BB-35, BB-39 and BB-48) contained a concentration of petroleum hydrocarbon fraction C₂₁-C₃₂ (lube oil) which exceeded the SESLs for the Protection of Freshwater and Marine Aquatic Life for typical sediment.

CCME WQGs for the Protection of Aquatic Life

- Both samples selected for SPLP PAH analysis (BB-25 and BB-48) had levels of one individual PAH compound, pyrene, in the leachate which exceeded CCME WQGs for the Protection of Aquatic Life (Marine Water).
- Both samples selected for SPLP metals analysis (BB-11 and BB-25) had levels of two to three elements in the leachate which exceeded CCME WQGs for the Protection of Aquatic Life (Freshwater). One of the two samples, BB-25, had levels of arsenic and cadmium in the leachate which also exceeded marine water guidelines.

Health Canada GCDWQs

 One of the two samples selected for SPLP metals analysis, BB-25, had levels of arsenic and selenium in the leachate which exceeded Health Canada GCDWQs (Maximum Acceptable Concentrations) as well as a level of sodium which exceeded the GCDWQ Aesthetic Objective.

7.0 CLOSING

This document has been prepared and reviewed by the following people:

Prepared by:

Reviewed by:

hi Dulan

Christa Dubreuil, B.Sc., EP Intermediate Project Professional

Liggnes

Kerry Higgins, B.Sc., EP Senior Project Professional

8.0 REFERENCES

- Atlantic Risk-Based Corrective Action (RBCA). 2012. Atlantic RBCA (Risk-Based Corrective Action), for Petroleum Impacted Sites in Atlantic Canada Tier I Version 3, User Guidance. Issued on, July 2012. Available online at: <u>http://www.atlanticrbca.com/data_eng/ATLANTIC_RBCA_User_Guidance_v3_July_201</u> 2doc_final.pdf.
- Canadian Council of Ministers of the Environment (CCME). 1999a (updates). Soil Quality Guidelines (SQGs) for the Protection of Environment and Human Health in agricultural, residential/parkland, and commercial/industrial applications. Available online at: http://ceqg-rcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment (CCME). 1999b (updates). Canadian Water Quality Guidelines, 1999 with updates. Available online at: http://ceqgrcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment (CCME). 1999c (updates). CCME Sediment Quality Guidelines - Interim Sediment Quality Guidelines and Marine and Estuarine Probable Effects Levels. Available online at: <u>http://ceqg-</u> rcqe.ccme.ca/en/index.html#void.
- Canadian Council of Ministers of the Environment (CCME). 2008. Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHS) (Environmental and Human Health Effects) Scientific Supporting Document, PN 1401, ISBN 978-1-896997-79-7 PDF. Available on-line at: www.ccme.ca.
- Environment Canada. 1994. Guidance document on collection and preparation of sediments for physicochemical characterization and biological testing. Environmental Protection Series. Report EPS 1/RM/29, December 1994.
- Environment Canada. 1995. User's Guide to the Application Form for Ocean Disposal. Report EPS 1/MA/1, December 1995.
- Health Canada. 2014. Guidelines for Canadian Drinking Water Quality Summary Table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. Available on-line at: <u>http://www.hc-sc.gc.ca/ewhsemt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/sum_guide-res_recomeng.pdf</u>.

APPENDIX A Photo Log

General Site Photos

Photo from the upper intertidal looking east at the wharf

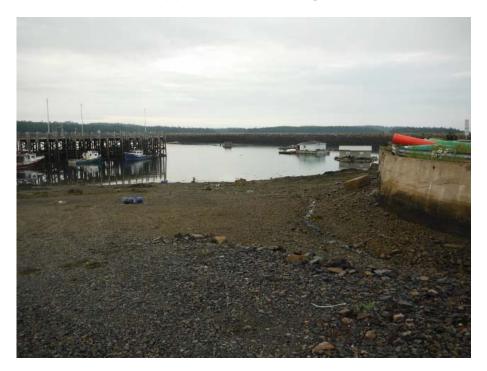


Photo from the upper intertidal looking southeast at the wharf and breakwater

APPENDIX B Analytical Summary Tables

Table B.1 PAH Results for Marine Sediments as Compared to Federal Criteria - Back Bay DFO-SCH, Charlotte County, New Brunswick

			Sample Identification and Date							CCME Sediment Quality Guidelines				CCME Soil Quality Guidelines						
			BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48	СЕРА	Interim Sedir		Probable Effe	ects Levels	Humar	Health	Environme		mental Health	
Parameter	RDL	Units								Disposal at Sea Screening	Guide	lines			Potable Water	Direct Contact	Soil C	Contact	Soil and Food Ingestion	Freshwater Life
						15-Jul-15				Criteria - Lower Level	Freshwater	Marine	Freshwater	Marine	Agricultural, Residential/ Parkland, Commercial and Industrial Land Uses	Agricultural, Residential/ Parkland, Commercial and Industrial Land Uses	Agricultural and Residential/ Parkland Land Uses	Commercial and Industrial Land Uses	Agricultural and Residential/ Parkland Land Uses	Agricultural, Residential/ Parkland, Commercial/ Industrial Land Uses
Polycyclic Aromatic Hydrocar	bon (PAH) R	esults																		
1-Methylnaphthalene	0.05		<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05											
2-Methylnaphthalene	0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		0.0202	0.0202	0.201	0.201						
Acenaphthene	0.00671		< 0.00671	< 0.00671	< 0.00671	< 0.00671	< 0.00671	< 0.00671	< 0.00671		0.00671	0.00671	0.0889	0.0889					21.5	0.28
Acenaphthylene	0.005		< 0.005	< 0.005	0.026	0.041	< 0.005	0.025	0.017		0.00587	0.00587	0.128	0.128						320
Anthracene	0.04		<0.04	< 0.04	< 0.04	0.06	< 0.04	< 0.04	0.04		0.0469	0.0469	0.245	0.245			2.5	3.2	61.5	
Benzo(a)anthracene	0.01		< 0.01	< 0.01	0.06	0.13	< 0.01	0.06	0.05		0.0371	0.0748	0.385	0.693	0.33				6.2	
Benzo(a)pyrene	0.01		<0.01	< 0.01	0.04	0.11	<0.01	0.04	0.03		0.0319	0.0888	0.782	0.763	0.37		20	72	0.6	8800
Benzo(b)fluoranthene	0.05		<0.05	< 0.05	0.05	0.12	<0.05	<0.05	<0.05										6.2	ļ
Benzo(b+j)fluoranthene	0.1		<0.1	<0.1	0.1	0.2	<0.1	<0.1	<0.1						0.16					
Benzo(g,h,i)perylene	0.01		< 0.01	< 0.01	0.02	0.05	< 0.01	0.02	0.01						6.8					ļ!
Benzo(j)fluoranthene		mg/kg	< 0.05	< 0.05	0.05	0.1	< 0.05	<0.05	<0.05											!
Benzo(k)fluoranthene	0.01	-	< 0.01	< 0.01	0.03	0.07	< 0.01	0.03	0.02		0.0574	0.400	0.000	0.040	0.034			-	6.2	ļ!
Chrysene	0.01		0.01	0.03	0.11 <0.006	0.28	<0.01 <0.006	0.12 <0.006	<i>0.13</i>		0.0571	0.108	0.862	0.846	2.1 0.23				6.2	ļ
Dibenz(a,h)anthracene Fluoranthene	0.006	-	< 0.006	<0.006	<0.006 0.17	0.013	<0.006	<0.006 0.17	<0.006 0.10		0.00622	0.00622	2.355	1.494	0.23		50	180	15.4	ļ!
Fluorene	0.03		<0.03	<0.03	<0.02	<0.02	< 0.02	<0.02	<0.02		0.0212	0.0212	0.144	0.144			50	160	15.4	0.25
Indeno(1,2,3-cd)pyrene	0.02		<0.02	<0.02	0.02	0.02	< 0.02	0.02	0.02		0.0212	0.0212	0.144	0.144	2.7				10.4	0.20
Naphthalene	0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.0346	0.0346	0.391	0.391					8.8	0.013
Perylene	0.05	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05											
Phenanthrene	0.04	1	< 0.04	< 0.04	0.09	0.18	< 0.04	0.10	0.09		0.0419	0.0867	0.515	0.544	T				43	0.046
Pyrene	0.05		< 0.05	< 0.05	0.14	0.40	< 0.05	0.15	0.08		0.053	0.153	0.875	1.398					7.7	
Total PAH	0.5		<0.5	<0.5	0.8	2	<0.5	0.8	0.6	2.5										
Index of Additive Cancer Risk (IACR)	Calculation	None	0.5086164	0.5181402	1.8730522	4.2157868	0.5062354	1.5690179	1.2171578	 					1					
Benzo(a)pyrene TPE (10 ⁻⁵)	Calculation	mg/kg	0.01465	0.01485	0.0603	0.1533	0.0146	0.0614	0.0484							5.3				
Creosote or Coal Tar source suspected/known?	yes	s/no	No	No	No	No	No	No	No											
Uncertainty Factor Applied	yes	/no	No	No	No	No	No	No	No											
Benzo(a)pyrene TPE (10 ⁻⁵) with UF	Calculation	mg/kg	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable							5.3				

NOTE(S):

All results below the laboratory detection limit were divided by 2 prior to further calculations.

Total PAH calculation based on the sum of 16 individual PAH compounds (acenapthene, anthracene, benzo(g,h,i)perylene, benzo(g,h,i)pe phenanthrene, and pyrene) as per guidance from Environment Canada, 2009.

Additive Cancer Risk (IACR) = ([Benzo(a)anthracene]/0.33mg/kg) + ([Benzo(a)pyrene]/0.37mg/kg) + ([Benzo(a)pyrene]/0.23mg/kg) + ([Benzo(a)pyrene]/0.37mg/kg) + ([Benzo(a)pyrene]/0.37mg/kg)

Total Potency Equivalent (TPE) based on an incremental lifetime cancer risk (ILCR) of 1 in 100,000 (10 -5).

Benzo(a)pyrene TPE (10⁻⁵) = Sum of PAH concentration multiplied by their respective Benzo(a)pyrene Potency Equivalency Factors: ([Benzo(b+j)fluoranthene]*0.1) + ([([Indeno(1,2,3-c,d)pyrene]*0.1).

Benzo(a)pyrene TPE Uncertainty Factor = 3.

Light values indicate results below detection limit.

Italicized values indicate exceedance of CCME Interim Sediment Quality Guideline and/or Probable Effects Levels for Freshwater and/or Marine Sediment. Interrupted border values indicate exceedance of CCME SQG for the Protection of Human Health (Potable Water) for all land use applications. Right justified values indicate exceedance of CCME Soil Quality Guideline for the Protection of Environmental Health (Freshwater Life) for all land use applications.

Appendix B1

				nple ation and	CCME Canad Quality Guide		Health Canada Guidelines for Canadian Drinking Water Quality		
Parameter	RDL	Units	BB-25	BB-48	the Protec Aquatic	tion of			
	RDL	- Sinto	15-J	ul-15	Freshwater	Marine	Maximum Acceptable Concentration	Aesthetic Objective	
Leachable Polycyclic Arc	matic Hyd	rocarbor	ns (PAHs)	1		-		•	
1-Methylnaphthalene	0.01		<0.01	<0.01					
2-Methylnaphthalene	0.01		<0.01	<0.01					
Acenaphthene	0.04		< 0.04	< 0.04	5.8				
Acenaphthylene	0.04		< 0.04	< 0.04					
Anthracene	0.012		< 0.012	< 0.012	0.012				
Benzo(a)anthracene	0.018		<0.018	<0.018	0.018		0.1*		
Benzo(a)pyrene	0.01		< 0.01	< 0.01	0.015		0.01		
Benzo(b)fluoranthene	0.05		< 0.05	< 0.05					
Benzo(b+j)fluoranthene	0.01		< 0.01	< 0.01			0.01*		
Benzo(g,h,i)perylene	0.02		< 0.02	< 0.02			1*		
Benzo(k)fluoranthene	0.04	μg/L	< 0.04	< 0.04			0.1*		
Chrysene	0.04		< 0.04	< 0.04			1*		
Dibenz(a,h)anthracene	0.01]	< 0.01	< 0.01			0.01*		
Fluoranthene	0.03]	0.03	< 0.03	0.04				
Fluorene	0.01]	< 0.01	< 0.01	3				
Indeno(1,2,3-cd)pyrene	0.04		< 0.04	< 0.04			0.1*		
Naphthalene	0.01		<0.01	< 0.01	1.1	1.4			
Perylene	0.05		< 0.05	< 0.05					
Phenanthrene	0.02		< 0.02	<0.02		0.4			
Pyrene	0.01]	0.03	0.05		0.025			
Total PAH	2	1	<2	<2	l l				

 Table B.2
 PAH Results for Leachate Samples as Compared to Federal Criteria - Back Bay DFO-SCH, Charlotte County, New Brunswick

* denotes values based on Source Guidance Values for Groundwater (SGVG) which were obtained from the CCME Scientific

Light values indicate results below detection limit.

Interupted border values indicate exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Marine).

			Sample Identification and Date								CCME Soil Quality Guidelines					
			BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48	CEPA Disposal at Sea						
Parameter	RDL	Units				15-Jul-15				Screening Criteria - Lower Level	Agricultural Land Use	Residential/ Parkland Land Use	Industrial Land Use			
Aluminum	10		8140	7850	18700	19100	20100	21000	20600							
Antimony	1		<1	<1	<1	<1	<1	<1	<1		20	20	40	40		
Arsenic	1		11	20	<u>18</u>	<u>19</u>	8	<u>16</u>	11		12	12	12	12		
Barium	5		17	29	53	88	29	57	51		750	500	2000	2000		
Beryllium	2		<2	<2	<2	<2	<2	<2	<2		4	4	8	8		
Boron (Total)	2		17	11	63	64	68	62	53							
Cadmium	0.3		<0.3	<0.3	0.6	0.9	0.6	0.6	0.5	0.6	1.4	10	22	22		
Chromium (Hexavalent)	0.4		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		0.4	0.4	1.4	1.4		
Chromium (Total)	2		12	13	27	29	22	29	23		64	64	87	87		
Cobalt	1		7	6	6	7	6	7	7		40	50	300	300		
Copper	2		55	<mark>108</mark>	41	58	23	39	22	81*	63	63	91	91		
Iron	50		13300	36200	18200	37300	43200	19600	19100							
Lead	0.5	mg/kg	<mark>425</mark>	38.9	43.9	115	78.2	36	31.5	66*	70	140	260	600		
Manganese	2		175	245	192	208	238	223	209							
Mercury (Total)	0.05		<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	0.75	6.6	6.6	24	50		
Molybdenum	2		2	6	2	7	19	5	4		5	10	40	40		
Nickel	2		14	20	18	23	20	21	19		50	50	50	50		
Selenium	1		<1	<1	2	3	1	2	1		1	1	2.9	2.9		
Silver	0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		20	20	40	40		
Strontium	5		31	40	68	163	113	87	56							
Thallium	0.1		<0.1	<0.1	0.1	0.2	0.1	0.1	0.2		1	1	1	1		
Tin	2		5	39	12	18	45	14	13	<u>i</u>	5	50	300	300		
Uranium	0.1		1	1.3	1.4	4.2	3.2	2.5	2.5		23	23	33	300		
Vanadium	2		18	27	30	44	35	31	31		130	130	130	130		
Zinc	5		90	124	141	<mark>290</mark>	155	152	120	160*	200	200	360	360		

NOTE(S):

*Former Interim Rejection Limits (1991) which are not currently used to screen for ocean based disposal permitting but may be considered in terms of further investigation prior to issuance of an Ocean Disposal Permit (Victor Li, Environment Canada, pers. comm., June 2002).

Light values indicate results below detection limit.

Yellow highlight indicates exceedance of CEPA Disposal at Sea Screening Criteria - Lower Level

Italicized values indicate exceedance of CCME Interim Sediment Quality Guideline and/or Probable Effects Levels for Freshwater and/or Marine Sediment. Interupted border values indicate exceedance of CCME Soil Quality Guideline for Agricultural land use applications.

Left justified values indicate exceedance of CCME Soil Quality Guideline for Residential/Parkland land use applications. Bold values indicate exceedance of CCME Soil Quality Guideline for Commercial land use applications.

Underlined values indicate exceedance of CCME Soil Quality Guideline for Industrial land use applications.

	1	1	Gnariolle	County, r	lew Brunswici	n				
				entification Date	Quality Guideli	ines for the				
Parameter	RDL	Units	BB-11	BB-25	Protection of A	quatic Life				
			15-J	ul-15	Freshwater	Marine	Maximum Acceptable Concentration	Aesthetic Objective		
General Chemistry										
pН	NA		7.83	7.5	6.5 - 9.0	7.0 - 8.7		6.5 - 8.5		
Hardness (CaCO ₃)	0.7	mg/L	97	418						
Sodium	200000	μg/L	< 200000	966000				200000		
Leachable Metals			- 200000	00000				200000		
Aluminum	20		250	50	5 - 100					
Antimony	6		< 6	< 6			6			
Arsenic	5		< 5	60	5	12.5	10			
Barium	20		< 20	< 20			1000			
Beryllium	50		< 50	< 50						
Boron	50		120	990	1500 - 29000		5000			
Cadmium	0.1		< 0.1	0.2	See Notes	0.12	5			
Chromium (Total)	20		< 20	< 20			50			
Cobalt	10		< 10	< 10						
Copper	2		2	2	See Notes			1000		
Iron	200		< 200	< 200	300			300		
Lead	1	µg/L	< 1	< 1	See Notes		10			
Manganese	20		< 20	< 20				50		
Molybdenum	20		< 20	40	73					
Nickel	20		< 20	< 20	See Notes					
Selenium	1		6	73	1		50			
Silver	0.1		<0.1	<0.1	0.1					
Strontium	20		140	560						
Thallium	0.8		< 0.8	< 0.8	0.8					
Tin	20		< 20	< 20						
Uranium	1		< 1	< 1	15 - 33		20			
Vanadium	20		< 20	< 20						
Zinc	20		< 20	< 20	30			5000		

 Table B.4
 Metal Results for Leachate Samples as Compared to Federal Criteria - Back Bay DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

Aluminum: CCME CWQG for the Protection of Freshwater Aquatic Life= pH < 6.5 = 5 ug/L; $pH \ge 6.5 = 100 \text{ ug/L}$. Boron: CCME CWQG for the Protection of Freshwater Aquatic Life = 29000 ug/L (short-term); 1500 ug/L (long-term). Cadmium: CCME CWQG for the Protection of Aquatic Life = 1.0 ug/L (freshwater, short term); 0.09 ug/L (freshwater, long-term); 0.12 ug/L (marine, long-term)

Copper: CCME CWQG for the Protection of Freshwater Aquatic Life = $e^{0.8545[ln(hardness)]-1.465} \times 0.2 \text{ ug/L}$; minimum of 2 ug/L. Lead: CCME CWQG for the Protection of Freshwater Aquatic Life = $e^{1.273[ln(hardness)]-4.705} \text{ ug/L}$; minimum of 1 ug/L. Nickel: CCME CWQG for the Protection of Freshwater Aquatic Life = $e^{0.76[ln(hardness)]+1.06} \text{ ug/L}$; minimum of 25 ug/L. Uranium: CCME CWQG for the Protection of Freshwater Aquatic Life = 33 ug/L (short-term); 15 ug/L (long-term). Light values indicate results below detection limit.

Yellow highlight indicates exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Freshwater). Interupted border values indicate exceedance of Canadian Water Quality Guidelines for the Protection of Aquatic Life (Marine). Italicized values indicate exceedance of Health Canada Guidelines for Canadian Drinking Water Quality (Maximum Acceptable Concentration and/or Aesthetic Objective).

Sample Identification			Seumen	is as comp		oncentrations	Dack Day		roleum Hy	drocarbon					
				DIEX Concentrations					Conc	centrations	6		Reached		
		Date	Units	Benzene	Toluene	Ethylbenzene	Xylene	C ₆ -C ₁₀	C ₁₀ -C ₂₁	C ₂₁ -C ₃₂	Modified TPH (Less BTEX)	MTBE	Baseline at C32	Resemblance	FOC
BB-2				< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	27	27	< 0.050	Y	Lube Oil Fraction	0.0101
BB-11				< 0.005	< 0.04	< 0.01	< 0.05	< 3	< 15	63	63	< 0.050	Y	Lube Oil Fraction	0.0182
BB-14				< 0.005	< 0.04	< 0.01	< 0.05	< 3	30	74	104	< 0.050	Y	Lube Oil Fraction	0.0512
BB-25		15-Jul-15	mg/kg	< 0.005	< 0.04	< 0.01	< 0.05	< 3	52	105	157	< 0.050	Y	Lube Oil Fraction	0.0524
BB-35			00	< 0.005	< 0.04	< 0.01	< 0.05	< 3	36	165	201	< 0.050	Y	Lube Oil Fraction	0.0344
BB-39				< 0.005	< 0.04	< 0.01	< 0.05	< 3	17	137	154	< 0.050	Ý	Lube Oil Fraction	0.0394
BB-48				< 0.005	< 0.04	< 0.01	< 0.05	< 3	25	203	228	< 0.050	Y	Lube Oil Fraction	0.0375
RDL				0.005	0.04	0.01	0.05	3	15	15	20	0.050	-		0.0070
	Guideline	S		Benzene	Toluene	Ethylbenzene	Xylene	Gasoline	Diesel / No. 2 Fuel Oil	No. 6 Oil/ Lube Oil	Modified TPH	МТВЕ			
Atlantic RBCA Tie	er I Version 3.0														
Risk-Based Scree	ening Levels for	Soil													
Agricultural/	Potable	Coarse-Gra		0.042	0.35	0.065	8.8	74	270	1100					
Residential	1 Otable	Fine-Grain	Fine-Grained Soil		0.74	0.13	22	1900	4700	10000					
Land Use	Non-Potable	Coarse-Grained Soil		0.099	77	30	8.8	74	270	1100					
		Fine-Grained Soil		2.3	10000	9300	210	2100	8600	10000					
Commercial/	Potable	Coarse-Grained Soil Fine-Grained Soil Coarse-Grained Soil		0.042	0.35	0.065	11	870	1800	10000					
Industrial				0.094 2.5	0.74 10000	0.13	22 110	1900 870	4700 4000	10000					
Land Use	Non-Potable	Fine-Grain		33	10000	10000	10000	10000	10000	10000					
		Coarse-Grained Soil		890	450	240	340	TBD	TBD	TBD					
Residential	Saturation	Fine-Grain		1000	480	250	360	TBD	TBD TBD						
Sediment Ecologi	ical Screening I	Levels for the	Protection	of Freshwa	ter and Mar	ine Aquatic Life									
Sedimen	nt Type	Туріс	al	1.2	1.4	1.2	1.3	15	25	43					
(based on standa		Öthe		5.4	6.1	5	5.5	67	110	190					
Sedimen		Typic		1.2	1.4	1.2	1.3	45	75	129					
(based on Averag	ge FOC = 0.03)	Othe	er	5.4	6.1	5	5.5	201	330	570					
CCME Soil Qualit	y Guidelines														
Agricultural, Residential/	Surface	Coarse-Gra	ined Soil	0.03	0.37	0.082	11.0								
Parkland,	Gunade	Fine-Grain	ed Soil	0.0068	0.08	0.018	2.4								
Commercial, and Industrial	Subsoil	Coarse-Gra	ined Soil	0.03	0.37	0.082	11.0								
Land Uses		Fine-Grain	ed Soil	0.0068	0.08	0.018	2.4								

Table B.5 BTEX/TPH Results for Marine Sediments as Compared to Federal Criteria - Back Bay DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

Fraction of Organic Content (FOC) = g-carbon/g-soil

CCME Soil Quality Guidelines for benzene based on an incremental lifetime cancer risk (ILCR) of 1 in 100,000 (10⁵).

Light values indicate results below detection limit.

Bold values indicate exceedance of Atlantic RBCA Tier 1 Version 3.0 Sediment Ecological Screening Levels for the Protection of Freshwater and Marine Aquatic Life.

				Petroleum Hydrocarbon Fraction Concentrations				
Sample Ide	entification	Date Units		>C10-C16	>C16-C21	>C21-C32		
BB-48		15-Jul-15	µg/L	< 100	< 100	< 100		
RDL				100	100	100		
Atlantic RBCA Tie								
Risk-Based Screer	ning Levels for Gro	oundwater						
Agricultural/ Residential and Commerical/ Industrial Land Uses	Potable	Coarse- and Fine-Gr	ained Soils	4400	3200	7800		
Agricultural/		Coarse-Graine	d Soil	20000	20000	20000		
Residential Land Use		Fine-Grained	Soil	20000	20000	20000		
Commerical/	Non-Potable	Coarse-Graine	d Soil	20000	20000	20000		
Industrial Land Use		Soil	20000	20000	20000			
	Solut	TBD	TBD	TBD				
Sediment Ecologic	cal Screening Leve	els for the Protection of Fr	eshwater and N	larine Aquatic	Life	_		
	Surfa	1500	100	100				
	Gro	13000	480					

Table B.6 EPH Results for Leachate Sample - Back Bay DFO-SCH, Charlotte County, New Brunswick

Parameter F			Sample Identification and Date								CCME		Quality Guidel	CCME Soil Quality Guidelines						
	RDL	Units	Units	Units	Units	BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48	CEPA Disposal at Sea Screening Criteria -	Interim Se Quality Gu		Marine and I Probable Leve	Effects	Agricultural Land Use	Residential/ Parkland	Commercial/ Industrial
				15-Jul-15							Freshwater	Marine	Freshwater	Marine	Land Use	Land Use	Land Use			
Polychlorinated Bip	phenyl (P	CB) Resu	ılts							_						_	_			
Aroclor 1016	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1221	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1232	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1242	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1248	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1254	0.0633	mg/kg	< 0.0633	< 0.0633	< 0.0633	<0.0633	< 0.0633	< 0.0633	< 0.0633		0.060	0.0633	0.340	0.709						
Aroclor 1260	0.1	шу/ку	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1262	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Aroclor 1268	0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1											
Dieldrin	0.0007		< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007		0.00285	0.00071	0.00667	0.0043						
Total PCB Concentration	0.0215		< 0.0215	< 0.0215	< 0.0215	< 0.0215	< 0.0215	< 0.0215	< 0.0215	0.1	0.0341	0.0215	0.277	0.189	0.5	1.3	33			
Dichloro-Diphenyl-	Trichloroe	ethane (D	DDT) Result	S																
o,p-DDE			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001											
p,p-DDE			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001											
o,p-DDD			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001											
p,p-DDD			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001											
o,p-DDT			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001											
p,p-DDT		mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001											
o,p-DDT + p,p-DDT	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.00119	0.00119	0.00477	0.00477						
o,p-DDD +p,p-DDD	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.00354	0.00122	0.00851	0.00781						
o,p-DDE + p,p-DDE	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.00142	0.00207	0.00675	0.37400						
Total DDT (calculated)	0.001		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001						0.7	0.7	12			

Table B.7 PCB and DDT Results for Marine Sediments as Compared to Federal Criteria - Back Bay DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

Light values indicate results below detection limit.

	RDL	Units	Sample Identification and Date								
Parameter			BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48		
						15-Jul-15					
Grain Size Results											
< PHI -4 (12.5 mm)	0.1		85.8	68.4	100	100	84.9	100	100		
< PHI -3 (9.5 mm)	0.1		68.5	63.5	100	100	76.3	100	100		
< PHI -2 (4.75 mm)	0.1	Ī	46.7	45.5	100	99.4	63.3	100	100		
< PHI -1 (2 mm)	0.1	Ī	30.6	32.5	99.1	95.4	39.1	95.4	99.4		
< PHI 0 (1 mm)	0.1		23.2	23.2	98.1	90.3	18.8	93.7	98.9		
< PHI +1 (1/2 mm)	0.1	Ī	16.2	14.9	97	83.8	12.1	91.3	98.1		
< PHI +2 (1/4 mm)	0.1	Ī	9.2	8.4	93.7	75.1	9	88	96.5		
< PHI +3 (1/8 mm)	0.1		5.6	4.5	86.6	63.4	7.6	83	93		
< PHI +4 (1/16 mm)	0.1	%	4.1	3.4	64.8	49	6.8	73.9	83.7		
< PHI +5 (1/32 mm)	0.1	70	3.6	3	39.5	33.5	6.2	42.4	57.4		
< PHI +6 (1/64 mm)	0.1		3	1.9	17.7	20	4.5	32.4	31.8		
< PHI +7 (1/128 mm)	0.1	Ī	2.7	1.9	15.5	15.4	3.3	21.0	20.1		
< PHI +8 (1/256 mm)	0.1	Ī	1.7	1.1	12.3	12.6	2.7	17.6	16.8		
< PHI +9 (1/512 mm)	0.1	Ī	1.3	0.7	11	9.9	2.2	11.7	10.1		
Gravel	1	+ + + +	69	68	<1	5	61	5	<1		
Sand	1		27	29	34	46	32	21	16		
Silt	1		2	2	53	36	4	56	67		
Clay	1		2	1	12	13	3	18	17		
Other	•	•						•			
Total Organic Carbon (TOC)	0.15	%	1.01	1.82	5.12	5.24	3.44	3.94	3.75		
Total Inorganic Caron (TIC)	0.15	%	1.44	1.62	3.73	4.08	2.71	2.50	2.03		
Total Carbon (TC)		%	2.45	3.44	8.85	9.32	6.15	6.44	5.78		

Table B.8 Grain Size and Carbon Content Results for Marine Sediments -Back Bay DFO-SCH, Charlotte County, New Brunswick

NOTE(S):

All results below the laboratory detection limit were divided by 2 prior to further calculations.

Light values indicate results below detection limit.

APPENDIX C QA/QC, COC, and Laboratory Certificates of Analyses

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL 580 MAIN STREET, SUITE 105 SAINT JOHN, NB E2K1J5 (506) 652-9497

ATTENTION TO: Chyann Kirby

PROJECT: TE131446.2000

AGAT WORK ORDER: 15X996171

SOIL ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

TRACE ORGANICS REVIEWED BY: Jennifer Patterson, Organics Supervisor

DATE REPORTED: Aug 06, 2015

PAGES (INCLUDING COVER): 32

VERSION*: 3

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*NOTES

VERSION 3:"Version "3" supersedes work order 15X996171, Version 2.0; Issued Aug 2, 2015" Updated report to include Organic and In-Organic Parameters, issued, August 2, 2015. Version 2: Leachable parameters only, issued, July 24, 2015.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V3)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

Page 1 of 32

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Available Metals in Soil										
DATE RECEIVED: 2015-07-16								ſ	DATE REPORT	ED: 2015-08-06
Parameter	SUnit	-	CRIPTION: PLE TYPE: SAMPLED: RDL	BB-2 Soil 7/15/2015 6743393	BB-11 Soil 7/15/2015 6743394	BB-14 Soil 7/15/2015 6743398	BB-25 Soil 7/15/2015 6743402	BB-35 Soil 7/15/2015 6743406	BB-39 Soil 7/15/2015 6743410	BB-48 Soil 7/15/2015 6743415
Aluminum	mg/kg		10	8140	7850	18700	19100	20100	21000	20600
Antimony	mg/kg		1	<1	<1	<1	<1	<1	<1	<1
Arsenic	mg/kg		1	11	20	18	19	8	16	11
Barium	mg/kg		5	17	29	53	88	29	57	51
Beryllium	mg/kg		2	<2	<2	<2	<2	<2	<2	<2
Boron	mg/kg		2	17	11	63	64	68	62	53
Cadmium	mg/kg		0.3	<0.3	<0.3	0.6	0.9	0.6	0.6	0.5
Chromium	mg/kg		2	12	13	27	29	22	29	23
Cobalt	mg/kg		1	7	6	6	7	6	7	7
Copper	mg/kg		2	55	108	41	58	23	39	22
Iron	mg/kg		50	13300	36200	18200	37300	43200	19600	19100
Lead	mg/kg		0.5	425	38.9	43.9	115	78.2	36.0	31.5
Lithium	mg/kg		5	19	23	39	36	30	42	41
Manganese	mg/kg		2	175	245	192	208	238	223	209
Molybdenum	mg/kg		2	2	6	2	7	19	5	4
Nickel	mg/kg		2	14	20	18	23	20	21	19
Selenium	mg/kg		1	<1	<1	2	3	1	2	1
Silver	mg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	mg/kg		5	31	40	68	163	113	87	56
Thallium	mg/kg		0.1	<0.1	<0.1	0.1	0.2	0.1	0.1	0.2
Tin	mg/kg		2	5	39	12	18	45	14	13
Uranium	mg/kg		0.1	1.0	1.3	1.4	4.2	3.2	2.5	2.5
Vanadium	mg/kg		2	18	27	30	44	35	31	31
Zinc	mg/kg		5	90	124	141	290	155	152	120

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6743393-6743415 Results are based on the dry weight of the sample.

Certified By:

Jason CoE

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

	AMEC - NB - Hexavalent Chromium in Soil										
DATE RECEIVED: 2015-07-16								ſ	DATE REPORTI	ED: 2015-08-06	
		SAMPLE DES	CRIPTION:	BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	
Parameter	Unit	G/S	RDL	6743393	6743394	6743398	6743402	6743406	6743410	6743415	
Chromium, Hexavalent	mg/kg		0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Jason Cour

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

SAMPLED BY:

AMEC - NB - SPLP Leachable Metals									
DATE RECEIVED: 2015-07-16			DATE REPORTED: 2015-08-06						
_		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	BB-11 Soil 7/15/2015	BB-25 Soil 7/15/2015					
Parameter	Unit	G/S RDL	6743394	6743402					
luminum Leachate	mg/L	0.02	0.25	0.05					
ntimony Leachate	mg/L	0.006	<0.006	<0.006					
Arsenic Leachate	mg/L	0.005	<0.005	0.060					
Barium Leachate	mg/L	0.02	<0.02	<0.02					
Beryllium Leachate	mg/L	0.05	<0.05	<0.05					
Bismuth Leachate	mg/L	0.02	<0.02	<0.02					
Boron Leachate	mg/L	0.05	0.12	0.99					
Cadmium Leachate	mg/L	0.0001	<0.0001	0.0002					
Chromium Leachate	mg/L	0.02	<0.02	<0.02					
Cobalt Leachate	mg/L	0.01	<0.01	<0.01					
Copper Leachate	mg/L	0.002	0.002	0.002					
ron Leachate	mg/L	0.2	<0.2	<0.2					
ead Leachate	mg/L	0.001	<0.001	<0.001					
Lithium Leachate	mg/L	0.02	<0.02	0.03					
Aagnesium Leachate	mg/L	0.05	10.4	80.4					
Manganese Leachate	mg/L	0.02	<0.02	<0.02					
Molybdenum Leachate	mg/L	0.02	<0.02	0.04					
Nickel Leachate	mg/L	0.02	<0.02	<0.02					
Selenium Leachate	mg/L	0.001	0.006	0.073					
Silver Leachate	mg/L	0.0001	<0.0001	<0.0001					
Sodium Leachate	mg/L	200	<200	966					
Strontium Leachate	mg/L	0.02	0.14	0.56					
Thallium Leachate	mg/L	0.0008	<0.0008	<0.0008					
Fin Leachate	mg/L	0.02	<0.02	<0.02					
Jranium Leachate	mg/L	0.001	<0.001	<0.001					
/anadium Leachate	mg/L	0.02	<0.02	<0.02					
Zinc Leachate	mg/L	0.02	<0.02	<0.02					
Initial pH	NA	NA	NA	NA					
Final pH	NA	NA	7.83	7.50					
% Moisture	%		14	65					

Certified By:

Jason Court

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.200

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

0		
	ATTENTION TO: Chyann	Kirl

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

rby

SAMPLED BY:

AMEC - NB - SPLP Leachable Metals									
DATE RECEIVED: 2015-07-16						DATE REPORTED: 2015-08-06			
		SAMPLE DES	CRIPTION:	BB-11	BB-25				
		SAM	PLE TYPE:	Soil	Soil				
		DATE	SAMPLED:	7/15/2015	7/15/2015				
Parameter	Unit	G/S	RDL	6743394	6743402				
Total Sample Mass	g			29.05	71.43				
Hardness	mg/L		0.7	97.0	418				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Jason Court

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

				A	MEC - NB -	TOC/TIC					
DATE RECEIVED: 2015-07-16								[DATE REPORTI	ED: 2015-08-06	
Parameter	Unit	-	CRIPTION: PLE TYPE: SAMPLED: RDL	BB-2 Soil 7/15/2015 6743393	BB-11 Soil 7/15/2015 6743394	BB-14 Soil 7/15/2015 6743398	BB-25 Soil 7/15/2015 6743402	BB-35 Soil 7/15/2015 6743406	BB-39 Soil 7/15/2015 6743410	BB-48 Soil 7/15/2015 6743415	
Total Organic Carbon by Walkley Black	%		0.15	1.01	1.82	5.12	5.24	3.44	3.94	3.75	
Total Inorganic Carbon, Calculated	%		0.15	0.43	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	

......

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6743393-6743415 Total Carbon analysis performed by AGAT Burnaby.

Jason Coto

Certified By:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

			Grain Siz	e Analysis	(Sieve & Pij	oette)				
DATE RECEIVED: 2015-07-16							I	DATE REPORT	ED: 2015-08-06	
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	BB-2 Soil 7/15/2015 6743393	BB-11 Soil 7/15/2015 6743394	BB-14 Soil 7/15/2015 6743398	BB-25 Soil 7/15/2015 6743402	BB-35 Soil 7/15/2015 6743406	BB-39 Soil 7/15/2015 6743410	BB-48 Soil 7/15/2015 6743415	
Particle Size Distribution (<12.5mm, -4 PHI)	%	0.1	85.8	68.4	100	100	84.9	100	100	
Particle Size Distribution (<9.5mm, -3 PHI)	%	0.1	68.5	63.5	100	100	76.3	100	100	
Particle Size Distribution (<4.75mm, -2 PHI	%	0.1	46.7	45.5	100	99.4	63.3	100	100	
Particle Size Distribution (<2mm, -1 PHI)	%	0.1	30.6	32.5	99.1	95.4	39.1	95.4	99.4	
Particle Size Distribution (<1mm, 0 PHI)	%	0.1	23.2	23.2	98.1	90.3	18.8	93.7	98.9	
Particle Size Distribution (<1/2mm, 1 PHI)	%	0.1	16.2	14.9	97.0	83.8	12.1	91.3	98.1	
Particle Size Distribution (<1/4mm, 2 PHI)	%	0.1	9.2	8.4	93.7	75.1	9.0	88.0	96.5	
Particle Size Distribution (<1/8mm, 3 PHI)	%	0.1	5.6	4.5	86.6	63.4	7.6	83.0	93.0	
Particle Size Distribution (<1/16mm, 4 PHI)	%	0.1	4.1	3.4	64.8	49.0	6.8	73.9	83.7	
Particle Size Distribution (<1/32mm, 5 PHI)	%	0.1	3.6	3.0	39.5	33.5	6.2	42.4	57.4	
Particle Size Distribution (<1/64mm, 6 PHI)	%	0.1	3.0	1.9	17.7	20.0	4.5	32.4	31.8	
Particle Size Distribution (<1/128mm, 7 PHI)	%	0.1	2.7	1.9	15.5	15.4	3.3	21.0	20.1	
Particle Size Distribution (<1/256mm, 8 PHI)	%	0.1	1.7	1.1	12.3	12.6	2.7	17.6	16.8	
Particle Size Distribution (<1/512mm, 9 PHI)	%	0.1	1.3	0.7	11.0	9.9	2.2	11.7	10.1	
Particle Size Distribution (Gravel)	%	1	69	68	<1	5	61	5	<1	
Particle Size Distribution (Sand)	%	1	27	29	34	46	32	21	16	
Particle Size Distribution (Silt)	%	1	2	2	53	36	4	56	67	
Particle Size Distribution (Clay)	%	1	2	1	12	13	3	18	17	
Particles >75um	%	1	96	96	29	47	93	24	14	
Classification	Coarse/Fine	3	Coarse	Coarse	Fine	Fine	Coarse	Fine	Fine	

Certified By:

Jasan Cotagn

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

DATE REPORTED: 2015-08-06

SAMPLED BY:

Grain Size Analysis (Sieve & Pipette)

DATE RECEIVED: 2015-07-16

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Jason Coug

Certified By:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

				Ме	rcury Analy	sis in Soil					
DATE RECEIVED: 2015-07-16								ſ	DATE REPORT	ED: 2015-08-06	
		SAMPLE DES	CRIPTION:	BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	
Parameter	Unit	G/S	RDL	6743393	6743394	6743398	6743402	6743406	6743410	6743415	
Mercury	mg/kg		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6743393-6743415 Results are based on the dry weight of the soil.

Certified By:

Joson Cough

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia

http://www.agatlabs.com

CANADA B3B 1M2

TEL (902)468-8718 FAX (902)468-8924

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons - SPLP Leachate, EPH only

DATE RECEIVED: 2015-07-16

	S	AMPLE DESCRIPTION:	BB-48	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	7/15/2015	
Parameter	Unit	G/S RDL	6743415	
>C10-C16 Hydrocarbons	mg/L	0.1	<0.1	
>C16-C21 Hydrocarbons	mg/L	0.1	<0.1	
>C21-C32 Hydrocarbons	mg/L	0.1	<0.1	
Return to Baseline at C32			Y	
Initial pH	NA	NA	4.10	
Final pH	NA	NA	NA	
% Moisture	%		63	
Total Sample Mass	g		68	
Surrogate	Unit	Acceptable Limits		
Isobutylbenzene - EPH	%	70-130	82	
n-Dotriacontane - EPH	%	70-130	81	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

J. Patterson

DATE REPORTED: 2015-08-06

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons in Soil + Silica Gel + Creosote

|--|

DATE RECEIVED: 2015-07-16							ſ	DATE REPORTE	ED: 2015-08-06	
_		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	BB-2 Soil 7/15/2015	BB-11 Soil 7/15/2015	BB-14 Soil 7/15/2015	BB-25 Soil 7/15/2015	BB-35 Soil 7/15/2015	BB-39 Soil 7/15/2015	BB-48 Soil 7/15/2015	
Parameter	Unit	G/S RDL	6743393	6743394	6743398	6743402	6743406	6743410	6743415	
Methyl-t-Butyl-Ether (MTBE)	mg/Kg	0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Benzene	mg/kg	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Toluene	mg/kg	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Ethylbenzene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Xylene (Total)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
C6-C10 (less BTEX)	mg/kg	3	<3	<3	<3	<3	<3	<3	<3	
>C10-C21 Hydrocarbons	mg/kg	15	<15	<15	30	52	36	17	25	
>C21-C32 Hydrocarbons	mg/kg	15	27	63	74	105	165	137	203	
Modified TPH (Tier 1)	mg/kg	20	27	63	104	157	201	154	228	
Resemblance Comment			LOF	LOF	LOF	LOF	LOF	LOF	LOF	
Creosote Comment			NR	NR	NR	NR	NR	NR	NR	
Return to Baseline at C32			Y	Y	Y	Y	Y	Y	Y	
% Moisture	%	1	10	14	68	65	35	64	63	
Silica Gel Cleanup			Y	Y	Y	Y	Y	Y	Y	
Surrogate	Unit	Acceptable Limits								
lsobutylbenzene - EPH	%	60-140	N/A	N/A	NA	NA	68	61	N/A	
Isobutylbenzene - VPH	%	60-140	87	109	89	91	95	83	77	
n-Dotriacontane - EPH	%	60-140	N/A	63	NA	NA	75	64	N/A	

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Atlantic RBCA Tier 1 Hydrocarbons in Soil + Silica Gel + Creosote

DATE RECEIVE	D: 2015-07-16	DATE REPORTED: 2015-08-06
Comments:	RDL - Reported Detection Limit; G / S - Guideline / Standard	
6743393-6743402	EPH surrogate not available (NA) due to loss during silica gel cleanup. Results are based on the dry weight of the soil. Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable	
6743406-6743410	Results are based on the dry weight of the soil.	
	Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable	
	EPH surrogate not available (NA) due to loss during silica gel cleanup. Results are based on the dry weight of the soil. Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable	

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

					IEC - NB - L						
DATE RECEIVED: 2015-07-16								Ľ	DATE REPORTI	ED: 2015-08-06	
Parameter	Unit	-	CRIPTION: PLE TYPE: SAMPLED: RDL	BB-2 Soil 7/15/2015 6743393	BB-11 Soil 7/15/2015 6743394	BB-14 Soil 7/15/2015 6743398	BB-25 Soil 7/15/2015 6743402	BB-35 Soil 7/15/2015 6743406	BB-39 Soil 7/15/2015 6743410	BB-48 Soil 7/15/2015 6743415	
Dieldrin (Hfx 2012-03)	µg/kg		0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	
o,p'-DDD (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDE (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDT (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDD (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDE (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDT (Hfx 2012-03)	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
p,p'-DDT + p,p'-DDT	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
p,p'-DDD + p,p'-DDD	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
p,p'-DDE + p,p'-DDE	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Total DDT	µg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

AMEC - NR - DDT in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

ATTENTION TO: Chyann Kirby

SAMPLED BY:

						B Arochior					
DATE RECEIVED: 2015-07-16								I	DATE REPORTI	ED: 2015-08-06	
- .		DATES	PLE TYPE: SAMPLED:	BB-2 Soil 7/15/2015	BB-11 Soil 7/15/2015	BB-14 Soil 7/15/2015	BB-25 Soil 7/15/2015	BB-35 Soil 7/15/2015	BB-39 Soil 7/15/2015	BB-48 Soil 7/15/2015	
Parameter Aroclor 1242	Unit	G/S	0.1	6743393 <0.1	6743394 <0.1	6743398 <0.1	6743402 <0.1	6743406 <0.1	6743410 <0.1	6743415 <0.1	
Aroclor 1242 Aroclor 1248	mg/kg mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1254	mg/kg		0.0633	<0.0633	<0.0633	<0.0633	<0.0633	<0.0633	<0.0633	<0.0633	
Aroclor 1260	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1016	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1221	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1232	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1262	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Aroclor 1268	mg/kg		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	

AMEC - NR - PCR Arachlar

6743393-6743415 Results are based on the dry weight of the soil.

Certified By:

J. Patterson

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

DATE REPORTED: 2015-08-06

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in SPLP Leachate

DATE RECEIVED: 2015-07-16

DATE RECEIVED: 2013-07-16					DATE REPORTED: 2013-00-00
	:	SAMPLE DESCRIPTION:	BB-25	BB-48	
		SAMPLE TYPE:	Soil	Soil	
		DATE SAMPLED:	7/15/2015	7/15/2015	
Parameter	Unit	G/S RDL	6743402	6743415	
-Methylnaphthalene	ug/L	0.01	<0.01	<0.01	
2-Methylnaphthalene	ug/L	0.01	<0.01	<0.01	
Acenaphthene	ug/L	0.04	<0.04	<0.04	
Acenaphthylene	ug/L	0.04	<0.04	<0.04	
Anthracene	ug/L	0.012	<0.012	<0.012	
Benzo(a)anthracene	ug/L	0.018	<0.018	<0.018	
Benzo(a)pyrene	ug/L	0.01	<0.01	<0.01	
Benzo(b)fluoranthene	ug/L	0.05	<0.05	<0.05	
Benzo(b+j)fluoranthene	µg/L	0.01	<0.01	<0.01	
Benzo(e)pyrene	ug/L	0.06	<0.06	<0.06	
Benzo(ghi)perylene	ug/L	0.02	<0.02	<0.02	
Senzo(k)fluoranthene	ug/L	0.04	<0.04	<0.04	
Chrysene	ug/L	0.04	<0.04	<0.04	
Dibenzo(a,h)anthracene	ug/L	0.01	<0.01	<0.01	
luoranthene	ug/L	0.03	0.03	<0.03	
luorene	ug/L	0.01	<0.01	<0.01	
ndeno(1,2,3-cd)pyrene	ug/L	0.04	<0.04	<0.04	
laphthalene	ug/L	0.01	<0.01	<0.01	
Perylene	ug/L	0.05	<0.05	<0.05	
Phenanthrene	ug/L	0.02	<0.02	<0.02	
Pyrene	ug/L	0.01	0.03	0.05	
otal PAH	µg/L	2	<2	<2	
nitial pH	NA	NA	4.10	4.10	
inal pH	NA	NA	8.13	8.29	
otal Sample Mass	g		142.0	135.0	
6 Moisture	%		65	63	
Surrogate	Unit	Acceptable Limits			
Nitrobenzene-d5	%	50-140	53	77	
2-Fluorobiphenyl	%	50-140	55	72	
Ferphenyl-d14	%	50-140	55	58	

Certified By:

J. Patterson

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in SPLP Leachate

DATE RECEIVED: 2015-07-16

DATE REPORTED: 2015-08-06

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

J. Patterson

Certificate of Analysis

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

							_		
DATE RECEIVED: 2015-07-16							L	DATE REPORTE	:D: 2015-08-06
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	BB-2 Soil 7/15/2015	BB-11 Soil 7/15/2015	BB-14 Soil 7/15/2015	BB-25 Soil 7/15/2015	BB-35 Soil 7/15/2015	BB-39 Soil 7/15/2015	BB-48 Soil 7/15/2015
Parameter	Unit	G/S RDL	6743393	6743394	6743398	6743402	6743406	6743410	6743415
1-Methylnaphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2-Methylnaphthalene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Acenaphthene	mg/kg	0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671
Acenaphthylene	mg/kg	0.005	<0.005	<0.005	0.026	0.041	<0.005	0.025	0.017
Acridine	mg/Kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	mg/kg	0.04	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	0.04
Benzo(a)anthracene	mg/kg	0.01	<0.01	<0.01	0.06	0.13	<0.01	0.06	0.05
Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	0.04	0.11	<0.01	0.04	0.03
Benzo(b)fluoranthene	mg/kg	0.05	<0.05	<0.05	0.05	0.12	<0.05	<0.05	<0.05
Benzo(b+j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	0.2	<0.1	<0.1	<0.1
Benzo(e)pyrene	mg/kg	0.05	<0.05	<0.05	0.05	0.12	<0.05	<0.05	<0.05
Benzo(ghi)perylene	mg/kg	0.01	<0.01	<0.01	0.02	0.05	<0.01	0.02	0.01
Benzo(k)fluoranthene	mg/kg	0.01	<0.01	<0.01	0.03	0.07	<0.01	0.03	0.02
Chrysene	mg/kg	0.01	0.01	0.03	0.11	0.28	<0.01	0.12	0.13
Dibenzo(a,h)anthracene	mg/kg	0.006	<0.006	<0.006	<0.006	0.013	<0.006	<0.006	<0.006
Fluoranthene	mg/kg	0.05	<0.05	<0.05	0.17	0.51	<0.05	0.17	0.10
Fluorene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Indeno(1,2,3)pyrene	mg/kg	0.01	<0.01	<0.01	0.02	0.05	<0.01	0.03	0.02
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	mg/kg	0.04	<0.04	<0.04	0.09	0.18	<0.04	0.10	0.09
Pyrene	mg/kg	0.05	<0.05	<0.05	0.14	0.40	<0.05	0.15	0.08
Quinoline	mg/Kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total PAH	mg/Kg	0.5	<0.5	<0.5	0.8	2.0	<0.5	0.8	0.6
% Moisture	%		10	14	68	65	35	64	63
Surrogate	Unit	Acceptable Limits							
Nitrobenzene-d5	%	50-140	78	78	87	84	78	82	88
2-Fluorobiphenyl	%	50-140	90	87	98	93	87	89	101
Terphenyl-d14	%	50-140	55	61	63	66	68	66	66

Certified By:

J. Patterson

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

AMEC - NB - Polycyclic Aromatic Hydrocarbons in Soil

DATE RECEIVED: 2015-07-16

 Comments:
 RDL - Reported Detection Limit;
 G / S - Guideline / Standard

 6743393-6743415
 Results are based on the dry weight of the soil.

Certified By:

J. Patterson

DATE REPORTED: 2015-08-06

AGAT WORK ORDER: 15X996171 PROJECT: TE131446.2000

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

SAMPLING SITE:

ATTENTION TO: Chyann Kirby

SAMPLED BY:

			AM	EC - NB -	Total Polyc	hlorinated I	Biphenyls				
DATE RECEIVED: 2015-07-16								ſ	DATE REPORTI	ED: 2015-08-06	
		SAMPLE DES	CRIPTION:	BB-2	BB-11	BB-14	BB-25	BB-35	BB-39	BB-48	
		SAN	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	7/15/2015	
Parameter	Unit	G/S	RDL	6743393	6743394	6743398	6743402	6743406	6743410	6743415	
Total Polychlorinated Biphenyls	mg/kg		0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	
Total Polychlorinated Biphenyls	mg/kg		0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6743393-6743415 Results are based on the dry weight of the soil.

Certified By:

J. Patterson

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

SAMPLING SITE:

AGAT WORK ORDER: 15X996171 **ATTENTION TO: Chyann Kirby**

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Aug 06, 2015			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
AMEC - NB - Available Metals in	Soil														
Aluminum	7202015		18400	19100	3.7%	< 10	120%	80%	120%	120%	80%	120%	105%	70%	130%
Antimony	7202015		< 1	< 1	0.0%	< 1	88%	80%	120%	103%	80%	120%	NA	70%	130%
Arsenic	7202015		7	7	0.0%	< 1	98%	80%	120%	96%	80%	120%	89%	70%	130%
Barium	7202015		29	34	15.9%	< 5	97%	80%	120%	101%	80%	120%	109%	70%	130%
Beryllium	7202015		< 2	< 2	0.0%	< 2	113%	80%	120%	114%	80%	120%	98%	70%	130%
Boron	7202015		23	24	4.3%	< 2	104%	80%	120%	101%	80%	120%	98%	70%	130%
Cadmium	7202015		< 0.3	< 0.3	0.0%	< 0.3	100%	80%	120%	99%	80%	120%	86%	70%	130%
Chromium	7202015		25	25	0.0%	< 2	110%	80%	120%	107%	80%	120%	81%	70%	130%
Cobalt	7202015		7	7	0.0%	< 1	108%	80%	120%	108%	80%	120%	71%	70%	130%
Copper	7202015		14	14	0.0%	< 2	111%	80%	120%	107%	80%	120%	74%	70%	130%
Iron	7202015		18500	18000	2.7%	< 50	109%	80%	120%	108%	80%	120%	89%	70%	130%
Lead	7202015		25.1	14.5	0.0%	< 0.5	107%	80%	120%	106%	80%	120%	92%	70%	130%
Lithium	7202015		36	35	2.8%	< 5	106%	70%	130%	107%	70%	130%	103%	70%	130%
Manganese	7202015		283	271	4.3%	< 2	115%	80%	120%	108%	80%	120%	86%	70%	130%
Molybdenum	7202015		< 2	< 2	0.0%	< 2	93%	80%	120%	94%	80%	120%	89%	70%	130%
Nickel	7202015		16	16	0.0%	< 2	109%	80%	120%	106%	80%	120%	74%	70%	130%
Selenium	7202015		< 1	< 1	0.0%	< 1	94%	80%	120%	81%	80%	120%	89%	70%	130%
Silver	7202015		< 0.5	< 0.5	0.0%	< 0.5	100%	80%	120%	104%	80%	120%	85%	70%	130%
Strontium	7202015		19	21	10.0%	< 5	101%	80%	120%	98%	80%	120%	95%	70%	130%
Thallium	7202015		0.1	< 0.1	0.0%	< 0.1	107%	80%	120%	103%	80%	120%	NA	70%	130%
Tin	7202015		6	7	15.4%	< 2	103%	80%	120%	100%	80%	120%	127%	70%	130%
Uranium	7202015		0.98	1.07	8.8%	< 0.1	101%	80%	120%	100%	80%	120%	92%	70%	130%
Vanadium	7202015		32	32	0.0%	< 2	107%	80%	120%	105%	80%	120%	93%	70%	130%
Zinc	7202015		58	57	1.7%	< 5	106%	80%	120%	108%	80%	120%	75%	70%	130%
AMEC - NB - TOC/TIC															
Carbon - Total	6743371		0.85	0.85	0.0%	< 0.02	101%	80%	120%						
Mercury Analysis in Soil															
Mercury	1	6743415	< 0.05	< 0.05	0.0%	< 0.05	102%	70%	130%		70%	130%	91%	70%	130%
Soil Analysis - Total Organic Ca	rbon (W-R \	Net Oxida	tion)												
Total Organic Carbon	7060	3402	5.24	5.27	0.6%	< 0.15	91%	80%	120%				100%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

	ANCE REPORT (V3)											F	aae 20	of 32
Barium Leachate	7312015 6743402	< 0.02	< 0.02	0.0%	< 0.02	97%	80%	120%	92%	80%	120%	101%	70%	130%
Arsenic Leachate	7312015 6743402	0.060	0.061	1.7%	< 0.005	86%	80%	120%	85%	80%	120%	93%	70%	130%
Antimony Leachate	7312015 6743402	< 0.006	< 0.006	0.0%	< 0.006	80%	80%	120%	89%	80%	120%	89%	70%	130%
Aluminum Leachate	7312015 6743402	0.054	0.055	1.8%	< 0.02	120%	80%	120%	120%	80%	120%	114%	70%	130%
AMEC - NB - SPLP Leachable I	Metals													

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

SAMPLING SITE:

AGAT WORK ORDER: 15X996171 ATTENTION TO: Chyann Kirby

SAMPLED BY:

Soil Analysis (Continued)

	/					
AL MET	ICE MATERIAL	METHO	D BLANK SPIK	E MA	TRIX SPI	KE
	Acceptable Limits	Recover	Acceptable Limits	Recover	1.1	eptable nits
er	Lower Upper		Lower Uppe	ər	Lower	Upper
% 107	80% 120%	107%	80% 120%	% 111%	70%	130%
% 106	80% 120%	106%	80% 120%	% 83%	70%	130%
% 104	80% 120%	104%	80% 120%	% 108%	70%	130%
% 869	80% 120%	86%	80% 120%	% 100%	70%	130%
% 112	80% 120%	112%	80% 120%	% 103%	70%	130%
% 109	80% 120%	109%	80% 120%	% 100%	70%	130%
% 116	80% 120%	116%	80% 120%	% 98%	70%	130%
% 114	80% 120%	114%	80% 120%	% 100%	70%	130%
% 104	80% 120%	104%	80% 120%	% 90%	70%	130%
% 109	80% 120%	109%	80% 120%	% 109%	70%	130%
% 116	80% 120%	116%	70% 130%	% 92%	70%	130%
% 116	80% 120%	116%	80% 120%	% 99%	70%	130%
% 939	80% 120%	93%	80% 120%	% 101%	70%	130%
% 113	80% 120%	113%	80% 120%	% 98%	70%	130%
% 999	80% 120%	99%	80% 120%	% 88%	70%	130%
% 989	80% 120%	98%	80% 120%	% 87%	70%	130%
% 110	80% 120%	110%	80% 120%	% 93%	70%	130%
% 959	80% 120%	95%	80% 120%	% 96%	70%	130%
% 100	80% 120%	100%	80% 120%	% 96%	70%	130%
% 949	80% 120%	94%	80% 120%	% 97%	70%	130%
% 839	80% 120%	83%	80% 120%	% 90%	70%	130%
% 107	80% 120%	107%	80% 120%	% 97%	70%	130%
% 100	80% 120%	100%	80% 120%	% 99%	70%	130%
	80% 1209	%	% 107%	% 107% 80% 1209	% 107% 80% 120% 97%	% 107% 80% 120% 97% 70%

Certified By:

Jason Cought w

AGAT QUALITY ASSURANCE REPORT (V3)

Page 21 of 32

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

SAMPLING SITE:

AGAT WORK ORDER: 15X996171 **ATTENTION TO: Chyann Kirby** SAMPLED BY:

Trace Organics Analysis

							-								
RPT Date: Aug 06, 2015			C	DUPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.1.	ptable nits	Recovery	1.10	eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Uppe
AMEC - NB - Atlantic RBCA Tier	1 Hydroca	rbons in S	oil + Silic	a Gel + Cr	eosote										
Methyl-t-Butyl-Ether (MTBE)	1	6723371	< 0.050	< 0.050	0.0%	< 0.050	72%	60%	140%	75%	60%	140%	69%	60%	140%
Benzene	1	6723371	< 0.005	< 0.005	0.0%	< 0.005	86%	60%	140%	82%	60%	140%	72%	30%	130%
Foluene	1	6723371	< 0.04	< 0.04	0.0%	< 0.04	80%	60%	140%	79%	60%	140%	68%	30%	130%
Ethylbenzene	1	6723371	< 0.01	< 0.01	0.0%	< 0.01	81%	60%	140%	81%	60%	140%	69%	30%	130%
Xylene (Total)	1	6723371	< 0.05	< 0.05	0.0%	< 0.05	94%	60%	140%	94%	60%	140%	81%	30%	130%
C6-C10 (less BTEX)	1	6723371	< 3	< 3	0.0%	< 3	98%	60%	140%	117%	60%	140%	116%	30%	130%
>C10-C21 Hydrocarbons	1	6743415	25	31	21.4%	< 15		60%	140%		60%	140%		30%	130%
>C21-C32 Hydrocarbons	1	6749721	<15	<15	0.0%	< 15	100%	60%	140%	92%	60%	140%	99%	30%	130%
Comments: Matrix spike not availab	le (NA); sar	nple concer	ntration is g	greater thar	n 2X the s	pike conce	entration.								
AMEC - NB - DDT in Soil															
Dieldrin (Hfx 2012-03)	1	6738064	< 0.7	< 0.7	0.0%	< 0.7	99%	60%	130%	105%	70%	130%	117%	60%	130%
o,p'-DDD (Hfx 2012-03)	1	6738064	< 1.0	< 1.0	0.0%	< 1.0	106%	60%	130%	106%	70%	130%	130%	60%	130%
o,p'-DDE (Hfx 2012-03)	1	6738064	< 1.0	< 1.0	0.0%	< 1.0	105%	60%	130%	98%	70%	130%	100%	60%	1309
o,p'-DDT (Hfx 2012-03)	1	6738064	< 1.0	< 1.0	0.0%	< 1.0	103%	60%	130%	106%	70%	130%	92%	60%	1309
p,p'-DDD (Hfx 2012-03)	1	6738064	< 1.0	< 1.0	0.0%	< 1.0	101%	60%	130%	108%	70%	130%	124%	60%	130%
p,p'-DDE (Hfx 2012-03)	1	6738064	< 1.0	< 1.0	0.0%	< 1.0	99%	60%	130%	105%	70%	130%	117%	60%	130%

p,p'-DDT (Hfx 2012-03)	1	6738064	< 1.0	< 1.0	0.0%	< 1.0	106%	60%	130%	108%	70%	130%	117%	60%	130%
AMEC - NB - PCB Arochlor															
Aroclor 1242	92	6743384	<0.05	<0.05	NA	< 0.1	128%	70%	130%	85%	70%	130%	80%	60%	140%
Aroclor 1254	92	6743384	<0.05	<0.05	NA	< 0.0633	113%	70%	130%	84%	70%	130%	80%	60%	140%
Aroclor 1260	92	6743384	<0.05	<0.05	NA	< 0.1	96%	70%	130%	74%	70%	130%	71%	60%	140%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

.

AMEC - NB - Polycyclic Aromatic	c Hydroca	arbons in S	oil												
1-Methylnaphthalene	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	50%	50%	140%	106%	50%	140%	94%	50%	140%
2-Methylnaphthalene	1	6738264	< 0.02	< 0.02	0.0%	< 0.02	116%	50%	140%	125%	50%	140%	63%	50%	140%
Acenaphthene	1	6738264	< 0.00671	< 0.00671	0.0%	< 0.00671	108%	50%	140%	96%	50%	140%	88%	50%	140%
Acenaphthylene	1	6738264	< 0.005	< 0.005	0.0%	< 0.005	105%	50%	140%	94%	50%	140%	79%	50%	140%
Acridine	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	57%	50%	140%	71%	50%	140%	56%	50%	140%
Anthracene	1	6738264	< 0.04	< 0.04	0.0%	< 0.04	88%	50%	140%	83%	50%	140%	74%	50%	140%
Benzo(a)anthracene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	68%	50%	140%	58%	50%	140%	58%	50%	140%
Benzo(a)pyrene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	57%	50%	140%	59%	50%	140%	67%	50%	140%
Benzo(b)fluoranthene	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	59%	50%	140%	63%	50%	140%	63%	50%	140%
Benzo(b+j)fluoranthene	1	6738264	< 0.1	< 0.1	0.0%	< 0.1	76%	50%	140%	71%	50%	140%	88%	50%	140%
Benzo(e)pyrene	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	85%	50%	140%	86%	50%	140%	89%	50%	140%
Benzo(ghi)perylene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	67%	50%	140%	68%	50%	140%	57%	50%	140%
Benzo(k)fluoranthene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	76%	50%	140%	79%	50%	140%	77%	50%	140%
Chrysene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	90%	50%	140%	89%	50%	140%	93%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 22 of 32

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

SAMPLING SITE:

AGAT WORK ORDER: 15X996171 ATTENTION TO: Chyann Kirby SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Aug 06, 2015			C	UPLICATE	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper	-	Lower	Upper		Lower	Upper
Dibenzo(a,h)anthracene	1	6738264	< 0.006	< 0.006	0.0%	< 0.006	64%	50%	140%	75%	50%	140%	53%	50%	140%
Fluoranthene	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	87%	50%	140%	81%	50%	140%	129%	50%	140%
Fluorene	1	6738264	< 0.02	< 0.02	0.0%	< 0.02	113%	50%	140%	79%	50%	140%	71%	50%	140%
Indeno(1,2,3)pyrene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	68%	50%	140%	63%	50%	140%	53%	50%	140%
Naphthalene	1	6738264	< 0.01	< 0.01	0.0%	< 0.01	105%	50%	140%	98%	50%	140%	86%	50%	140%
Perylene	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	96%	50%	140%	100%	50%	140%	116%	50%	140%
Phenanthrene	1	6738264	< 0.04	< 0.04	0.0%	< 0.04	106%	50%	140%	101%	50%	140%	112%	50%	140%
Pyrene	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	89%	50%	140%	85%	50%	140%	114%	50%	140%
Quinoline	1	6738264	< 0.05	< 0.05	0.0%	< 0.05	111%	50%	140%	104%	50%	140%	91%	50%	140%

AMEC - NB - Total Polychlorinated Biphenyls

Total Polychlorinated Biphenyls	1	6738064 < 0.0215	< 0.0215	0.0%	< 0.0215	100%	70% 130%	99%	60% 130%	NA	60% 130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

AMEC NWT Polychlorinated Biphenyls Analysis in Soil

Aroclor 1242	92	6743388	<0.05	<0.05	NA	< 0.03	128%	70%	130%	85%	70%	130%	80%	50%	150%
Aroclor 1254	92	6743388	<0.05	<0.05	NA	< 0.03	113%	70%	130%	84%	70%	130%	80%	50%	150%
Aroclor 1260	92	6743388	<0.05	<0.05	NA	< 0.03	96%	70%	130%	74%	70%	130%	71%	50%	150%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

AMEC - NB - Polycyclic Aromatic Hydrocarbons in SPLP Leachate

Ameo no roiyeyene Aromane i	iyaroot			late											
1-Methylnaphthalene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	56%	50%	140%	102%	50%	140%	92%	50%	140%
2-Methylnaphthalene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	96%	50%	140%	103%	50%	140%	95%	50%	140%
Acenaphthene	1	6771559	< 0.04	< 0.04	0.0%	< 0.04	94%	50%	140%	104%	50%	140%	94%	50%	140%
Acenaphthylene	1	6771559	< 0.04	< 0.04	0.0%	< 0.04	87%	50%	140%	98%	50%	140%	86%	50%	140%
Anthracene	1	6771559	< 0.012	< 0.012	0.0%	< 0.012	75%	50%	140%	76%	50%	140%	81%	50%	140%
Benzo(a)anthracene	1	6771559	< 0.018	< 0.018	0.0%	< 0.018	81%	50%	140%	85%	50%	140%	78%	50%	140%
Benzo(a)pyrene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	118%	50%	140%	79%	50%	140%	125%	50%	140%
Benzo(b)fluoranthene	1	6771559	< 0.05	< 0.05	0.0%	< 0.05	118%	50%	140%	107%	50%	140%	101%	50%	140%
Benzo(b+j)fluoranthene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	101%	50%	140%	125%	50%	140%	130%	50%	140%
Benzo(e)pyrene	1	6771559	< 0.06	< 0.06	0.0%	< 0.06	108%	50%	140%	116%	50%	140%	115%	50%	140%
Benzo(ghi)perylene	1	6771559	< 0.02	< 0.02	0.0%	< 0.02	74%	50%	140%	125%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	1	6771559	< 0.04	< 0.04	0.0%	< 0.04	94%	50%	140%	95%	50%	140%	93%	50%	140%
Chrysene	1	6771559	< 0.04	< 0.04	0.0%	< 0.04	88%	50%	140%	99%	50%	140%	95%	50%	140%
Dibenzo(a,h)anthracene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	54%	50%	140%	65%	50%	140%	65%	50%	140%
Fluoranthene	1	6771559	< 0.03	< 0.03	0.0%	< 0.03	85%	50%	140%	94%	50%	140%	89%	50%	140%
Fluorene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	81%	50%	140%	80%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	1	6771559	< 0.04	< 0.04	0.0%	< 0.04	114%	50%	140%	78%	50%	140%	69%	50%	140%
Naphthalene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	99%	50%	140%	110%	50%	140%	98%	50%	140%
Perylene	1	6771559	< 0.05	< 0.05	0.0%	< 0.05	81%	50%	140%	89%	50%	140%	85%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 23 of 32

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

1

6801680 < 0.01

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

AGAT WORK ORDER: 15X996171 ATTENTION TO: Chyann Kirby

70% 130%

97%

70% 130%

SAMPLING SITE:

>C21-C32 Hydrocarbons

SAMPLED BY:

103% 70% 130% 114%

Trace Organics Analysis (Continued)

			-			-	-			-					
RPT Date: Aug 06, 2015			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable nits
		ld					Value	Lower	Upper			Upper	,		Upper
Phenanthrene	1	6771559	< 0.02	< 0.02	0.0%	< 0.02	97%	50%	140%	102%	50%	140%	98%	50%	140%
Pyrene	1	6771559	< 0.01	< 0.01	0.0%	< 0.01	83%	50%	140%	93%	50%	140%	88%	50%	140%
AMEC - NB - Atlantic RBCA Tier 1	Hydroca	rbons - SP	LP Leach	ate, EPH	only										
>C10-C16 Hydrocarbons	1	6801680	<0.05	<0.05	0	< 0.1	99%	70%	130%	114%	70%	130%	97%	70%	130%
>C16-C21 Hydrocarbons	1	6801680	<0.05	<0.05	0	< 0.1	105%	70%	130%	114%	70%	130%	97%	70%	130%

0

< 0.1

< 0.01

Certified By:

J. Patterson

AGAT QUALITY ASSURANCE REPORT (V3)

Page 24 of 32

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

AGAT WORK ORDER: 15X996171

ATTENTION TO: Chyann Kirby

FR05ECT. TE151440.2000		ATTENTION TO	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	1	I	
Aluminum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Antimony	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Arsenic	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Barium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Beryllium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Boron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cadmium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cobalt	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Copper	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Iron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Lead	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Lithium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Manganese	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Molybdenum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Nickel	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Selenium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Silver	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Strontium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Thallium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Tin	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Uranium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Vanadium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Zinc	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium, Hexavalent	INOR-121-6029	SSSA 5;25 p. 683	SPECTROPHOTOMETER
Aluminum Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Antimony Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Arsenic Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

AGAT WORK ORDER: 15X996171

ATTENTION TO: Chyann Kirby SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Barium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Beryllium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Bismuth Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Boron Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Cadmium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Chromium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Cobalt Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Copper Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Iron Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Lead Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Lithium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Magnesium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Manganese Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Molybdenum Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Nickel Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Selenium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Silver Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Sodium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Strontium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Thallium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Tin Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Uranium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Vanadium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Zinc Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Initial pH	MET-121-6108		pH METER
Final pH	MET-121-6108		pH METER
% Moisture			GRAVIMETRIC
Total Sample Mass			
Hardness		SM 2340B	CALCULATION
Total Organic Carbon by Walkley Black	SOIL 0480; SOIL 0110; SOIL 0120	NELSON 1996; SHEPPARD 2007	SPECTROPHOTOMETER
Total Inorganic Carbon, Calculated			CALCULATION

AGAT METHOD SUMMARY (V3)

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

AGAT WORK ORDER: 15X996171 ATTENTION TO: Chyann Kirby

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Particle Size Distribution (<12.5mm, -4 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<9.5mm, -3 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<4.75mm, -2 PHI	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<2mm, -1 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1mm, 0 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/2mm, 1 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/4mm, 2 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/8mm, 3 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/16mm, 4 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/32mm, 5 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/64mm, 6 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/128mm, 7 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/256mm, 8 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1/512mm, 9 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Gravel)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Sand)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Silt)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (Clay)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE
Particles >75um	INOR-121-6031, INOR-121-6034	ASTM D-422-63	CALCULATED
Classification	INOR-121-6031, INOR-121-6031	Atlantic RBCA	CALCULATED
Mercury	INOR-121-6101 & INOR-121-6107	Based on EPA 245.5 & SM 3112B	CV/AA
Total Organic Carbon	SOIL 0480; SOIL 0110; SOIL 0120	NELSON 1996; SHEPPARD 2007	SPECTROPHOTOMETER

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

SAMPLING SITE:

AGAT WORK ORDER: 15X996171

ATTENTION TO: Chyann Kirby

SAMPLED BY:

SAMPLING SITE:	-	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
>C10-C16 Hydrocarbons	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C16-C21 Hydrocarbons	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C21-C32 Hydrocarbons	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Return to Baseline at C32	VOL-120-5007/INOR-121- 6039	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
n-Dotriacontane - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Initial pH	MET-121-6108		
Final pH	MET-121-6108		
% Moisture Total Sample Mass			GRAVIMETRIC
		Atlantic RBCA Guidelines for	
Methyl-t-Butyl-Ether (MTBE)	VOL-120-5013	Laboratories Tier 1	GC/MS
Benzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Toluene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Ethylbenzene	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Xylene (Total)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
C6-C10 (less BTEX)	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
>C10-C21 Hydrocarbons	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
>C21-C32 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Modified TPH (Tier 1)	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Resemblance Comment	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Creosote Comment			GC/FID
Return to Baseline at C32	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
% Moisture	LAB-131-4024	Topp, G.C. 1993. Soil Water Content. CSSS	GRAVIMETRIC
Silica Gel Cleanup			GC/FID
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Dieldrin (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDD (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDE (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDT (Hfx 2012-03)	ORG-120-5108		GC/ECD
p,p'-DDD (Hfx 2012-03)	ORG-120-5108		GC/ECD
p,p'-DDE (Hfx 2012-03)	ORG-120-5108		GC/ECD
p,p'-DDT (Hfx 2012-03)	ORG-120-5108		GC/ECD
o,p'-DDT + p,p'-DDT	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000

SAMPLING SITE:

AGAT WORK ORDER: 15X996171 ATTENTION TO: Chyann Kirby

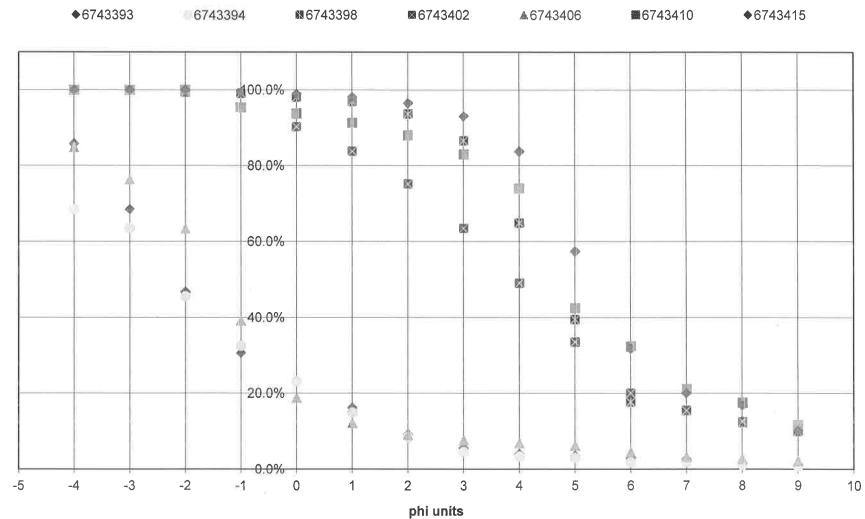
SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
o,p'-DDD + p,p'-DDD	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD
o,p'-DDE + p,p'-DDE	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD
Total DDT	Calculation	Calculation	GC/FID
Aroclor 1242	TO 0400	EPA 8082	GC/ECD
Aroclor 1248	TO 0400	EPA 8082	GC/ECD
Aroclor 1254	TO 0400	EPA 8082	GC/ECD
Aroclor 1260	TO 0400	EPA 8082	GC/ECD
Aroclor 1016	TO 0400	EPA 8082	GC/ECD
Aroclor 1221	TO 0400	EPA 8082	GC/ECD
Aroclor 1232	TO 0400	EPA 8082	GC/ECD
Aroclor 1262	TO 0400	EPA 8082	GC/ECD
Aroclor 1268	TO 0400	EPA 8082	GC/ECD
1-Methylnaphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
2-Methylnaphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Acenaphthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Acenaphthylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(a)anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(a)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(b)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(b+j)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(e)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(ghi)perylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(k)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Chrysene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Fluorene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Naphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Perylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Phenanthrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS

Method Summary

CLIENT NAME: AMEC EARTH AND ENVIRONMENTAL

PROJECT: TE131446.2000


SAMPLING SITE:

AGAT WORK ORDER: 15X996171 ATTENTION TO: Chyann Kirby

ATTENTION TO: Chyann Kirby SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Total PAH			CALCULATION
Nitrobenzene-d5	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
2-Fluorobiphenyl	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
Terphenyl-d14	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
Initial pH	MET-121-6108-TCLP		
Final pH	MET-121-6108-TCLP		
1-Methylnaphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
2-Methylnaphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acenaphthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acenaphthylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acridine	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(a)anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(a)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(b)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(b+j)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(e)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(ghi)perylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(k)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Chrysene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Fluorene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Indeno(1,2,3)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Naphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Perylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Phenanthrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Quinoline	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Total PAH			
Nitrobenzene-d5	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
2-Fluorobiphenyl	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Terphenyl-d14	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Total Polychlorinated Biphenyls	ORG-120-5106	EPA SW846/8081/8080	GC/ECD
Aroclor 1242	TO 0410	EPA 8082	GC/ECD
Aroclor 1254	TO 0410	EPA 8082	GC/ECD
Aroclor 1260	TO 0410	EPA 8082	GC/ECD
Total Polychlorinated Biphenyls	TO 0410	EPA 8082	GC/ECD
Decachlorobiphenyl	TO 0410	EPA 8082	GC/ECD

Particle Size Distribution 15x996171

% Finer

🦄 🖪	A L	Lab	oratori	es		Arriv	ral Co ral Ter	nditio	n:	Onl J°			Good		AGAT	Poor Job I	(com Numbe	plete ' ər:	notes'	15	49	94	17	1	
Unit 122 - 11 Morris Dr. Dartmouth, Nova Scotla		Phone: 907 Fax: 902-4	2-468-8718 468-8924										_	_	_	_			_	_	_		_		_
B3B 1M2 http://webearth.agatlabs.com		www.agatl				Drin	nking	Wa	ter S	amp	le (y/	/n):		Ν		Reg	. No								
http://webearth.agattabs.com						Wate	erworl	cs Nu	mber:																
Report To:				formation		-	-		Rep	ort Fo	rmat	τu	mar	оип	d Ti	me	(TA	T) Bu	isine	ess D	avs				
Company: Amec Foster Wheeler Contact: Chyann Kirby			1. Name: Email:	Chyann Kirby	_					Single		I					(.,			.,.				
Address: 580 Main Street, Sulte 105	5. Hilvard Place.		2. Name:	chyann.kirby@amecfw.com Christa Dubreull		_	-	č –		sample		кед	ular '		7 da	ivs									
Building B, Saint John, New Brunswick	, E2K 1J5		Email:	christa.dubreuil@amectw.com				·		page		Rus	h TA			,-									
Phone: 506-652-4530 FAX:	506-652-95	517	Regulatory	Requirements (Check):					ш	Multip				1 d	ay			2 da	ys						
PO#:				nes on Report 🛛 📕 Do Not List						sampl page					4 da	ays									
AGAT Quotation: 15-1771			D PIRI	Site Info (ch						Excel	Format	Date	e Requ	uired	a		_	_			_				
Client Project #: TE131446.200		_			Pot		l Coar	se	2.7	Includ	ed	Time	Req	uired	:										
Invoice to: Same (Y/N) - C	urcie				N/Pot		I Fine																	_	
Company:				Gas □ Fuel □ Lube □ CDWQ		_					_		-		_		-	r -	-	1	r	12			
Address:				Ind D NSDFOSP		10	di la						_	1				-				-			
				Com HRM 101	ved	ysis	n,Se	E				1					Ê	(Miss	268	1					
Phone: Fax:				Res/P Storm Water	Preserved	Standard Water Analysis +MS	N SI	Chromium		Pipette		100			TPH/BTEX (PIRI) Tier 1	-	Total PCB's (Calculation)	8	-UB AROCHORS- 1016,1221,1232,1262,1268					1911	Lab
				Ag 🔲 HRM 101	Pre	erb	lis(Iron		Pip		21		9	Ē	2.1	lout	1,12	13	-				<u>1</u>	Sample
PO#/Credit Card #:				FWAL Waste Water	Filtered/	Nati	leta	Ċ		മ		Rel		Gel Cleanup	(PIR		<u>C</u>	ors-	1232						#
				Sediment	lter	p	10	Hexavalent	>	Sieve					Ä	5	CB's	49	21.1						
			Other			s nda	hall	(ave	cur	1	0	1 - 1	⊢		1/81	P/	P	2,13	6,12						
SAMPLE IDENTIFICATION	DATE / TIME SAMPLED	SAMPLE MATRIX	# OF CONTAINERS	COMMENTS - Site/Sample Info, Sample Containment	Field	Sta +M	Available Metals(w Sn,S	He	Mercury	PSA	TOC	PF	DDT	Sillca	년 년	Total PAH	Tota	PCB Arochlors- 1242,1248,1254,1260 (h	500	10					
BB-2 (COMING TOMORROW)	15-Jul-15	sed./soi	4 x 500 ml	Sediment			x	х	х	х	х	x	x	x	x	х	х	x	x						
BB-11 (COMING TOMORROW)	15-Jul-15	sed./sol	4 x 500 ml	Sediment			x	x	х	x	х	x	X	X	х	x	х	x	x						
BB-14	14-Jul-15	sed./soi	4 x 500 ml	SedIment			X	x	х	x	х	X	×	x	х	X	х	x	x						
BB-25	14-Jul-15	sed./soi	4 x 500 ml	Sediment			X	x	х	x	х	X	×	x	х	x	х	x	x						
BB-35	14-Jul-15	sed./soi	4 x 500 ml	Sediment			X	х	х	x	х	x	x	x	х	х	х	x	x						
BB-39	14-Jul-15	sed./soi	4 x 500 ml	Sediment		i se i	X	X	х	х	х	x	×	x	х	х	х	x	x						
BB-48	14-Jul-15	sed./sol	4 x 500 ml	Sediment			x	x	х	х	х	x	×	x	х	х	х	x	x	1.111		1			
	1					Tie												î j							
								-		10								1 2							
																		i E a							
						100										-		EO							
		-							-	-			-			1		1			-	1			
								-			-	-	-	-	-			-	-		-	1			
Sample Relinquished By (print name &	sign)	-	Date/Time	Samples Received By (print name	and si	an)		_		-	-	Da	te/Tir	me	Spec	ial In	struct	ions							
Chyann Kirby (Amec Foster Wheel			15-Jul-15 1:00pm	Sama mathin R	116	11		_				1	ni l	1	Plea	se ir	ncluc	le a c				ment			the ide the
Sample Relinguished By (print name &	sign)		Date/Time	Samples Received By (print name	and el	00)		-		_	0.	Da	te/Tir	- · · ·	1			S-rea				as WI	en as	PIOV	nue ule
print hame a	307		- ace, mile	print in the second by (print hame	2112 31	907	-	-			1	00		-	Page	_	01		of 1	annai				_	
							_									-			3. 1						

1.0

	AG(AT	Lab	oratori	es	1	Irriva	l Con l Тел	ditio	use n: ature:		20		Good				(comp lumbe	olete 'r r:	iotes')	<u> 5x</u>	994	21*j	2/
	Unit 122 - 11 Morris Dr. Dartmouth, Nova Scotia B3B 1M2 http://webearth.agatlabs.com	F	hone: 902 ax: 902-4 ww.agatl							ter S mber:		le (y,	/n):	_	N		Reg.	, No.						
	Solution Solution	E2K 1)5 506-652-95	17	Report In 1. Name: Email: 2. Name: Email: Regulatory i D List Guidelii P FIRI D	Chyann Kirby chyann, kirby@ameclw.com Christa Dubreuil christa.dubreuil@ameclw.com Regulrements (Check):	k all i ol	hat aj	oply): Coars			Single sampli page Multip sampli page	PDF e per le PDF es per Format	Regi Rusi	Ntar 1	AT: 5 - 1 da 3 - Ired:	7 da ay 4 da	iγs	-	Г) Ви 2. da		st Days			
*	Contact:Fax:				FWAL Waste Waler Sediment	Filtered/ Pr	Standard Water Analysis +MS	ilable Metals(w Sn.Se-	Hexavalent Chromium	Mercury	I - Sieve & Pipette				a Gel Cleanup	TPH/BTEX (PIRI) Tler 1	Tobal PAH	fotal PCB's (Calculation)	PCB Arechlors- 1242,1248,1254,1260 (Miss)	5 Arocmons- 6,1221,1232,1262,1268 11	Zero Headspace Extract for Potential Leachate Analysis (Perform Extract on July 20 2015)			Lab Sample #
	SAMPLE IDENTIFICATION BB-2 BB-11	15-Jul-15	-	CONTAINERS 4 x 500 ml 4 x 500 ml	COMPENTS - Stepsongile Info, Sample Containment Sediment Sediment	Field	ES WF	X X AV3	X X He	X	x x PSA	× × TOC	x TIC	× × DDT	× × Silon	× ×	× × Tot	X X Tot	X X PC	X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	X Poi Poi (Pe			
o be	BB-14. BB-25	14-Jul-15 14-Jul-15		4 x 500 ml 4 x 500 ml	Sediment Sediment			x x	X X	××	×	X X	× ×	×	x x	x x	×	x	×	x x	x x			
Stripped TSepenck Stankey	88-35 88-39 88-48	14-Jul-15 14-Jul-15 14-Jul-15	sed./so	4 x 500 ml 4 x 500 ml 4 x 500 ml	Sediment Sediment	_		x x x	x x x	X X X	× × ×	x x x	x x x	x x x	x x x	x x x	× × ×	x x x	x x x	x x x	x x x			
0				· ·																				
	Sample Relinquished By (print name & s Chyann Kirby (Amec Foster Wheele Sample Relinquished By (print name & s	1) / Creffor	itina	Date/Time 15~Jul-15 1:00pm Date/Time	Samples Received By (print name an Samples Received By (print name an						1			l ite/Tii ite/Tii		Plea the	ose li pres vide	sence	de a c e of c result	reoso	ative com ote in sam GIS-ready	ples as	s well	-

 \mathbb{Z}

APPENDIX D Limitations Public Works and Government Services Canada Marine Sediment Sampling Program Back Bay DFO-SCH, Back Bay, New Brunswick August 2015

LIMITATIONS

- 1. The work performed in the preparation of this report and the conclusions presented are subject to the following:
 - 1. The Standard Terms and Conditions which form a part of our Professional Services Contract.
 - 2. The Scope of Services.
 - 3. Time and Budgetary limitations as described in our Contract.
 - 4. The Limitations stated herein.
- 2. No other warranties or representations, either expressed or implied, are made as to the professional services provided under the terms of our Contract, or the conclusions presented.
- 3. The information presented in this report is based on sampling techniques which are considered industry-standard for this type of assessment (i.e., samples collected by divers using standard procedures commonly accepted by PWGSC).
- 4. The sediment characteristics at the Site were assessed, within the limitations set out above, having due regard for applicable environmental regulations as of the date of the analytical reporting.
- 5. No request for information about the site history or operating practices within the site boundaries has been included in the scope of work for this project.
- 6. Sample collection and testing was carried out in accordance with the terms of our contract. Other substances, or different quantities of substances testing for, may be present on Site and may be revealed by different or other testing not provided for in our contract.
- 7. This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or contract. Any use which any third party makes of the report, in whole or the part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. Amec Foster Wheeler accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on the report or anything set out therein.